Вывод основного уравнения молекулярно кинетической теории идеальных газов для давления

Видео:Урок 145. Идеальный газ. Основное ур-ние МКТ ид. газа - 1Скачать

Урок 145. Идеальный газ. Основное ур-ние МКТ ид. газа - 1

Основное уравнение молекулярно-кинетической теории (МКТ) с выводом

В статье рассмотрена модель идеального газа, приведено основное уравнение молекулярно-кинетической теории и его вывод.

Чтобы объяснить свойства материи в газообразном состоянии, в физике применяется модель идеального газа. Идеальный газ — разреженный, состоящий из одного типа атомов газ, частицы которого не взаимодействуют между собой. Помимо основных положений МКТ эта модель предполагает, что:

  • молекулы имеют пренебрежимо малый объем в сравнении с объемом емкости
  • при сближении частиц друг с другом и с границами емкости имеют место силы отталкивания

Видео:Идеальный газ в молекулярно-кинетической теории | Физика 10 класс #28 | ИнфоурокСкачать

Идеальный газ в молекулярно-кинетической теории | Физика 10 класс #28 | Инфоурок

Основное уравнение молекулярно-кинетической теории

Физический смысл основного уравнения МКТ заключается в том, что давление идеального газа — это совокупность всех ударов молекул о стенки сосуда. Это уравнение можно выразить через концентрацию частиц, их среднюю скорость и массу одной частицы:

Вывод основного уравнения молекулярно кинетической теории идеальных газов для давления

p – давление молекул газа на границы емкости,

m0 – масса одной молекулы,

n — концентрация молекул, число частиц N в единице объема V;

v 2 — средне квадратичная скорость молекул.

Видео:Идеальный газ. Основное уравнение молекулярно-кинетической теории газов. 10 класс.Скачать

Идеальный газ. Основное уравнение молекулярно-кинетической теории газов. 10 класс.

Вывод основного уравнения МКТ

Вывод основного уравнения молекулярно кинетической теории идеальных газов для давления

Частицы идеального газа при соударениях с границами емкости ведут себя как упругие тела. Такое взаимодействие описывается согласно законам механики. При соприкосновении частицы с границей емкости проекция vx скоростного вектора на ось ОХ, проходящую под прямым углом к границе сосуда, меняет свой знак на противоположный, но сохраняется неизменной по модулю:

Поэтому после соударения частицы с границей емкости проекция импульса молекулы на ось ОХ меняется с mv1x = –mvx на mv2x = mvx.

Изменение импульса молекулы ΔP равняется удвоенному произведению массы молекулы на ее скорость:

Вывод основного уравнения молекулярно кинетической теории идеальных газов для давления

Поскольку в каждом из шести основных направлений декартовой системы координат (вверх, вниз, вперед, назад, вправо, влево) движется одна шестая часть частиц N/6. Тогда число частиц, которые сталкиваются с каждой стенкой за время Δt равно:

Вывод основного уравнения молекулярно кинетической теории идеальных газов для давления

S – площадь этой стенки

n — концентрация частиц

Давление p равно отношению силы F к площади S, на которую действует эта сила:

Вывод основного уравнения молекулярно кинетической теории идеальных газов для давления

Суммарная сила, с которой частицы давят на стенку равна отношению произведения числа этих частиц N и изменения импульса ΔP ко времени, в течение которого происходит давление:

Вывод основного уравнения молекулярно кинетической теории идеальных газов для давления

Исходя из вышенаписанного получаем:

Вывод основного уравнения молекулярно кинетической теории идеальных газов для давления

Вывод основного уравнения молекулярно кинетической теории идеальных газов для давления

Если заменить среднее значение кинетической энергии поступательного движения молекул — E:

Вывод основного уравнения молекулярно кинетической теории идеальных газов для давления

и подставить эту формулу в основное уравнение МКТ, получим давление идеального газа:

Вывод основного уравнения молекулярно кинетической теории идеальных газов для давления

Давление идеального газа равняется двум третям средней кинетической энергии поступательного движения молекул на единицу объема. При решении задач реальный газ можно считать идеальным газом, если он одноатомный и можно пренебречь взаимодействием между частицами.

Вывод основного уравнения молекулярно кинетической теории идеальных газов для давления

Понравилась статья, расскажите о ней друзьям:

Видео:10 класс, 2 урок, Основное уравнение молекулярно кинетической теорииСкачать

10 класс, 2 урок, Основное уравнение молекулярно кинетической теории

Вывод основного уравнения молекулярно кинетической теории идеальных газов для давления

Идеальный газ — это просто!

Идеальный газ

Идеальный газ — это физическая модель газа, взаимодействие между молекулами которого пренебрежительно мало.
Понятие «идеальный газ» вводится для математического описания поведения газов.
Реальные разреженные газы ведут себя как идеальный газ!

Свойства идеального газа:
— взаимодействие между молекулами пренебрежительно мало
— расстояние между молекулами много больше размеров молекул
— молекулы — это упругие шары
— отталкивание молекул возможно только при соударении
— движение молекул — по законам Ньютона
— давление газа на стенки сосуда — за счет ударов молекул газа

Скорость молекул газа

В теории газов скорость молекул принято определять через среднее значение квадрата скорости молекул.
Хотя скорости различных молекул сильно отличаются друг от друга, но среднее значение квадрата скорости молекул есть величина постоянная.

Формула для расчета среднего значения квадрата скорости молекул газа:

Вывод основного уравнения молекулярно кинетической теории идеальных газов для давления

где
n — число молекул в газе
v — модули скоростей отдельных молекул в газе

В теории газов часто используется понятие кинетической энергии молекул.
Используя среднее значение квадрата скорости молекул, получаем формулу для определения средней кинетической энергии молекул:

Вывод основного уравнения молекулярно кинетической теории идеальных газов для давления

Основное уравнение МКТ газа

Основное уравнение МКТ связывает микропараметры частиц (массу молекулы, среднюю кинетическую энергию молекул, средний квадрат скорости молекул) с макропараметрами газа (р — давление, V — объем, Т — температура).

Давление газа на стенки сосуда пропорционально произведению концентрации молекул на среднюю кинетическую энергию поступательного движения молекулы.

Ниже приведены различные выражения для основного уравнения МКТ:

Вывод основного уравнения молекулярно кинетической теории идеальных газов для давления

где
р — давление газа на стенки сосуда(Па)
n — концентрация молекул, т.е. число молекул в единице объема ( 1/м 3 )
Вывод основного уравнения молекулярно кинетической теории идеальных газов для давления— масса молекулы (кг)
Вывод основного уравнения молекулярно кинетической теории идеальных газов для давления— средний квадрат скорости молекул (м 2 /с 2 )
ρ — плотность газа (кг/м 3 )
Вывод основного уравнения молекулярно кинетической теории идеальных газов для давления— средняя кинетическая энергия молекул (Дж)

Давление идеального газа на стенки сосуда зависит от концентрации молекул и пропорционально средней кинетической энергии молекул.

Дополнительные расчетные формулы по теме

Формула для расчета концентрации молекул: Вывод основного уравнения молекулярно кинетической теории идеальных газов для давления

где
N — число молекул газа
V — объем газа (м 3 )

Формула для расчета плотности газа:

Вывод основного уравнения молекулярно кинетической теории идеальных газов для давления

где
mo — масса молекулы (кг)
n — концентрация молекул (1/м 3 )

Молекулярная физика. Термодинамика — Класс!ная физика

Видео:Урок 147. Задачи на основное уравнение МКТ идеального газаСкачать

Урок 147. Задачи на основное уравнение МКТ идеального газа

Вывод уравнения молекулярно-кинетической теории идеальных газов для давления и его сравнения с уравнением Клайперона-Менделеева.

Основное уравнение молекулярно-кинетической теории идеального газа

Это уравнение связывает макропараметры системы – давление p и концентрацию молекул Вывод основного уравнения молекулярно кинетической теории идеальных газов для давленияс ее микропараметрами – массой молекул, их средним квадратом скорости или средней кинетической энергией:

Вывод основного уравнения молекулярно кинетической теории идеальных газов для давления

Вывод этого уравнения основан на представлениях о том, что молекулы идеального газа подчиняются законам классической механики, а давление – это отношение усредненной по времени силы, с которой молекулы бьют по стенке, к площади стенки.

Пропорциональность силы, с которой молекулы воздействуют на стенку, их концентрации, массе и скорости каждой молекулы качественно понятны. Квадратичный рост давления со скоростью связан с тем, что от скорости зависит не только сила отдельного удара, но и частота соударений молекул со стенкой.

Учитывая связь между концентрацией молекул в газе и его плотностью ( = nm0), можно получить еще одну форму основного уравнения МКТ идеального газа:

Вывод основного уравнения молекулярно кинетической теории идеальных газов для давления

Уравнение Менделеева – Клапейрона (уравнение состояния идеального газа)

В результате экспериментальных исследований многих ученых было установлено, что макропараметры реальных газов не могут изменяться независимо. Они связаны уравнением состояния:

где R = 8,31 Дж/(K·моль) – универсальная газовая постоянная, Вывод основного уравнения молекулярно кинетической теории идеальных газов для давления, где m – масса газа и M – молярная масса газа. Уравнение Менделеева – Клапейрона называют уравнением состояния, поскольку оно связывает функциональной зависимостью параметры состояния. Его записывают и в других видах:

Вывод основного уравнения молекулярно кинетической теории идеальных газов для давления
Вывод основного уравнения молекулярно кинетической теории идеальных газов для давления

Пользуясь уравнением состояния, можно выразить один параметр через другой и построить график первого из них, как функции второго.

Графики зависимости одного параметра от другого, построенные при фиксированных температуре, объеме и давлении, называют соответственно изотермой, изохорой и изобарой.

Например, зависимость давления p от температуры T при постоянном объеме V и постоянной массе m газа – это функция Вывод основного уравнения молекулярно кинетической теории идеальных газов для давления, где k – постоянный числовой множитель. Графиком такой функции в координатах p,Т будет прямая, идущая от начала координат, как и графиком функции y(x)=kx в координатах y,x (рис. 3).

Зависимость давления p от объема V при постоянной массе m газа и температуре T выражается так:

Вывод основного уравнения молекулярно кинетической теории идеальных газов для давления,

где k1 – постоянный числовой множитель. График функции Вывод основного уравнения молекулярно кинетической теории идеальных газов для давленияв координатах y,x представляет собой гиперболу, так же как и график функции Вывод основного уравнения молекулярно кинетической теории идеальных газов для давленияв координатах p,V.

Вывод основного уравнения молекулярно кинетической теории идеальных газов для давления

Средняя кинетическая энергия молекул. Молекулярно-кинетическое толкование абсолютной температуры. Число степеней свободы. Закон равномерного распределения энергии по степеням свободы молекул.

Температура, как мера средней кинетической энергии молекул

Попробуем получить нетривиальные результаты, используя уравнение Клайперона-Менделеева и основное уравнение МКТ.

Введем понятие средней кинетической энергии молекул:

Вывод основного уравнения молекулярно кинетической теории идеальных газов для давления(1)

Преобразуем основное уравнение МКТ с учетом формулы (1):

Вывод основного уравнения молекулярно кинетической теории идеальных газов для давленият.е. основное уравнение МКТ запишем так Вывод основного уравнения молекулярно кинетической теории идеальных газов для давления(2)

Воспользуемся уравнением К.-М. в таком виде:

Вывод основного уравнения молекулярно кинетической теории идеальных газов для давления(3)

Сравним уравнения (2) и (3) и получим, что

Вывод основного уравнения молекулярно кинетической теории идеальных газов для давленияили Вывод основного уравнения молекулярно кинетической теории идеальных газов для давления(4)

Как понимать формулу (4)?

Мы выяснили, что от температуры зависит величина средней кинетической энергии молекул. Поэтому говорят, что температура — мера средней кинетической энергии молекул. Это утверждение мы доказали на для идеального газа, но оказывается оно справедливо и для других агрегатных сосятояний вещества.

Молекулярно – кинетическое толкование абсолютной температуры.

C точки зрения молекулярно-кинетической теории молекулы нагретого тела находятся в хаотическом движении. Причем, чем выше температура T, тем больше средняя кинетическая энергия хаотического движения молекул (T

Связь между средней кинетической энергией поступательного движения молекулы и абсолютной температурой дается формулой =3/2kT где k — постоянная Больцмана, k=1.38*10 -23 (Дж/К). Следовательно, абсолютная температура есть мера средней кинетической энергии поступательного движения молекулы.

Формула позволяет выяснить смысл абсолютного нуля: T=0, если =0. Т. е. абсолютный нуль — это температура, при которой прекращается всякое хаотическое движение молекул.

Число степени свободы молекул. Закон равномерного распространения энергии по степеням свободы молекул.

Числом степеней свободы механической системы называется число независимых координат, полностью определяющих положение системы в пространстве.

Вывод основного уравнения молекулярно кинетической теории идеальных газов для давленияпоказаны о Вывод основного уравнения молекулярно кинетической теории идеальных газов для давлениядноатомная, двухатомная и трехатомная молекулы. Одноатомную молекулу можно представить как материальную точку. Для определения положения точки в пространстве нужно три координаты, т. е. три степени свободы поступательного движения (i = 3). Молекулу двухатомного газа в первом приближении можно рассматривать как совокупность двух жестко связанных материальных точек. Эта молекула кроме трех степеней свободы поступательного движения имеет две степени свободы вращательного движения (i = 5). Вращение вокруг оси, проходящей через оба атома, не учитывается.

Трехатомная молекула с жесткими связями имеет 6 степеней свободы: 3 — поступательного и 3 — вращательного движения (i = 6).

В классической физике принят постулат о равномерном распределении энергии по степеням свободы. На каждую степень свободы любого вида движения приходится энергия, равная kT/2. Таким образом, средняя энергия одной молекулы равна =i/2kT В классической физике принят постулат о равномерном распределении энергии по степеням свободы. На каждую степень свободы любого вида движения приходится энергия, равная kT/2. Таким образом, средняя энергия одной молекулы равна =i/2kT

закон Больцмана о равномерном распределении энергии по степеням свободы молекул: для статистической системы, находящейся в состоянии термодинамического равновесия, на каждую поступательную и вращательную степени свободы приходится в среднем кинетическая энергия, равная kT/2, а на каждую колебательную степень свободы — в среднем энергия, равная kT. Колебательная степень обладает вдвое большей энергией потому, что на нее приходится не только кинетическая энергия, но и потенциальная, причем средние значения кинетической и потенциальной энергий одинаковы. Таким образом, средняя энергия молекулы =i/2kT, где i — сумма числа поступательных, числа вращательных и удвоенного числа колебательных степеней свободы молекулы: i=iпост +iвращ+2iколеб.

В классической теории рассматривают молекулы с жесткой связью между атомами; для них i совпадает с числом степеней свободы молекулы.

Так как в идеальном газе взаимная потенциальная энергия молекул равна нулю, то внутренняя энергия, отнесенная к одному молю газа, равна сумме кинетических энергий NA молекул: Вывод основного уравнения молекулярно кинетической теории идеальных газов для давления.Внутренняя энергия для произвольной массы m газа Вывод основного уравнения молекулярно кинетической теории идеальных газов для давления, где k — постоянная Больцмана,  -количество вещества.

Функция распределения Максвелла – Больцмана характеризует распределение молекул по полным энергиям

38.Работа газа при изменении его объёма. Количество теплоты. Теплоёмкость. Первое начало термодинамики.

Работа газа при изменении его объёма. Одним из основных термодинамических процессов, совершающихся в большинстве тепловых машин, является процесс расширения газа с совершением работы. Легко определить работу, совершаемую при изобарном расширении газа.

Если при изобарном расширении газа от объема V1 до объема V2 происходит перемещение поршня в цилиндре на расстояние l , то работа A’, совершенная газом, равна

Вывод основного уравнения молекулярно кинетической теории идеальных газов для давления

где p — давление газа, Вывод основного уравнения молекулярно кинетической теории идеальных газов для давления— изменение его объема.

Количество теплоты — мера энергии, переходящей от одного тела к другому в данном процессе. Количество теплоты является одной из основных термодинамических величин.

Количество теплоты является функцией процесса, а не функцией состояния, то есть количество теплоты, полученное системой, зависит от способа, которым она была приведена в текущее состояние.

Q=cmΔt, где Q- полученная телом теплота, c- удельная теплоемкость тела, Дж/(кг°С), m- масса тела, кг, Δt-изменение температуры тела, °С

Теплоёмкость тела (обозначается C) — физическая величина, определяющая отношение бесконечно малого количества теплоты ΔQ, полученного телом, к соответствующему приращению его температуры ΔT:

Вывод основного уравнения молекулярно кинетической теории идеальных газов для давления

Единица измерения теплоёмкости в системе СИ — Дж/К.

Удельная теплоёмкость вещества — теплоёмкость единицы массы данного вещества. Единицы измерения — Дж/(кг К).

Молярная теплоёмкость вещества — теплоёмкость 1 моля данного вещества. Единицы измерения — Дж/(моль К).

Если же говорить про теплоёмкость произвольной системы, то ее уместно формулировать в терминах термодинамических потенциалов — теплоёмкость есть отношение малого приращения количества теплоты Q к малому изменению температуры T:

Вывод основного уравнения молекулярно кинетической теории идеальных газов для давления

Первое начало термодинамики.

Первое начало термодинамики представляет собой обобщение опытных фактов и является по сути дела законом сохранения энергии, примененным к тепловым явлениям. Первое начало термодинамики имеет несколько формулировок. Одна из формулировок гласит: количество теплоты, переданное системе, идет на изменение внутренней энергии и на совершение системой работы над внешними телами, т. е. Q=∆U+A. В этом уравнении изменение внутренней энергии, Количество теплоты может быть положительным (Q>0), если тело получает теплоту, и отрицательным (Q>0), если тело отдает теплоту.

В дифференциальной форме это запишется следующим образом δQ=dU+δA

где dU и δA Первое начало термодинамики показывает, что теплоту можно преобразовывать в работу, т. е. выделять из неупорядоченного движения упорядоченное. Устройство, в котором теплота превращается в работу, называется тепловой машиной.

39.Приминение первого начала термодинамики к изопроцессам и адиабатному процессу идеального газа. Зависимость теплоёмкости идеального газа от вида процесса.

Первое начало термодинамики и изопроцессы.

Среди равновесных процессов, происходящих с термодинамическими системами, выделяются изопроцессы, при которых один из основных параметров состояния сохраняется постоянным.

Изохорный процесс (V=const). Диаграмма этого процесса (изохора) в координатах р, V изображается прямой, параллельной оси ординат, где процесс 1-2 есть изохорное нагревание, а 1-3 — изохорное охлаждение. При изохорном процессе газ не совершает работы над внешними телами, т.е.

Для изохорного процесса следует, что вся теплота, сообщаемая газу, идет на увеличение его внутренней энергии: Q=dU

DUm=CvdT. Тогда для произвольной массы газа получим Q=dU=mCvT/M

Изобарный процесс (p=const). Диаграмма этого процесса (изобара) в координатах р, V изображается прямой, параллельной оси V. При изобарном процессе работа газа при расширении объема от V1 до V2 равна

Вывод основного уравнения молекулярно кинетической теории идеальных газов для давленияи определяется площадью прямоугольника. Если использовать уравнение Клапейрона — Менделеева для выбранных нами двух состояний, то

Вывод основного уравнения молекулярно кинетической теории идеальных газов для давления

Тогда выражение для работы изобарного расширения примет вид

A=m/MR(T2-T1). Из этого выражения вытекает физический смысл молярной газовой постоянной R: если Т2-T1 =1 К, то для 1 моля газа R=А, т.е. R численно равна работе изобарного расширения 1 моля идеального газа при нагревании его на 1 К.

В изобарном процессе при сообщении газу массой m количества теплоты

Вывод основного уравнения молекулярно кинетической теории идеальных газов для давленияего внутренняя энергия возрастает на величину Вывод основного уравнения молекулярно кинетической теории идеальных газов для давления

Изотермический процесс (T=const). Изотермический процесс описывается законом Бойля — Мариотта: PV=const.

Диаграмма этого процесса (изотерма)в координатах р, V представляет собой гиперболу, расположенную на диаграмме тем выше, чем выше температура, при которой происходил процесс. Работа изотермического расширения газа:

Вывод основного уравнения молекулярно кинетической теории идеальных газов для давления.

Так как при T=const внутренняя энергия идеального газа не изменяется

Вывод основного уравнения молекулярно кинетической теории идеальных газов для давлениято из первого начала термодинамики (Q=dU+A) следует, что для изотермического процесса Q=A, т.е. все количество теплоты, сообщаемое газу, расходуется на совершение им работы против внешних сил Вывод основного уравнения молекулярно кинетической теории идеальных газов для давленияСледовательно, для того, чтобы при работе расширения температура не уменьшалась, к газу в течение изотермического процесса необходимо подводить количество теплоты, эквивалентное внешней работе расширения.

Первое начало термодинамики и адиабатический процесс.

Адиабатическим называется процесс, при котором отсутствует теплообмен (dQ = 0) между системой и окружающей средой. К адиабатическим процессам можно отнести все быстропротекающие процессы. Адиабатические процессы применяются в двигателях внутреннего сгорания (расширение и сжатие горючей смеси в цилиндрах), в холодильных установках и т. д. Из первого начала термодинамики d Q = dU + dA для адиабатического процесса следует, что d A = – dU * т. е. внешняя работа совершается за счет изменения внутренней энергии системы. Используя выражения для элементарной работы и приращения внутренней энергии, для произвольной массы газа получаем уравнение в виде pdV=-m/MCvdT Продифференцировав уравнение состояния для идеального газа pV=m/MRT, получим pdV+Vdp=m/mRdT Исключив из уравнений температуру Т:

Вывод основного уравнения молекулярно кинетической теории идеальных газов для давления

Разделив переменные и учитывая, что Cp/Cv = g , найдем dp/p=-γdV/V

Интегрируя это уравнение в пределах от р1 до р2 и соответственно от V1 до V2, а

Полученное выражение есть уравнение адиабатического процесса, называемое также уравнением Пуассона.

Для перехода к переменным Т, V или р, Т исключим из полученного уравнения с помощью уравнения Клапейрона -Менделеева

Вывод основного уравнения молекулярно кинетической теории идеальных газов для давлениясоответственно давление или объем:TV γ-1 = const T γ V 1-γ = const

Выражения представляют собой уравнения адиабатического процесса. В этих уравнениях Вывод основного уравнения молекулярно кинетической теории идеальных газов для давлениябезразмерная величина g = Cp/Cv = (i + 2)/I называется показателем адиабаты (или коэффициентом Пуассона). Для одноатомных газов (Ne, He и др.), достаточно хорошо удовлетворяющих условию идеальности, i = 3, g = 1,67. Для двухатомных газов (Н2, N2, О2 и др.) i=5, g =1,4. Значения g , вычисленные по формуле (g = (i + 2)/i), хорошо подтверждаются экспериментом.

Диаграмма адиабатического процесса (адиабата) в координатах р, V изображается гиперболой. На рисунке видно, что адиабата (pVg = const) более крутая, чем изотерма (pV=const). Это объясняется тем, что при адиабатическом сжатии 1 — 3 увеличение давления газа обусловлено не только уменьшением его объема, как при изотермическом сжатии, но и повышением температуры в адиабатическом процессе. Запишем уравнение первое начало термодинамик для адиабатического процесса dA = – dU в виде

Вывод основного уравнения молекулярно кинетической теории идеальных газов для давленияЕсли газ адиабатически расширяется от объема Vl до V2, то его температура уменьшается от Т1 до Т2 и работа расширения идеального газа равна

Вывод основного уравнения молекулярно кинетической теории идеальных газов для давления

Работа, совершаемая газом при адиабатическом расширении 1 – 2 (численно равная площади под кривой), меньше, чем при изотермическом процессе. Это объясняется тем, что при адиабатическом расширении происходит охлаждение газа, тогда как при изотермическом – температура поддерживается постоянной за счет притока извне эквивалентного количества теплоты.

💡 Видео

Физика 10 класс (Урок№18 - Основное уравнение МКТ.)Скачать

Физика 10 класс (Урок№18 - Основное уравнение МКТ.)

Все формулы молекулярной физики, МКТ 10 класс, + преобразования и шпаргалкиСкачать

Все формулы молекулярной физики,  МКТ 10 класс,  + преобразования и шпаргалки

Молекулярно-кинетическая теория | ЕГЭ по физике 2023 | Снежа Планк из ВебиумСкачать

Молекулярно-кинетическая теория | ЕГЭ по физике 2023 | Снежа Планк из Вебиум

Уравнение состояния идеального газа. 10 класс.Скачать

Уравнение состояния идеального газа. 10 класс.

Идеальный газ. Основное уравнение молекулярно-кинетической теории газов. Практическая часть.10 классСкачать

Идеальный газ. Основное уравнение молекулярно-кинетической теории газов. Практическая часть.10 класс

Урок 146. Основное уравнение МКТ идеального газа - 2Скачать

Урок 146. Основное уравнение МКТ идеального газа - 2

Физика 10 класс : Основное уравнение молекулярно-кинетической теории идеального газаСкачать

Физика 10 класс : Основное уравнение молекулярно-кинетической теории идеального газа

Решение задач на основное уравнение МКТ идеального газа | Физика 10 класс #29 | ИнфоурокСкачать

Решение задач на основное уравнение МКТ идеального газа | Физика 10 класс #29 | Инфоурок

Вывод основного уравнения молекулярно кинетической теории.Скачать

Вывод основного уравнения молекулярно кинетической теории.

Физика. МКТ: Идеальный газ. Центр онлайн-обучения «Фоксфорд»Скачать

Физика. МКТ: Идеальный газ. Центр онлайн-обучения «Фоксфорд»

Физика. МКТ: Основное уравнение МКТ. Центр онлайн-обучения «Фоксфорд»Скачать

Физика.  МКТ: Основное уравнение МКТ. Центр онлайн-обучения «Фоксфорд»

Физика 10 класс (Урок№20 - Уравнение состояния идеального газа. Газовые законы.)Скачать

Физика 10 класс (Урок№20 - Уравнение состояния идеального газа. Газовые законы.)

Основные положения молекулярно-кинетической теории газов и ее опытное обоснование. 10 класс.Скачать

Основные положения молекулярно-кинетической теории газов и ее опытное обоснование. 10 класс.

Основные положения молекулярно-кинетической теории | Физика 10 класс #24 | ИнфоурокСкачать

Основные положения молекулярно-кинетической теории | Физика 10 класс #24 | Инфоурок
Поделиться или сохранить к себе: