Выведите законы изопроцессов из уравнения состояния идеального газа

Выведите законы изопроцессов из уравнения состояния идеального газа

Это утверждение называется законом Авогадро .

Для смеси невзаимодействующих газов уравнение состояния принимает вид

,

где , , и т. д. – количество вещества каждого из газов в смеси.

Уравнение, устанавливающее связь между давлением, объемом и температурой газа было получено в середине XIX века французским физиком Б. Клапейроном, в форме оно было впервые записано Д. И. Менделеевым. Поэтому уравнение состояния газа называется уравнением Клапейрона–Менделеева .

Следует отметить, что задолго до того, как уравнение состояния идеального газа было теоретически получено на основе молекулярно-кинетической модели, закономерности поведения газов в различных условиях были хорошо изучены экспериментально. Поэтому уравнение можно рассматривать как обобщение опытных фактов, которые находят объяснение в молекулярно-кинетической теории.

Газ может участвовать в различных тепловых процессах, при которых могут изменяться все параметры, описывающие его состояние (, и ). Если процесс протекает достаточно медленно, то в любой момент система близка к своему равновесному состоянию. Такие процессы называются квазистатическими . В привычном для нас масштабе времени эти процессы могут протекать и не очень медленно. Например, разрежения и сжатия газа в звуковой волне, происходящие сотни раз в секунду, можно рассматривать как квазистатический процесс. Квазистатические процессы могут быть изображены на диаграмме состояний (например, в координатах ) в виде некоторой траектории, каждая точка которой представляет равновесное состояние.

Интерес представляют процессы, в которых один из параметров (, или ) остается неизменным. Такие процессы называются изопроцессами .

Изотермическим процессом называют квазистатический процесс, протекающий при постоянной температуре . Из уравнения состояния идеального газа следует, что при постоянной температуре и неизменном количестве вещества в сосуде произведение давления газа на его объем должно оставаться постоянным:

.

На плоскости () изотермические процессы изображаются при различных значениях температуры семейством гипербол , которые называются изотермами . Так как коэффициент пропорциональности в этом соотношении увеличивается с ростом температуры, изотермы, соответствующие более высоким значениям температуры, располагаются на графике выше изотерм, соответствующих меньшим значениям температуры (рис. 3.3.1). Уравнение изотермического процесса было получено из эксперимента английским физиком Р. Бойлем (1662 г.) и независимо французским физиком Э. Мариоттом (1676 г.). Поэтому это уравнение называют законом Бойля–Мариотта .

Выведите законы изопроцессов из уравнения состояния идеального газа
Рисунок 3.3.1.

Изохорный процесс ()

Изохорный процесс – это процесс квазистатического нагревания или охлаждения газа при постоянном объеме и при условии, что количество вещества в сосуде остается неизменным.

Как следует из уравнения состояния идеального газа, при этих условиях давление газа изменяется прямо пропорционально его абсолютной температуре: или

Выведите законы изопроцессов из уравнения состояния идеального газа

На плоскости () изохорные процессы для заданного количества вещества при различных значениях объема изображаются семейством прямых линий, которые называются изохорами . Большим значениям объема соответствуют изохоры с меньшим наклоном по отношению к оси температур (рис. 3.3.2).

Выведите законы изопроцессов из уравнения состояния идеального газа
Рисунок 3.3.2.

Экспериментально зависимость давления газа от температуры исследовал французский физик Ж. Шарль (1787 г.). Поэтому уравнение изохорного процесса называется законом Шарля .

Уравнение изохорного процесса может быть записано в виде:

Выведите законы изопроцессов из уравнения состояния идеального газа

где – давление газа при (т. е. при температуре ). Коэффициент , равный (, называют температурным коэффициентом давления .

Изобарным процессом называют квазистатический процесс, протекающий при неизменным давлении .

Уравнение изобарного процесса для некоторого неизменного количества вещества имеет вид:

Выведите законы изопроцессов из уравнения состояния идеального газа

где – объем газа при температуре . Коэффициент равен (. Его называют температурным коэффициентом объемного расширения газов .

На плоскости () изобарные процессы при разных значениях давления изображаются семейством прямых линий (рис. 3.3.3), которые называются изобарами .

Выведите законы изопроцессов из уравнения состояния идеального газа
Рисунок 3.3.3.

Зависимость объема газа от температуры при неизменном давлении была экспериментально исследована французским физиком Ж. Гей-Люссаком (1862 г.). Поэтому уравнение изобарного процесса называют законом Гей-Люссака .

Экспериментально установленные законы Бойля–Мариотта, Шарля и Гей-Люссака находят объяснение в молекулярно-кинетической теории газов. Они являются следствием уравнения состояния идеального газа.

Видео:Уравнение состояния идеального газа | Физика 10 класс #33 | ИнфоурокСкачать

Уравнение состояния идеального газа | Физика 10 класс #33 | Инфоурок

Уравнение состояния идеального газа. Изопроцессы

Соотношение p = n k T – это формула, связывающая значение давления газа с его температурой и концентрацией молекул на единицу объема.

Они взаимодействуют со стенками сосуда посредствам упругих соударений. Данное выражение можно записать иначе, учитывая параметрические состояния объема V , давления p , температуры T и количества вещества ν . Применим неравенства:

n = N V = ν N А V = m M N A V .

Значением N является количество молекул данного сосуда, N А – постоянной Авогадро, m – массой газа в емкости, М – молярной массой газа. Исходя из этого, формула примет вид:

p V = ν N А k T = m M N А k T .

Произведение постоянной Авогадро N А на постоянную Больцмана k называют универсальной газовой постоянной и обозначают R .

По системе С И имеет значение R = 8 , 31 Д ж / м о л ь · К .

Соотношение p V = ν R T = m M R T получило название уравнения состояния идеального газа.

Один моль газа обозначается p V = R T .

При температуре T н = 273 , 15 К ( 0 ° C ) и давлении ρ н = 1 а т м = 1 , 013 · 10 5 П а говорят о нормальных условиях состояния газа.

Из уравнения видно, что один моль газа при нормальных условиях занимает один и тот же объем, равный v 0 = 0 , 0224 м 3 / м о л ь = 22 , 4 д м 3 / м о л ь . Выражение получило название закона Авогадро.

Если имеется смесь невзаимодействующих газов, то формулу запишем как:

p V = ν 1 + ν 2 + ν 3 + . . . R T ,

где ν 1 , v 2 , v 3 обозначает количество вещества каждого из них.

Еще в ХХ веке Б. Клапейрон получил уравнение, показывающее связь между давлением и температурой:

p V = ν R T = m M R T .

Впоследствии оно было записано Д.И. Менделеевым. Позже его назвали уравнением Клапейрона-Менделеева.

Задолго до получения уравнения состояния идеального газа на основе молекулярно-кинетической теории поведения газов изучались в различных условиях экспериментально. То есть уравнение p V = ν R T = m M R T служит обобщением всех опытных фактов.

Газ принимает участие в процессах с постоянно изменяющимися параметрами состояния: ( p , V и T ).

При протекании процессов медленно, система находится в состоянии, близком к равновесному. Процесс получил название квазистатического.

Соотнеся с происхождением процессов в нашем времени, то его протекания нельзя считать медленными.

Обычное время для разрежения и сжатия газа сотни раз в секунду. Это рассматривается как квазистатический процесс. Они изображаются с помощью диаграммы состояний параметров, где каждая из точек показывает равновесное состояние.

При неизменном одном параметре из ( p , V или T ) процесс принято называть изопроцессом.

Видео:Уравнение состояния идеального газа. 10 класс.Скачать

Уравнение состояния идеального газа. 10 класс.

Газовые законы. Изопроцессы

Этот видеоурок доступен по абонементу

У вас уже есть абонемент? Войти

Выведите законы изопроцессов из уравнения состояния идеального газа

На этом уроке мы продолжим изучать связь между тремя макроскопическими параметрами газа, а конкретнее – их взаимосвязь в газовых процессах, протекающих при постоянном значении одного из этих трёх параметров, или изопроцессах: изотермических, изохорных и изобарных.

📺 Видео

Физика 10 класс (Урок№20 - Уравнение состояния идеального газа. Газовые законы.)Скачать

Физика 10 класс (Урок№20 - Уравнение состояния идеального газа. Газовые законы.)

Уравнение состояния идеального газаСкачать

Уравнение состояния идеального газа

Эта тема ВСЕГДА встречается на экзамене ЦТ — Изопроцессы (Физика для чайников)Скачать

Эта тема ВСЕГДА встречается на экзамене ЦТ — Изопроцессы (Физика для чайников)

Урок 156. Уравнение состояния идеального газа. Квазистатические процессыСкачать

Урок 156. Уравнение состояния идеального газа. Квазистатические процессы

Решение графических задач на тему Газовые законыСкачать

Решение графических задач на тему Газовые законы

Газовые законы. Изопроцессы | Физика 10 класс #34 | ИнфоурокСкачать

Газовые законы. Изопроцессы | Физика 10 класс #34 | Инфоурок

Идеальный газ. Основное уравнение молекулярно-кинетической теории газов. 10 класс.Скачать

Идеальный газ. Основное уравнение молекулярно-кинетической теории газов. 10 класс.

Газовые законы. Изопроцессы в физикеСкачать

Газовые законы. Изопроцессы в физике

Физика 10 класс. Газовые законыСкачать

Физика 10 класс. Газовые законы

идеальный газ УРАВНЕНИЕ СОСТОЯНИЯ ИДЕАЛЬНОГО ГАЗАСкачать

идеальный газ УРАВНЕНИЕ СОСТОЯНИЯ ИДЕАЛЬНОГО ГАЗА

Урок 157. Изопроцессы и их графики. Частные газовые законыСкачать

Урок 157. Изопроцессы и их графики. Частные газовые законы

ЕГЭ. Физика. Уравнение состояния идеального газа. ПрактикаСкачать

ЕГЭ. Физика. Уравнение состояния идеального газа. Практика

Изопроцессы. Графики изопроцессов. Закон Дальтона. 1 часть. 10 класс.Скачать

Изопроцессы. Графики изопроцессов. Закон Дальтона. 1 часть. 10 класс.

мкт ИЗОТЕРМИЧЕСКИЙ процесс ИЗОХОРНЫЙ процесс ИЗОБАРНЫЙ процессСкачать

мкт ИЗОТЕРМИЧЕСКИЙ процесс ИЗОХОРНЫЙ процесс ИЗОБАРНЫЙ процесс

Физика. 10 класс. Уравнение состояния идеального газаСкачать

Физика. 10 класс. Уравнение состояния идеального газа

Физика. МКТ: Уравнение Менделеева-Клапейрона для идеального газа. Центр онлайн-обучения «Фоксфорд»Скачать

Физика. МКТ: Уравнение Менделеева-Клапейрона для идеального газа. Центр онлайн-обучения «Фоксфорд»

Газовые законыСкачать

Газовые законы

ИЗОПРОЦЕССЫ ЗА 18 МИНУТ | МАКС ФИЗИК | ЕГЭLandСкачать

ИЗОПРОЦЕССЫ ЗА 18 МИНУТ | МАКС ФИЗИК | ЕГЭLand
Поделиться или сохранить к себе: