• Воспользовавшись записью первого начала термодинамики в дифференциальной форме (9.2), получим выражение для теплоёмкости произвольного процесса:
• Представим полный дифференциал внутренней энергии через частные производные по параметрам и :
После чего формулу (9.6) перепишем в виде
Соотношение (9.7) имеет самостоятельное значение, поскольку определяет теплоёмкость в любом термодинамическом процессе и для любой макроскопической системы, если известны калорическое и термическое уравнения состояния.
• Рассмотрим процесс при постоянном давлении и получим общее соотношение между и .
Исходя из полученной формулы, можно легко найти связь между теплоемкостями и в идеальном газе. Этим мы и займемся. Впрочем, ответ уже известен, мы его активно использовали в 7.5.
Уравнение Роберта Майера
Выразим частные производные в правой части уравнения (9.8), с помощью термического и калорического уравнений, записанных для одного моля идеального газа. Внутренняя энергия идеального газа зависит только от температуры и не зависит от объёма газа, следовательно
Из термического уравнения легко получить
Подставим (9.9) и (9.10) в (9.8), тогда
Вы, надеюсь, узнали (9.11). Да, конечно, это уравнение Майера. Еще раз напомним, что уравнение Майера справедливо только для идеального газа.
9.3. Политропические процессы в идеальном газе
Как отмечалось выше первое начало термодинамики можно использовать для вывода уравнений процессов, происходящих в газе. Большое практическое применение находит класс процессов, называемых политропическими. Политропическим называется процесс, проходящий при постоянной теплоемкости .
Уравнение процесса задается функциональной связью двух макроскопических параметров, описывающих систему. На соответствующей координатной плоскости уравнение процесса наглядно представляется в виде графика — кривой процесса. Кривая, изображающая политропический процесс, называется политропой. Уравнение политропического процесса для любого вещества может быть получено на основе первого начала термодинамики с использованием его термического и калорического уравнений состояния. Продемонстрируем, как это делается на примере вывода уравнения процесса для идеального газа.
Вывод уравнения политропического процесса в идеальном газе
• Требование постоянства теплоёмкости в процессе позволяет записать первое начало термодинамики в виде
• Используя уравнение Майера (9.11) и уравнение состояния идеального газа, получаем следующее выражение для
• Разделив уравнение (9.12) на T и подставив в него (9.13) придем к выражению
• Разделив ( ) на , находим
• Интегрированием (9.15), получаем
Это уравнение политропы в переменных
Исключая из уравнения ( ) , с помощью равенства получаем уравнение политропы в переменных
Параметр называется показателем политропы, который может принимать согласно ( ) самые разные значения, положительные и отрицательные, целые и дробные. За формулой ( ) скрывается множество процессов. Известные вам изобарный, изохорный и изотермический процессы являются частными случаями политропического.
К этому классу процессов относится также адиабатный или адиабатический процесс. Адиабатным называется процесс, проходящий без теплообмена ( ). Реализовать такой процесс можно двумя способами. Первый способ предполагает наличие у системы теплоизолирующей оболочки, способной изменять свой объем. Второй – заключается в осуществлении столь быстрого процесса, при котором система не успевает обмениваться количеством теплоты с окружающей средой. Процесс распространения звука в газе можно считать адиабатным благодаря его большой скорости.
Из определения теплоемкости следует, что в адиабатическом процессе . Согласно
где – показатель адиабаты.
В этом случае уравнение политропы принимает вид
Уравнение адиабатного процесса (9.20) называют также уравнением Пуассона, поэтому параметр часто именуют постоянной Пуассона. Постоянная является важной характеристикой газов. Из опыта следует, что ее значения для разных газов лежат в интервале 1,30 ÷ 1,67, поэтому на диаграмме процессов адиабата «падает» более круто, чем изотерма.
Графики политропических процессов для различных значений представлены на рис. 9.1.
На рис. 9.1 графики процессов пронумерованы в соответствии с табл. 9.1.
Номер политропы на рис. 9.1 | Значение показателя политропы | Уравнение политропы ( ) | Название процесса |
st | изобарический | ||
изохорический | |||
изотермический | |||
адиабатический | |||
— | |||
— | |||
— |
Знание показателя политропы позволяет без особого труда рассчитать теплоёмкость системы. Знание теплоёмкости в свою очередь даёт возможность рассчитать количество теплоты, сообщённое макросистеме в данном политропическом процессе. Действительно, из следует
Тогда, бесконечно малое количество теплоты, сообщённое макросистеме в политропическом процессе равно
.
Соответственно полное количество теплоты, полученное системой при изменении её температуры от до , определяется простой формулой
Зная , можно определить макроскопическую работу , совершенную системой в политропическом процессе, с помощью уравнения первого начала в интегральной форме и формулы
Таким образом, мы можем получить исчерпывающую информацию об энергообмене системы с окружающей средой.
Теперь уместно поставить следующие вопросы. Что делать, если процесс не политропический? Можно ли глядя на график процесса, догадаться, что это не политропа?
Иногда можно. Взгляните на рис. 9.2. Это уж точно не политропы.
Для подобных процессов количество теплоты рассчитать не так просто как в случае политропных процессов так как теплоёмкость системы будет зависеть от температуры . Соответственно
Полное количество теплоты, полученное системой в произвольном процессе, можно рассчитать только интегрированием
Вычисление теплоемкости и количества теплоты в различных процессах является внутренней подзадачей многих учебных задач, с которыми вы встретитесь при изучении термодинамики.
9.4. Тепловые машины и их эффективность.
Циклические процессы являются основой действия тепловых машин. В используемых на практике разнообразных тепловых машинах реализованы различные виды термодинамических циклов. Тепловыми машинами являются двигатели внутреннего сгорания, реактивные двигатели, холодильники, кондиционеры, тепловые насосы, паровые турбины и т. д.
На диаграмме процессов цикл изображается замкнутой кривой (рис. 9.3) с указанием направления перехода (по часовой стрелке или против часовой стрелки). Работа, совершаемая машиной за цикл равна площади, ограниченной этой кривой.
Рис. 9.3. |
Работа расширения равна площади под кривой 1-2-3 на диаграмме (рис. 9.3). Работа сжатия — отрицательная, поскольку объём на участке 3-1 уменьшается. Величина определяется площадью под кривой 3-1. Рассчитывать работу таким образом целесообразно, если цикл представляет простую геометрическую фигуру: прямоугольник, треугольник, трапецию, окружность. Более общий подход основан на вычислении количества теплоты, поступающей в машину на отдельных участках цикла.
Действительно, проинтегрировав по циклу равенство, выражающее первое начало термодинамики, получим важный результат:
из которого следует, что работа равна количеству теплоты, полученной системой за цикл
Теплота в каких-то частях цикла поступает в систему ( (+) ), а в каких-то частях уходит из системы . Обобщённо можно записать так
Определить поступает в систему количество теплоты или оно теряется иногда можно только расчётом, но зачастую это видно на графике процесса:
• Если температура растёт или (и) объём увеличивается, то в систему поступает количество теплоты .
• Если температура падает или (и) объём уменьшается, то система отдаёт количество теплоты окружающей среде.
Принципиальная схема работы тепловой машины
Схематически работа машин по прямому и обращенному циклу представлена на рис. 9.4 и 9.5. Любая машина должна включать в себя нагреватель с температурой (горячий термостат), холодильник с температурой (холодный термостат), а также рабочее вещество, или рабочее тело, заключённое в некотором техническом устройстве (цилиндр с поршнем, турбина и т. п.), имеющем силовой привод. Если циклический процесс, описывающий состояние рабочего вещества в машине, идет по часовой стрелке, то машина работает в режиме двигателя (рис. 9.4), если против часовой стрелки, то в режиме холодильника, кондиционера или теплового насоса (рис. 9.5). Последние три названия часто объединяют одним термином – холодильная машина.
Принцип работы двигателя: в процессе работы машина получает количество теплоты от нагревателя, часть которого идёт на совершение полезной работы (приводится в действие какой-либо силовой агрегат), а часть отдаётся холодному резервуару.
Принцип работы холодильной машины: для того, чтобы отобрать количество теплоты от холодильника и передать его нагревателю, необходимо затратить некоторое количество энергии на совершение механической работы над рабочим веществом машины.
Показатели эффективности тепловых машин
Эффективность двигателя характеризуется коэффициентом полезного действия η (КПД). Эффективность холодильной машины – коэффициентом использования энергии ξ(КИЭ). На схеме 9.4.1 приведены формулы для вычисления КПД и КИЭ.
Коэффициент полезного действия тепловой машины |
Коэффициент использования энергии холодильной машины |
Чтобы воспользоваться формулами – необходимо точно установить на каких участках цикла, совершаемого рабочим телом, количество теплоты, поступает в машину, а на каких участках цикла количество теплоты передается низкотемпературному резервуару.
1. Сформулируйте первое начало термодинамики. Запишите его уравнение в дифференциальной форме, поясните обозначения бесконечно малых величин. К каким процессам применим этот постулат?
2. Что называется вечным двигателем первого рода?
3. Как определяются теплоемкости при постоянном объеме и при постоянном давлении? Почему их называют функциями состояния?
4. Получите уравнение, связывающее теплоемкости и в общем случае.
5. Сделайте вывод уравнения Майера. Для каких систем это уравнение применимо?
6. Что называется политропическим процессом? Запишите уравнение политропы для параметров
7. Как связан показатель политропы с теплоемкостью процесса?
8. Является ли адиабатный процесс политропическим процессом? Обоснуйте ответ.
9. Как выглядят графики политропических процессов? Приведите примеры.
10. Как можно определить работу, совершенную системой, через количество теплоты, полученное ею извне в политропическом процессе?
11. Нарисуйте принципиальные схемы тепловых машин, работающих как двигатель и как холодильная машина.
12. Дайте определения КПД и КИЭ. По каким формулам они вычисляются и как связаны между собой?
ТЕОРЕМЫ КАРНО И ИХ ПРИЛОЖЕНИЯ
В 1824 году французский физик и военный инженер Никола Леонар Сади Карно опубликовал свою работу «Размышления о движущей силе огня и о машинах, способных развивать эту силу», в которой им были сформулированы основные положения теории тепловых машин, содержащие по своей сути идею второго начала термодинамики.
В этом сочинении Карно ввёл в научный обиход множество понятий, использующихся в термодинамике и сейчас. Однако главной заслугой учёного стало выдвижение идей о необходимости перепада температур для создания циклически действующей тепловой машины и о том, что величина работы определяется только разностью температур нагревателя и холодильника и не зависит от природы рабочего вещества.
Рис. 10.1. |
В идеальной машине Карно рабочее вещество (идеальный газ) совершает цикл, представленный на рис. 10.1, состоящий из двух изотерм и двух адиабат. Адиабата и изотерма слабо отличаются друг от друга, поэтому площадь внутри замкнутой кривой на диаграмме очень мала. Таким образом, характеристика цикла Карно по величине абсолютной работы не является хорошей, но с учётом затрат это самый эффективный цикл среди всех возможных циклов для получения работы.
Расчёт КПД машины Карно
Идеальный газ совершает цикл, состоящий из двух изотерм и двух адиабат – цикл Карно, представленный на рис. 10.2.
Актуальная информация о системе и процессах
• Так как газ идеальный, то справедливо уравнение Клапейрона-Менделеева
• Изменение внутренней энергии идеального газа на изотерме равно нулю
• Уравнение адиабаты для идеального газа в параметрах , имеет вид
Рассчитать КПД тепловой машины Карно.
• По определению КПД двигателя равен
• Количество теплоты, поступающее к рабочему телу от нагревателя на
участке 1-2 равно
При записи (10.3) учтено, что изменение внутренней энергии идеального газа на изотерме не происходит.
• На участке 3-4 рабочее тело отдаёт количество теплоты холодильнику с температурой , равное
• На участках 2-3 и 4-1 рабочее тело изолируется от нагревателя и холодильника. Соответствующие квазистатические процессы идут без теплообмена
• Подставим в формулу (10.2) полученные значения и , тогда имеем
• Уравнение адиабатического процесса (10.1) позволяет существенно упростить это выражение. Действительно, для адиабаты 2 — 3 (рис. 10.2)
а для адиабаты 4 — 1 запишем
Если разделить уравнение (10.6) на уравнение (10.7), то получим
• Воспользовавшись этим результатом, из формулы (10.5) получим окончательный ответ
Из (10.9) видно, что чем ниже температура холодильника при фиксированной температуре нагревателя , тем выше КПД цикла Карно. В ряде учебников утверждается, что всегда меньше 1, потому, что не может быть равной 0 , поскольку абсолютный нуль температур не достижим согласно третьему началу термодинамики. Такой аргумент следует признать неверным. Дело в том, что даже если бы , осуществить цикл Карно при этом условии было бы невозможно. Анализ показывает, что такой цикл или нельзя замкнуть, или он вырождается в совокупность двух совпадающих адиабат и изотерм [1]. Машина с КПД равным единице запрещена вторым началом термодинамики.
10.2. Теоремы Карно
Основные положения теории тепловых машин Сади Карно сформулировал в виде двух теорем, которые доказываются от противного [12]. Мы приведём лишь формулировки этих теорем и сфокусируем внимание на их приложениях (схема 10.2.1).
Формулировки |
Первая теорема Карно |
Вторая теорема Карно |
КПД тепловой машины, работающей по произвольному циклу с фиксированной максимальной и минимальной температурой, не превосходит КПД машины, работающей по циклу Карно с соответствующими температурами нагревателя и холодильника. |
КПД машин, работающих по циклу Карно, не зависит от рабочего вещества и конструктивных особенностей машины, а определяется только температурами нагревателя и холодильника. |
Приложения |
• Построение абсолютной термодинамической шкалы температур. • Разработка метода теоретической термодинамики – метода циклов. |
• Вывод неравенства Клаузиуса. • Определение энтропии в термодинамике. • Оценка эффективности тепловых машин сверху. |
Далее мы подробно рассмотрим каждое из приложений этих двух теорем. Начнем с построения абсолютной термодинамической шкалы температур.
Термодинамическая шкала температур
Поскольку КПД не зависит от рабочего тела, то можно представить следующую процедуру построения шкалы температур.
• В качестве нагревателя машины Карно берется некоторое стандартное тело, например, вода, кипящая при атмосферном давлении.
• В качестве холодильника выбирается другое стандартное тело, например лед, тающий при атмосферном давлении.
• Разность температур и (сами температуры пока не известны) делится на сто частей, чем устанавливается размер градуса абсолютной термодинамической шкалы температур.
• Осуществляется обратимый цикл Карно с каким-либо телом.
• Измеряются и . Согласно (10.2) и (10.9)
Кроме того . Из этих двух уравнений определяем и . Если требуется измерить температуру произвольного тела, то это тело следует использовать в качестве нагревателя, сохранив прежний холодильник с температурой . Затем необходимо осуществить цикл Карно и измерить и . Тогда справедливо равенство
Отсюда находится искомая температура .
Построенная таким образом шкала температур Кельвина, как мы уже знаем, совпадает со шкалой газового термометра. Из уравнения (10.10) следует, что нулем температуры является температура, при которой равно нулю. Более строгое рассмотрение принципов построения рациональной термодинамической шкалы температур дано в [14].
10.3. Метод циклов
С помощью первой теоремы Карно можно получить много важных соотношений между физическими величинами в дифференциальной форме, характеризующими систему в состоянии термодинамического равновесия. Для этого надо заставить систему надлежащим образом осуществить цикл Карно и применить к нему теорему Карно. Этот метод называется методом циклов. Проясним его сущность на примере решения следующей задачи.
Задача о нахождении зависимости внутренней энергии
макроскопического тела от его объема
Рассмотрим произвольное физически однородное тело, состояние которого характеризуется двумя параметрами и . Будем считать, что
известно его термическое уравнение состояния
Для того, чтобы в соответствии с методом циклов получить зависимость энергии от объема в дифференциальной форме, необходимо осуществить бесконечно малый цикл Карно над рассматриваемым телом таким образом, чтобы температуры изотерм отличались на . Изобразим подобный цикл на рис. 10.3. Как видно, верхняя изотерма имеет температуру , а нижняя .
Запишем КПД цикла Карно с одной стороны через температуры, а с другой – через полученное телом количество теплоты и совершенную им работу
Работа , произведенная телом в результате цикла 1234, численно равна заштрихованной площади параллелограмма 1234. Чтобы вычислить ее, проведем прямые 1-6и 2-5, параллельные оси давлений. Ясно, что искомая площадь равна площади параллелограмма 1256.
Высота этого параллелограмма численно равна приращению
– объема при изотермическом процессе 1-2.
Основание же 6-1дает приращение давления при повышении температуры на , когда объем системы поддерживается постоянным. Поэтому
Для работы цикла, которая численно равна его площади, получаем
Вычислим теперь количество теплоты отданное нагревателем телу на изотерме 1-2. Пренебрегая изменениями давления на участке 1-2, запишем согласно первому началу
Так как на изотерме 1-2температура постоянна, то
Подставив (10.14) в (10.13), получим
Теперь вернемся к (10.11). Выразим числитель и знаменатель правой части этого уравнения согласно (10.12) и (10.15). Тогда получим
Из (10.16) легко выразить частную производную. В итоге получаем искомое решение
Подобным образом можно найти зависимость давления насыщенного пара от температуры или закон изменения поверхностного натяжения с температурой и множество других закономерностей.
10.4. Неравенство Клаузиуса. Определение энтропии
На основе второй теоремы Карно можно получить неравенство, связывающее приведённую теплоту нагревателя и приведённую теплоту холодильника для цикла Карно. Воспользуемся математической записью второй теоремы Карно
где – КПД произвольного цикла с фиксированными температурами и .
Запишем это неравенство более детально
или, что, то же самое
Знак минус в этом неравенстве показывает, что и имеют разные знаки. Приведём окончательную форму соотношения (10.18), которую называют неравенством Клаузиуса для цикла Карно
Отметим, что знак равенства относится к равновесному циклу Карно, а знак неравенства к неравновесному (необратимому).
Неравенство Клаузиуса можно обобщить для произвольного цикла [12]. Оно имеет следующий вид
здесь под , следует понимать температуру самой системы. Для обратимых процессов в (10.20) справедлив только знак равенства, а для необратимых – знак неравенства.
Запишем (10.20) для произвольного обратимого цикла
Из этого следует (см. 8.1), что бесконечно малая величина под интегралом в (10.21) является полным дифференциалом некоторой функции состояния. Обозначим её буквой . Эта термодинамическая функция называется энтропией
Равенство (10.22) определяет энтропию для обратимых процессов. Дальнейшему обсуждению этой важной термодинамической величины будет посвящена следующая лекция. Кроме того, свойства энтропии в окрестности абсолютного нуля температур мы рассмотрим при изучении третьего начала термодинамики.
10.5. Оценка эффективности тепловых машин сверху
В повседневной жизни мы постоянно используем различные виды тепловых машин. Наземные транспортные средства невозможно представить без бензинового двигателя внутреннего сгорания или дизельного мотора. На тепловых электростанциях работают паровые турбины. В небо нас уносят турбореактивные самолеты. В основе работы этих и многих других машин лежат различные циклические процессы и в них применяются разные рабочие вещества. У вас будет возможность научиться рассчитывать КПД и КИЭ на основе рассмотрения конкретных циклов Отто, Дизеля, Брайтона и других. Возникает вопрос, можно ли рассчитать показатели эффективности машины, не вдаваясь в детали ее работы. Оказывается можно, но, разумеется, приближенно. Вторая теорема Карно позволяет сделать оценки эффективности реальных машин сверху. Для этого нужно знать только максимальную температуру цикла машины и его минимальную температуру .
,
будем рассчитывать КПД и КИЭ реальных машин по формулам цикла Карно. Эти формулы приведены на схеме 10.5.1.
Эффективность идеальной машины Карно |
Коэффициент использования энергии |
Коэффициент полезного действия |
Тепловой насос |
Холодильник, кондиционер |
Двигатель |
Примеры оценок эффективности тепловых машин сверху
КПД бензинового двигателя внутреннего сгорания
= 2427°C +273 = 2700 – температура воздушно-бензиновой смеси в момент ее воспламенения от искры свечи зажигания;
= 27°C+273 = 300 – температура наружного воздуха.
КПД реального теплового двигателя, работающего по циклу Отто, не превосходит 0,56.
- Политропный процесс | 20+ важных часто задаваемых вопросов и числовых значений
- Content
- Политропный процесс
- Определение политропный процесс
- Политропное уравнение | Политропное уравнение состояния
- Политропный индекс
- Политропные работы
- Политропная теплопередача
- Политропный против изэнтропического процесса
- Политропный процесс против адиабатического процесса
- Политропная эффективность
- Политропная голова
- Политропный процесс для воздуха | Политропный процесс для идеального газа
- Примеры политропных процессов
- 1. Рассмотрим политропный процесс с индексом политропы. п = (1.1). Начальные условия: P1 = 0, В1 = 0 и заканчивается на P2= 600 кПа, В2 = 0.01 м 3 . Оцените проделанную работу и теплоотдачу.
- 2. Поршневой цилиндр содержит кислород при 200 кПа объемом 0.1 м. 3 и при 200 ° С. Масса добавляется так, чтобы газ сжимался с PV. 1.2 = постоянная до конечной температуры 400 ° C. Подсчитайте проделанную работу.
- 3. Рассмотрим аргон при 600 кПа, 30 ° C, сжатый до 90 ° C в политропном процессе с n = 1.33. Найдите проделанную работу на Газе.
- 4. Предположим, что масса 10 кг ксенона хранится в баллоне при 500 К, 2 МПа, расширение представляет собой политропный процесс (n = 1.28) с конечным давлением 100 кПа. Посчитайте проделанную работу. Учтите, что система имеет постоянную удельную теплоемкость.
- 5. Рассмотрим цилиндр-поршень с начальным объемом 0.3, содержащий 5 кг газообразного метана при давлении 200 кПа. Газ сжимают политропно (n = 1.32) до давления 1 МПа и объема 0.005. Рассчитайте теплопередачу во время процесса.
- 6. Примите во внимание цилиндр-поршень, содержащий 1 кг метана при 500 кПа, 20 ° C. Газ политропно сжимают до давления 800 кПа. Рассчитайте теплопередачу с показателем n = 1.15.
- 7. 1 кг гелия хранится в системе поршень-цилиндр при 303 К, 200 кПа сжимается до 400 К в обратимом политропном процессе с показателем степени n = 1.24. Гелий является идеальным газом, поэтому удельная теплоемкость будет фиксированной. Найдите работу и теплопередачу.
- 8. Предположите, что воздух хранится в баллоне объемом 0.3 литра при 3 МПа, 2000 К. Воздух расширяется в соответствии с обратимым политропным процессом с показателем степени n = 1.7, объемное соотношение в этом случае составляет 8: 1. Рассчитайте политропную работу для процесса и сравните ее с адиабатической работой, если процесс расширения следует за обратимым адиабатическим расширением.
- 9. В закрытом контейнере содержится 200 л газа при 35 ° C, 120 кПа. Газ сжимается в политропном процессе до температуры 200 ° C, 800 кПа. Найти политропную работу, совершаемую воздухом для n = 1.29.
- 10. Масса 12 кг газообразного метана при 150 ° C, 700 кПа подвергается политропному расширению с n = 1.1 до конечной температуры 30 ° C. Найти теплопередачу?
- 11. Узел цилиндр-поршень содержит R-134a при 10 ° C; объем 5 литров. Охлаждающая жидкость сжимается до 100 ° C, 3 МПа в соответствии с обратимым политропным процессом. рассчитать проделанную работу и теплоотдачу?
- 12. Является ли политропный процесс изотермическим по своей природе?
- 13. Обратим ли политропный процесс?
- 14. Адиабатический политропный процесс?
- 14. Что такое политропная эффективность?
- 15. Что такое гамма в политропном процессе?
- 16. что такое политропный процесс?
- 17. Какие выводы можно сделать для политропного процесса с n = 1?
- 18. Что такое неполитропный процесс?
- 21. В политропном процессе, когда PV n = константа, температура тоже постоянна?
- Политропический процесс
- Что такое политропический процесс
- Уравнение политропы для идеального газа
- Готовые работы на аналогичную тему
Видео:30. Политропические процессыСкачать
Политропный процесс | 20+ важных часто задаваемых вопросов и числовых значений
Видео:О.Я. Савченко 5.6.28* | Вывод уравнения политропыСкачать
Content
Видео:Уравнение состояния идеального газа. 10 класс.Скачать
Политропный процесс
Видео:Термодинамика Л3.1. Политропический процесс. Термодинамические циклы и КПДСкачать
Определение политропный процесс
Видео:Физика. Термодинамика: Адиабатный процесс. Центр онлайн-обучения «Фоксфорд»Скачать
Политропное уравнение | Политропное уравнение состояния
Политропный процесс можно определить уравнением
показатель степени n называется индексом политропы. Он зависит от материала и варьируется от 1.0 до 1.4. Это метод постоянной удельной теплоемкости, при котором учитывается поглощение тепла газом из-за повышения температуры на единицу.
Видео:Урок 172. Применение 1 закона термодинамики для различных процессовСкачать
Политропный индекс
- п nd закон термодинамики. Эти частные случаи используются в тепловом взаимодействии для астрофизики и химической энергии.
- п = 0: Р = С: Представляет собой изобарический процесс или процесс постоянного давления.
- n = 1: PV = C: Согласно предположению об идеальном газовом законе, PV = C представляет постоянную температуру или изотермический процесс.
- 1 0). Как и в циклах сжатия пара, тепло теряется в горячее окружение.
- п = γ: В предположении закона идеального газа, представляет собой постоянную энтропию, изэнтропический процесс или обратимый адиабатический процесс.
- γ
………………………. Связь между объемом [В] и температурой [Т]
………………………. Связь между давлением [P] и температурой [T]
Видео:Идеальный газ в молекулярно-кинетической теории | Физика 10 класс #28 | ИнфоурокСкачать
Политропные работы
Уравнение идеального газа для политропного процесса дается формулой
Видео:Идеальный газ. Основное уравнение молекулярно-кинетической теории газов. 10 класс.Скачать
Политропная теплопередача
По данным 1 st закон термодинамики,
Видео:Уравнение состояния идеального газа. Практическая часть. 10 класс.Скачать
Политропный против изэнтропического процесса
Политропный процесс — это термодинамический процесс, который подчиняется уравнению
Этот процесс учитывает потери на трение и фактор необратимости процесса. Это реальный процесс, за которым следует газ в определенных условиях.
Изэнтропический процесс, также известный как обратимый адиабатический процесс, представляет собой идеальный процесс, в котором не происходит передача энергии или тепла через границы системы. В этом процессе предполагается, что система имеет изолированную границу. Т.к. теплопередача равна нулю. дQ = 0
Согласно первому закону термодинамика,
Видео:Урок 157. Изопроцессы и их графики. Частные газовые законыСкачать
Политропный процесс против адиабатического процесса
Политропный процесс — это термодинамический процесс, который подчиняется уравнению
Этот процесс учитывает потери на трение и фактор необратимости процесса. Это реальный процесс, за которым следует газ в определенных условиях.
Адиабатический процесс — это особое и специфическое состояние политропного процесса, при котором.
Подобно изэнтропическому процессу, в этом процессе также не происходит передачи энергии или тепла через границы системы. В этом процессе предполагается, что система имеет изолированную границу.
Видео:Идеальный газ. Основное уравнение молекулярно-кинетической теории газов. Практическая часть.10 классСкачать
Политропная эффективность
«Политропический КПД, точно определяемый как отношение идеальной работы сжатия для изменения перепада давления в многоступенчатом компрессоре к фактической работе сжатия при изменении перепада давления в многоступенчатом компрессоре».
Проще говоря, это изоэнтропическая эффективность процесса для бесконечно малой ступени многоступенчатого компрессора.
Где, γ = индекс адиабаты
Pd = Давление нагнетания
Ps = Давление всасывания
Td = Температура подачи
Видео:Политропный процессСкачать
Политропная голова
Политропный напор можно определить как напор, создаваемый центробежным компрессором при политропном сжатии газа или воздуха. Величина развиваемого давления зависит от плотности сжатого газа, и это зависит от изменения плотности газа.
γ = индекс адиабаты
zсредний = Средний коэффициент сжимаемости
η = политропная эффективность
Pd = Давление нагнетания
Ps = Давление всасывания
S = удельный вес газа
Ts = Температура всасывания
Видео:Физика 10 класс (Урок№23 - Внутренняя энергия. Работа. Количество теплоты.)Скачать
Политропный процесс для воздуха | Политропный процесс для идеального газа
Считается, что воздух является идеальным газом, и поэтому законы идеального газа применимы к воздуху.
………………………. Соотношение между давлением [P] и объемом [V]
………………………. Связь между объемом [В] и температурой [Т]
………………………. Связь между давлением [P] и температурой [T]
Видео:Физика. Термодинамика: Внутренняя энергия идеального газа. Центр онлайн-обучения «Фоксфорд»Скачать
Примеры политропных процессов
Видео:Зависимость электрического сопротивления металлов от температуры. Сверхпроводимость. 8 класс.Скачать
1. Рассмотрим политропный процесс с индексом политропы. п = (1.1). Начальные условия: P1 = 0, В1 = 0 и заканчивается на P2= 600 кПа, В2 = 0.01 м 3 . Оцените проделанную работу и теплоотдачу.
Ответ: Работы, выполненные политропным процессом, предоставлены
Теплопередача определяется выражением
Видео:Выпуск 78. Политропный процесс. Решение задач по термодинамике.Скачать
2. Поршневой цилиндр содержит кислород при 200 кПа объемом 0.1 м. 3 и при 200 ° С. Масса добавляется так, чтобы газ сжимался с PV. 1.2 = постоянная до конечной температуры 400 ° C. Подсчитайте проделанную работу.
Ответ: Выполненная политропная работа определяется
Видео:Связь между давлением, объёмом и температурой газаСкачать
3. Рассмотрим аргон при 600 кПа, 30 ° C, сжатый до 90 ° C в политропном процессе с n = 1.33. Найдите проделанную работу на Газе.
Ответ: Выполненная политропная работа определяется
для аргона при 30 ° C составляет 208.1 Дж / кг. K
Принимая m = 1 кг
Видео:Уравнение идеального газа: PV = nRT | Газы.Молекулярно-кинетическая теория | Химия (видео 1)Скачать
4. Предположим, что масса 10 кг ксенона хранится в баллоне при 500 К, 2 МПа, расширение представляет собой политропный процесс (n = 1.28) с конечным давлением 100 кПа. Посчитайте проделанную работу. Учтите, что система имеет постоянную удельную теплоемкость.
Ответ: Выполненная политропная работа определяется
для ксенона при 30 ° C — 63.33 Дж / кг. K
Принимая m = 10 кг
Видео:Термодинамика - Решение задач - Работа идеального газа в циклеСкачать
5. Рассмотрим цилиндр-поршень с начальным объемом 0.3, содержащий 5 кг газообразного метана при давлении 200 кПа. Газ сжимают политропно (n = 1.32) до давления 1 МПа и объема 0.005. Рассчитайте теплопередачу во время процесса.
Ответ: политропный Теплопередача дан кем-то
Видео:62. Уравнение Клапейрона-МенделееваСкачать
6. Примите во внимание цилиндр-поршень, содержащий 1 кг метана при 500 кПа, 20 ° C. Газ политропно сжимают до давления 800 кПа. Рассчитайте теплопередачу с показателем n = 1.15.
Ответ: Политропная теплопередача определяется
Мы знаем, что R для метана = 518.2 Дж / кг. K
7. 1 кг гелия хранится в системе поршень-цилиндр при 303 К, 200 кПа сжимается до 400 К в обратимом политропном процессе с показателем степени n = 1.24. Гелий является идеальным газом, поэтому удельная теплоемкость будет фиксированной. Найдите работу и теплопередачу.
Ответ: Выполненная политропная работа определяется
R для гелия составляет 2077.1 Дж / кг.
Политропная теплопередача определяется выражением
8. Предположите, что воздух хранится в баллоне объемом 0.3 литра при 3 МПа, 2000 К. Воздух расширяется в соответствии с обратимым политропным процессом с показателем степени n = 1.7, объемное соотношение в этом случае составляет 8: 1. Рассчитайте политропную работу для процесса и сравните ее с адиабатической работой, если процесс расширения следует за обратимым адиабатическим расширением.
Ответ: Нам дается
Соотношение между давлением [P] и объемом [V]
Выполненная политропная работа определяется выражением
Проделанная адиабатическая работа определяется выражением
Для процесса расширения Работа, выполняемая посредством обратимого адиабатического процесса, больше, чем Работа, выполняемая посредством обратимого политропного процесса.
9. В закрытом контейнере содержится 200 л газа при 35 ° C, 120 кПа. Газ сжимается в политропном процессе до температуры 200 ° C, 800 кПа. Найти политропную работу, совершаемую воздухом для n = 1.29.
Ответ: соотношение между давлением [P] и объемом [V]
Выполненная политропная работа определяется выражением
10. Масса 12 кг газообразного метана при 150 ° C, 700 кПа подвергается политропному расширению с n = 1.1 до конечной температуры 30 ° C. Найти теплопередачу?
Ответ: Мы знаем, что R для метана = 518.2 Дж / кг. K
Политропная теплопередача определяется выражением
11. Узел цилиндр-поршень содержит R-134a при 10 ° C; объем 5 литров. Охлаждающая жидкость сжимается до 100 ° C, 3 МПа в соответствии с обратимым политропным процессом. рассчитать проделанную работу и теплоотдачу?
Ответ: Мы знаем, что R для R-134a = 81.49 Дж / кг. K
Выполненная политропная работа определяется выражением
Политропная теплопередача определяется выражением
12. Является ли политропный процесс изотермическим по своей природе?
Ответ: Когда n становится 1 для политропного процесса: согласно предположению об идеальном газовом законе, PV = C представляет постоянную температуру или изотермический процесс.
13. Обратим ли политропный процесс?
Ответ: политропные процессы внутренне обратимы. Вот несколько примеров:
п = 0: Р = С: Представляет собой изобарический процесс или процесс постоянного давления.
n = 1: PV = C: Согласно предположению об идеальном газовом законе, PV γ = C представляет постоянную температуру или Изотермический процесс.
п = γ: В предположении закона идеального газа, представляет собой постоянную энтропию, изэнтропический процесс или обратимый адиабатический процесс.
n = Бесконечность: Представляет собой изохорный процесс или процесс постоянного объема.
14. Адиабатический политропный процесс?
Ответ: когда п = γ: В предположении закона идеального газа PV γ = C, представляет постоянную энтропию или изэнтропический процесс или обратимый адиабатический процесс.
14. Что такое политропная эффективность?
Ответ: Политропический КПД можно определить как отношение идеальной работы сжатия к фактической работе сжатия при изменении перепада давления в многоступенчатом компрессоре. Проще говоря, это изоэнтропическая эффективность процесса для бесконечно малой ступени многоступенчатого компрессора.
Проще говоря, это изоэнтропическая эффективность процесса для бесконечно малой ступени многоступенчатого компрессора.
Где, γ = индекс адиабаты
Pd = Давление нагнетания
Ps = Давление всасывания
Td = Температура подачи
Ts = Температура всасывания
15. Что такое гамма в политропном процессе?
Ответ: В политропном процессе, когда п = γ: В предположении закона идеального газа PV γ = C, представляет постоянную энтропию или изэнтропический процесс или обратимый адиабатический процесс.
16. что такое политропный процесс?
Ответ: Политропный процесс можно определить уравнением
показатель степени n называется индексом политропы. Он зависит от материала и варьируется от 1.0 до 1.4. Его также называют процессом с постоянной удельной теплотой, при котором тепло, поглощаемое газом, учитываемое из-за повышения температуры на единицу, является постоянным.
17. Какие выводы можно сделать для политропного процесса с n = 1?
Ответ: когда п = 1: PV n = C : Согласно предположению об идеальном газе, закон становится PV = C представляет собой постоянную температуру или изотермический процесс.
18. Что такое неполитропный процесс?
Ответ: Политропный процесс можно определить уравнением PV n = C показатель степени n называется индексом политропы. Когда,
- п 0). Как и в циклах сжатия пара, тепло теряется в горячее окружение.
- п = γ: В предположении закона идеального газа PV γ = C представляет постоянную энтропию или изэнтропический процесс или обратимый адиабатический процесс.
- γn
После появления γ n 0). Как и в циклах сжатия пара, тепло теряется в горячее окружение. Изменение температуры происходит из-за изменения внутренней энергии, а не подводимого тепла. Произведенная работа превышает количество поданного или добавленного тепла. Таким образом, даже если при политропном расширении добавляется тепло, температура газа снижается.
21. В политропном процессе, когда PV n = константа, температура тоже постоянна?
Ответ: В политропном процессе, когда PV n = постоянная, температура остается постоянной только при показателе политропы n = 1. Для n = 1: PV = C: Согласно предположению об идеальном газовом законе, PV = C представляет постоянную температуру или изотермический процесс.
Чтобы узнать о просто поддерживаемой балке (нажмите сюда)и консольная балка (Кликните сюда)
О Хакимуддине Бавангаонвале
Я Хакимуддин Бавангаонвала, инженер-механик, имеющий опыт проектирования и разработки в области механики. Я получил степень магистра технических наук в области проектирования и 2.5 года исследовательского опыта. К настоящему времени опубликованы две исследовательские работы по твердой токарной обработке и конечноэлементному анализу приспособлений для термообработки. Сфера моих интересов — проектирование машин, прочность материалов, теплопередача, теплотехника и т. Д. Владею программным обеспечением CATIA и ANSYS для САПР и CAE. Помимо исследований.
Подключитесь в LinkedIn — https://www.linkedin.com/in/hakimuddin-bawangaonwala
Политропический процесс
Вы будете перенаправлены на Автор24
Что такое политропический процесс
Политропическим или политропным процессом называют процесс, который происходит при неизменной теплоемкости. Все уравнения изо процессов и адиабатный процесс можно легко получить изменяя показатель политропы. Так, при изохорном процессе молярная теплоемкость равна $_)$:
При изобарном ($c_$):
При изотермическом процессе теплоемкость равна $pm infty $. При адиабатическом процессе теплоемкость равна нулю.
Уравнение политропы для идеального газа
Получим уравнение политропы для идеального газа, следуя тому, что теплоемкость должна быть постоянна.
Из уравнения Менделеева — Клайперона для идеального газа:
Из соотношения Майера:
[C_p-C_V=nu R left(5right).]
Подставим (5) в (4), получим:
Разделим уравнение (3) $T $, получим:
Очевидно, что если теплоемкость процесса постоянная, то
Уравнение интегрируем, потенцируем, получаем:
Уравнение (8) — уравнение политропы в переменных T, V. Используя уравнение Менделеева — Клайперона легко получить политропу в параметрах $p,V$ или $p,T$.
При $С=0$, $n=𝛾$. При $C=infty , n=1$ получаем уравнение Бойля — Мариотта ($T=const$). При С=$C_p$, n=0 — уравнение для $p=const$, при С=$C_V, n=pm infty $- уравнение для $V=const$.
Задание: Идеальный газ совершает политропный процесс. Найти молярную теплоемкость в этом процессе $с_$, если $i$ — число степеней свободы для этого газа.
Запишем первое начало термодинамики:
[CdT=fracnu RdT+pdV left(1.1right).]
Разделим уравнение на $dT$, получим:
Запишем уравнение процесса:
Используем уравнение Менделеева — Клайперона:
Подставим в (1.2) результаты преобразований (1.4) и (1.5), получим:
Ответ: Выражение для молярной теплоемкости в политропном процессе: $с_$=$frac+frac$.
Готовые работы на аналогичную тему
Задание: Можно ли вычислить работу газа по формуле:
для адиабатного, изотермического и изобарного процессов?
Основанием для решения задачи является уравнение политропы в параметрах $p,V$ (можно и в других):
Все перечисленные в условиях задачи процессы являются частными случаями политропического процесса. Рассмотрим адиабатный процесс. Для него $n=gamma$. Подставим показатель адиабаты в (2.1) вместо n, получим:
Сравним с уравнением работы для адиабатного процесса, которое было рассмотрено в разделе, посвященном этому процессу, имеем:
Если учесть, что из уравнения Менделеева-Клайперона:
то получаем, что выражения (2.3) и (2.4) эквивалентны.
Рассмотрим изотермический процесс. Для него $n=1$, соответственно, уравнение политропы имеет вид:
Уравнение (2.6) известный закон Бойля — Мариотта. Подставим $n=1$ в (2.1), получим:
Мы получили, что работа стремится к $infty $. Следовательно, приведенная формула (2.1) для вычисления работы в изотермическом процессе не подходит.
Рассмотри изобарный процесс. Для него $n=0$. Уравнение политропы примет вид:
[pV^0=const to p=const left(2.8right).]
Подставим $n=0$ в выражение для работы (2.1), получим:
Выражение (2.9) соответствует формуле вычисления работы для изобарного процесса.
Ответ: Данная формула подходит для вычисления работы в процессах: адиабатном и изобарном, не подходит для вычисления работы в изотермическом процессе.
Задание: Газ участвует в политропическом процессе. Пусть уравнение процесса задано в параметрах $p,V$ при каких значениях $n$
- Температура растет при расширении газа?
- Температура падает при увеличении объема?
- T=const при увеличении объема?
Уравнение политропы имеет вид:
Рассматривая уравнение (3.1), сразу можно дать ответ на третий вопрос: температура постоянна при n=0, так как в таком случае мы получаем закон Бойля — Мариотта:
Если перейти от (3.1) в уравнение политропы в параметрах T, V, то ответим и на два первых вопроса. Для перехода используем уравнение Менделеева — Клайперона (возьмем его для одного моля, что не нарушит общности рассуждений):
Подставим (3.3) вместо p (3.2), получим:
Для того, чтобы определить, что происходит с температурой согласно уравнению (3.4), необходимо сравнить $1-n$ с нулем. Если $1-n>0$, то с ростом $V$ растет и $T$. И наоборот.
- $1-n>0, to n
- $1-n1$ при таком n, если $Vuparrow , то Tdownarrow$.
Ответ: Температура растет при расширении газа если $n1$. $T=const$ при увеличении объема, если $n=0$.
Получи деньги за свои студенческие работы
Курсовые, рефераты или другие работы
Автор этой статьи Дата последнего обновления статьи: 26.11.2021