Вывод уравнения равномерного движения жидкости

Вопрос №20. Основное уравнение равномерного движения жидкости. Формула Шези.

Рассмотрим прямолинейное равномерное движение жидкости. Живые сечения в этом случае могут быть произвольной формы, но не должны изменяться по всей длине рассматриваемого участка. В таком потоке потери напора определяются лишь потерями по длине.

Выделим из потока участок жидкости длиной l и запишем уравнение Бернулли для сечений 1 и 2( рис. 32 )

Вывод уравнения равномерного движения жидкости

Вывод уравнения равномерного движения жидкости

z1 , z2 — ординаты центра тяжести сечений 1,2,

p1 , p2 — давление в центрах тяжести этих сечений,

v1 , v2 — средние скорости в этих сечениях,

h1-2 — потери напора по длине.

Так как движение равномерное, то v1 =v2 и уравнение можно переписать так:

Вывод уравнения равномерного движения жидкости. (1)

В случае равномерного движения разность удельных потенциальных энергий равна потере напора по длине.

Для вычисления этой разности напишем сумму проекций на ось А-А всех сил, действующих на участке 1-2. Эти силы следующие:

1) сила тяжести жидкости

Вывод уравнения равномерного движения жидкости,

2) силы давления на плоские сечения

Вывод уравнения равномерного движения жидкости, Вывод уравнения равномерного движения жидкости, Вывод уравнения равномерного движения жидкости,

Вывод уравнения равномерного движения жидкости,

где t — сила трения на единицу площади смачиваемой поверхности

русла, c — смоченный периметр,

4) силы давления стенок на жидкость ( эти силы не подсчитываем, так как они параллельны оси А-Аи, следовательно, их проекции на ось А-А равны нулю ).

Спроектируем все эти силы на ось А-А:

Вывод уравнения равномерного движения жидкости.

Вывод уравнения равномерного движения жидкости.

Подставим выражение для сил в уравнение

Вывод уравнения равномерного движения жидкости.

Разделим обе части этого равенства на Вывод уравнения равномерного движения жидкости, имеем

Вывод уравнения равномерного движения жидкости. (2)

Сравнивая выражения (1) и (2), находим

Вывод уравнения равномерного движения жидкости,

Вывод уравнения равномерного движения жидкости.

Отношение площади живого сечения S к смоченному периметру c называется гидравлическим радиусом

Вывод уравнения равномерного движения жидкости.

Величина Вывод уравнения равномерного движения жидкостиобозначается через i и называется гидравлическим уклоном.

Вывод уравнения равномерного движения жидкости.

Это уравнение называется основным уравнением равномерного движения.

Величина Вывод уравнения равномерного движения жидкостиимеет размерность квадрата скорости

Вывод уравнения равномерного движения жидкости.

Выражение Вывод уравнения равномерного движения жидкости— называется динамической скоростью, обозначается v*

Вывод уравнения равномерного движения жидкости.

Формула Шези — формула для определения средней скорости потока при установившемся равномерном турбулентном движении жидкости в области квадратичного сопротивления для случая безнапорного потока. Опубликована французским инженером-гидравликом А. Шези (AntoinedeChézy, 1718–1798) в 1769 году. Применяется для расчётов потоков в речных руслах и канализационых системах.

Вывод уравнения равномерного движения жидкости,

где V — средняя скорость потока, м/с;

C — коэффициент сопротивления трения по длине (коэффициент Шези), являющийся интегральной характеристикой сил сопротивления;

R — гидравлический радиус, м;

I — гидравлический уклон м/м.

Формула Шези имеет то же предназначение, что и формула Дарси-Вейсбаха. Коэффициент потерь на трение Вывод уравнения равномерного движения жидкостисвязан с коэффициентом сопротивления С следующей зависимостью:

Вывод уравнения равномерного движения жидкости.

Коэффициент сопротивления C может быть определён по формуле Н. Н. Павловского:

Вывод уравнения равномерного движения жидкости

где n — коэффициент шероховатости, характеризующий состояние поверхности русла, для случая канализационных труб принимается в диапазоне (0,012. 0,015); для других случаев nbsp;— информация приведена в литературе [1]

у — показатель степени, зависящий от величины коэффициента шероховатости и гидравлического радиуса:

Вывод уравнения равномерного движения жидкости

Эта формула рекомендуется для значений R [2]

Дата добавления: 2015-04-18 ; просмотров: 161 ; Нарушение авторских прав

Видео:Вывод уравнений движения идеальной жидкости - Лекция 2Скачать

Вывод уравнений движения идеальной жидкости - Лекция 2

Основное уравнение равномерного движения жидкости

Вывод уравнения равномерного движения жидкости Вывод уравнения равномерного движения жидкости Вывод уравнения равномерного движения жидкости Вывод уравнения равномерного движения жидкости Вывод уравнения равномерного движения жидкости

Вывод уравнения равномерного движения жидкости

Видео:Уравнение равномерного движения. Решение задач по теме.Скачать

Уравнение равномерного движения. Решение задач по теме.

Основное уравнение равномерного движения жидкости

Основное уравнение равномерного движения жидкости. Рассмотрим устойчивое, равномерное (продольно равномерное) движение жидкости в произвольной поперечной цилиндрической трубе Длина секции b (рис. 5.11).Используйте уравнения, представляющие законы изменения импульса. Это векторная форма любого объема V, заключенного в поверхность A、 Проекция членов этого уравнения на ось совпадает с направлением скорости жидкости. Где; проекция вектора скорости на ось C, очевидно, и= И = |и|; проекция вектора плотности распределения внешних объемных сил на ось B I. определить напряжения pn/, принимая во внимание N ca1 в противоположном направлении от 1U a и u в том же направлении (и принимая во внимание раздел 5.1 леммы 1).

Если сторона потока представляет собой неподвижную твердую поверхность, то знак минус вводится таким образом, чтобы касательное напряжение m было положительным. Людмила Фирмаль

  • В этом случае pn /-тангенциальное напряжение, действующее со стороны Abok (перпендикулярно этой поверхности n) и ориентированное вдоль оси (pn и pn-нормальные напряжения поверхности сечение O и ω соответственно).в результате это выглядит так: Внутрь!»: РП= РПП = ПП на СО2 ’■Пн; = + Р»= » П2; А6 (Вт: РШ-напряжение сдвига. Поскольку движение является устойчивым, локальная составляющая реальной производной равна нулю, а при равномерном (продольно равномерном) движении плотность распределения импульса ri вдоль потока не изменяется, и, следовательно, конвективная составляющая реальной производной также равна нулю. (5.61) результат перепишите в следующий формат.
  • Гравитационный потенциал I)= & 2, следовательно, Г,=&гас1 <и = = −2-、 Объемный элемент (IV, предполагая, что стороны цилиндрические) называется (IV-oh?。 Где 2 [и 2-вертикальные координаты 2 произвольных соответствующих (на одной линии потока) точек сечения co и co2. Согласно Лемме 2 (см. раздел 5.1) и зависимости гидростатического давления от плоскости (2.33), последние 2 интеграла из (5.62) представляются в следующем виде: Где P3 и p? Это центр тяжести и давление w2. Перейдем к интеграционным соображениям на стороне аббока. Для простоты укажите напряжение сдвига pn ^ = M. Поскольку движения равномерны, можно взять полосу 1lZX в качестве элемента B. где b-длина выделенного управляющего объема, а 6X-основная длина смачиваемого участка (см. рис. 5.11).

Форма интеграла в этом случае имеет вид (5.63) если вы подставляете (5.65) в исходное уравнение (5.62)、 поскольку bx и r2 соответствуют любым соответствующим точкам в разделах 1-1 и 2-2, мы предполагаем, что это вертикальные координаты центроида разделов 1-1 и 2-2.Если разделить все члены уравнения (5.66) на p&W. Если движение в разрезе равномерное, как описано выше、 Где H-потенциальное давление. Имея это в виду, он представляет(5.67) в виде: Где I-пьезоэлектрическое смещение. Это общий вид основных уравнений равномерного движения.

Более широко эта формула используется в некоторых случаях, когда m является постоянным во всех точках вокруг увлажненной области. Людмила Фирмаль

  • Это условие выполняется точно в цилиндрической форме и почти точно в прямоугольных каналах, которые очень широки. Уравнение(5.69) преобразуется в следующий вид Уравнения (5.71) и (5.72) используются не только для описанных выше случаев, но и для каналов с различными формами поперечного сечения, вводя в эти уравнения среднее касательное касательное напряжение вместо X. В заключение отметим, что при равномерном движении она равна 3 = 1e. при использовании формул (571) и (572) это учитывается далее.

Смотрите также:

Возможно эти страницы вам будут полезны:

Вывод уравнения равномерного движения жидкости

Вывод уравнения равномерного движения жидкости Вывод уравнения равномерного движения жидкости Вывод уравнения равномерного движения жидкости Вывод уравнения равномерного движения жидкости Вывод уравнения равномерного движения жидкости Вывод уравнения равномерного движения жидкости Вывод уравнения равномерного движения жидкости Вывод уравнения равномерного движения жидкости Вывод уравнения равномерного движения жидкости Вывод уравнения равномерного движения жидкости Вывод уравнения равномерного движения жидкости Вывод уравнения равномерного движения жидкости Вывод уравнения равномерного движения жидкости Вывод уравнения равномерного движения жидкости Вывод уравнения равномерного движения жидкости Вывод уравнения равномерного движения жидкости Вывод уравнения равномерного движения жидкости Вывод уравнения равномерного движения жидкости Вывод уравнения равномерного движения жидкости Вывод уравнения равномерного движения жидкости Вывод уравнения равномерного движения жидкости Вывод уравнения равномерного движения жидкости Вывод уравнения равномерного движения жидкости Вывод уравнения равномерного движения жидкости Вывод уравнения равномерного движения жидкости Вывод уравнения равномерного движения жидкости Вывод уравнения равномерного движения жидкости Вывод уравнения равномерного движения жидкости Вывод уравнения равномерного движения жидкости Вывод уравнения равномерного движения жидкости Вывод уравнения равномерного движения жидкости Вывод уравнения равномерного движения жидкости Вывод уравнения равномерного движения жидкости Вывод уравнения равномерного движения жидкости Вывод уравнения равномерного движения жидкости Вывод уравнения равномерного движения жидкости Вывод уравнения равномерного движения жидкости Вывод уравнения равномерного движения жидкости Вывод уравнения равномерного движения жидкости Вывод уравнения равномерного движения жидкости Вывод уравнения равномерного движения жидкости Вывод уравнения равномерного движения жидкости Вывод уравнения равномерного движения жидкости Вывод уравнения равномерного движения жидкости Вывод уравнения равномерного движения жидкости Вывод уравнения равномерного движения жидкости Вывод уравнения равномерного движения жидкости Вывод уравнения равномерного движения жидкости Вывод уравнения равномерного движения жидкости Вывод уравнения равномерного движения жидкости Вывод уравнения равномерного движения жидкости Вывод уравнения равномерного движения жидкости Вывод уравнения равномерного движения жидкости

Образовательный сайт для студентов и школьников

Копирование материалов сайта возможно только с указанием активной ссылки «www.lfirmal.com» в качестве источника.

© Фирмаль Людмила Анатольевна — официальный сайт преподавателя математического факультета Дальневосточного государственного физико-технического института

Видео:Уравнение равномерного прямолинейного движения | Физика 10 класс #3 | ИнфоурокСкачать

Уравнение равномерного прямолинейного движения | Физика 10 класс #3 | Инфоурок

Основное уравнение равномерного движения жидкости

Формула Шези

Равномерное движение жидкости мы можем наблюдать во многих случаях жизни. Это может быть установившееся движение жидкости в каналах, водопроводных трубах и т.п. Условием равномерного движения является постоянство живого сечения, скорости течения и глубины по длине по длине потока.

Для вывода основного уравнения движения жидкости необходимо рассмотреть часть потока, ограниченного сечениями 1 – 1 и 2 – 2 и составить уравнение баланса сил, спроектированных на ось движения потока

Вывод уравнения равномерного движения жидкостиЗдесь Р1 = р1ω и Р2 = р2ω – суммарные силы гидростатического давления в соответствующих сечениях; G – сила тяжести части потока в объёме W = ωl

α – угол наклона оси потока;

Рис.3.9 sin α = Вывод уравнения равномерного движения жидкости. (3.50)

Ттр – суммарная сила трения потока о стенки

где τ0∙ – касательные напряжения между жидкостью и стенкой трубы; f – смоченный периметр; l – длина участка трубы, ограниченного сечениями 1- 1 и 2-2.

Если подставить соответствующие значения суммарных сил давления, а также (3.49), (3.50) в уравнение (3.48) и поделить на ρgω, то получим

Вывод уравнения равномерного движения жидкости. (3.52)

Перегруппируем составляющие уравнения (3.53)

Вывод уравнения равномерного движения жидкости. (3.54)

Левая часть уравнения (3.54) в условиях равномерного движения выражает потерю напора на рассматриваемом участке движения жидкости, тогда

Вывод уравнения равномерного движения жидкости,

Вывод уравнения равномерного движения жидкости. (3.55)

Поскольку Вывод уравнения равномерного движения жидкости(гидравлический радиус), а Вывод уравнения равномерного движения жидкости(гидравлический уклон), окончательно получим

Вывод уравнения равномерного движения жидкости. (3.56)

Зависимость (3.56) есть основное уравнение равномерного движения жидкости, которое показывает, что касательные напряжения, отнесённые к удельному весу жидкости, равны произведению гидравлического радиуса на гидравлический уклон.

Из уравнения (3.56) можно вывести формулу Шези для определения средней скорости потока.

Многочисленными опытами подтверждается, что при развитом турбулентном движении жидкости, отношение Вывод уравнения равномерного движения жидкостипропорционально средней скорости потока, то есть

Вывод уравнения равномерного движения жидкости

где b – коэффициент пропорциональности, тогда

или средняя скорость равна

Вывод уравнения равномерного движения жидкости. (3.59)

Обозначим Вывод уравнения равномерного движения жидкости Вывод уравнения равномерного движения жидкости, тогда

Вывод уравнения равномерного движения жидкости. (3.60)

Формулу (3.60) называют формулой Шези для определения средней скорости потока. Для определения расхода жидкости используют формулу Шези в следующем виде

Вывод уравнения равномерного движения жидкости, (3.61)

где С – скоростной множитель или коэффициент Шези. Он может быть определён по формуле академика Н.Н. Павловского или по формуле Базена.

Дата добавления: 2016-10-07 ; просмотров: 5594 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ

📺 Видео

Теорема Эйлера о движении жидкостиСкачать

Теорема Эйлера о  движении жидкости

Физика - уравнения равноускоренного движенияСкачать

Физика - уравнения равноускоренного движения

Графическое представление равномерного движения.Скачать

Графическое представление равномерного движения.

9 класс, 3 урок, Графики прямолинейного равномерного движенияСкачать

9 класс, 3 урок, Графики прямолинейного равномерного движения

Урок 12. Равномерное прямолинейное движениеСкачать

Урок 12. Равномерное прямолинейное движение

Урок 137. Движение тела в жидкости и газе.Скачать

Урок 137. Движение тела в жидкости и газе.

14. Движение идеальной жидкостиСкачать

14. Движение идеальной жидкости

Урок 132. Основные понятия гидродинамики. Уравнение непрерывностиСкачать

Урок 132. Основные понятия гидродинамики. Уравнение непрерывности

Урок 133. Закон Бернулли. Уравнение БернуллиСкачать

Урок 133. Закон Бернулли. Уравнение Бернулли

Уравнение движенияСкачать

Уравнение движения

Вязкость. Ламинарное и турбулентное течения жидкостей. 10 класс.Скачать

Вязкость. Ламинарное и турбулентное течения жидкостей. 10 класс.

Графическое представление движения. 7 класс.Скачать

Графическое представление движения. 7 класс.

Криволинейное, равномерное движение материальной точки по окружности. 9 класс.Скачать

Криволинейное, равномерное движение материальной точки по окружности. 9 класс.

Движение тел в жидкостях и газах. Лобовое сопротивление и подъемная сила. Формула Стокса. 10 класс.Скачать

Движение тел в жидкостях и газах. Лобовое сопротивление и подъемная сила. Формула Стокса. 10 класс.

Закон БернуллиСкачать

Закон Бернулли

Физика. Курс механики | Виды движения. Равномерное движениеСкачать

Физика. Курс механики | Виды движения. Равномерное движение

Физика. 10 класс. ГидродинамикаСкачать

Физика. 10 класс. Гидродинамика
Поделиться или сохранить к себе:
Читайте также:

  1. Grand sissonne owerte без продвижения
  2. Grand sissonne owerte без продвижения
  3. II.Четыре главных средства продвижения
  4. Re – Рейнольдс саны) формуласында l нені білдіреді
  5. V2:4 Новые религиозные движения и нетрадиционные религии
  6. А9. ОЦЕНКА И АНАЛИЗ ЭФФЕКТИВНОСТИ ФИРМЫ. ФОРМУЛА ДЮПОНА
  7. Автобус как средство передвижения. Организация автобусных туров, их география, известные туроператоры.
  8. Агрегатные состояния вещества. Характер теплового движения в этих состояниях. Особенности теплового движения в различных агрегатных состояниях вещества.
  9. Адиабатный процесс. Уравнение адиабаты идеального газа. Работа идеального газа при адиабатическом изменении его объема.
  10. Акты международных организаций по экономическим вопросам.