Содержание:
- Матрицы и системы линейных уравнений. Матричная запись системы линейных уравнений
- Обратная, вырожденная и невырожденная матрицы
- Метод Жордана-Гаусса решения матричных уравнений
- Пример №26
- Решение системы с помощью обратной матрицы
- Пример №27
- Решение произвольных систем линейных уравнений
- Метода Гаусса: примеры решения СЛАУ
- Метод Гаусса — что это такое?
- Основные определения и обозначения
- Описание алгоритма использования метода Гаусса для решения СЛАУ с равным количеством уравнений и неизвестных (обратный и прямой ход метода Гаусса)
- Описание алгоритма использования метода Гаусса для решения СЛАУ с несовпадающим количеством уравнений и неизвестных, или с вырожденной системой матрицы
- 🎦 Видео
Матрицы и системы линейных уравнений. Матричная запись системы линейных уравнений
Одно из важных применений матриц связано с системами линейных уравнений. Рассмотрим систему
(1)
и соответствующие ей матрицы
Тогда систему (1) можно заменить единственным уравнением АХ = В.
Уравнение (2) называют матричной записью системы (1). Например, система
в матричной записи выглядит так:
Заметим, что матричную запись систем линейных уравнений применяли древнекитайские математики во в. до н.э., а в европейской науке она применяется с XIX
Обратная, вырожденная и невырожденная матрицы
Рассмотрим вопросы, связанные с умножением квадратных матриц порядка . Тогда произведение АВ имеет смысл для любых матриц А и В . Мы уже вводили понятие единичной матрицы
и говорили о том, что для любой квадратной матрицы А выполняется свойство АЕ = ЕА = А.
Известно, что любого числа существует обратное число , для которого .
Нечто подобное имеет место и для квадратных матриц, причем роль условия играет своеобразное условие невырожденности матрицы А.
Определение 1. Пусть А — квадратная матрица порядка . Квадратная матрица того же порядка называется обратной для А, если .
Для обратных матриц выполняется свойство: .
Заметим, что строки матрицы А — это арифметические векторы из , поэтому можно ставить вопрос об их линейной зависимости или независимости.
Определение 2. Квадратная матрица А называется невырожденной, если ее строки линейно независимы, и вырожденной в противном случае.
В лекции 1 мы указывали, что линейно независимая система векторов не может содержать нулевой вектор. Т.о., в невырожденной матрице не может быть нулевых строк. Над строками матрицы можно совершать элементарные преобразования:
1) переставлять строки;
2) вычеркивать нулевую строку;
3) умножать строку на число ;
4) прибавлять к одной из строк другую строку, умноженную на любое число. Заметим, что речь идет о тех же самых элементарных преобразованиях, которые используются в методе Гаусса, с той лишь разницей, что теперь это строки матрицы, а не уравнения системы.
Теорема 1. Если над строками невырожденной матрицы А проделать элементарные преобразования, то получим снова невырожденную матрицу.
Теорема 2. Для любой невырожденной матрицы А существует обратная матрица .
Метод Жордана-Гаусса решения матричных уравнений
Рассмотрим матричное уравнение
, (3)
где А и В — две данные матрицы, X — искомая матрица. Существенно, что А — квадратная матрица порядка . В частном случае, когда В = Е, искомая матрица X будет обратной к А , т.е.
Эффективным методом решения матричных уравнений (3) является метод полного исключения Жордана-Гаусса.
Метод Жордана-Гаусса. Пусть А — невырожденная матрица. Припишем к ней (например, справа) матрицу В и далее будем работать уже со «сдвоенной» матрицей:
Если, выполняя элементарные преобразования над строками этой матрицы, привести ее левую часть к единичной матрице , то правая часть приведется к искомой матрице X. Фактически, метод Жордана-Гаусса можно представить следующей схемой:
В частном случае, когда нужно найти обратную матрицу надо совершить переход:
.
Пример №26
Методом Жордана-Гаусса для матрицы
найти обратную матрицу
Решение:
Составим «сдвоенную» матрицу
С помощью элементарных преобразований приведем ее левую часть к единичной матрице :
Правее вертикальной черты получилась обратная матрица :
Замечание 1. При нахождении обратной матрицы методом Жордана-Гаусса возможны вычислительные ошибки. Поэтому желательно делать проверку:
.
Решение системы с помощью обратной матрицы
Рассмотрим произвольную систему линейных уравнений с неизвестными:
Запишем эту систему матричным уравнением АХ — В,
Теорема 3. Пусть квадратная матрица А является невырожденной. Тогда решением матричного уравнения АХ = В будет
.
Доказательство. Используя очевидные преобразования, получим
. Теорема доказана.
Замечание 2. Результат, полученный при доказательстве теоремы 3, часто называют методом обратной матрицы.
Пример №27
Решить систему методом обратной матрицы:
Решение:
Этой системе соответствуют матрицы:
Подобно тому, как это делалось в примере 1, найдем обратную матрицу к матрице А:
Используя теорему 3, получим
Итак, наша система имеет решение: . Проверкой убеждаемся в том, что оно правильное.
Эта лекция взята из раздела о предмете высшая математика, там вы найдёте другие лекци по всем темам высшей математики:
Высшая математика: полный курс лекций |
Другие темы которые вам помогут понять высшую математику:
Присылайте задания в любое время дня и ночи в ➔
Официальный сайт Брильёновой Натальи Валерьевны преподавателя кафедры информатики и электроники Екатеринбургского государственного института.
Все авторские права на размещённые материалы сохранены за правообладателями этих материалов. Любое коммерческое и/или иное использование кроме предварительного ознакомления материалов сайта natalibrilenova.ru запрещено. Публикация и распространение размещённых материалов не преследует за собой коммерческой и/или любой другой выгоды.
Сайт предназначен для облегчения образовательного путешествия студентам очникам и заочникам по вопросам обучения . Наталья Брильёнова не предлагает и не оказывает товары и услуги.
Видео:Вырожденные и невырожденные однородные линейные системы. ТемаСкачать
Решение произвольных систем линейных уравнений
Тема 1. ЭЛЕМЕНТЫ ЛИНЕЙНОЙ АЛГЕБРЫ
1. Матрицы. Сложение матриц; умножение матрицы на число; произведение матриц. Обратная матрица.
2. Определители n-го порядка и их свойства. Методы вычисления определителей.
3. Обратная матрица.
5. Решение невырожденных систем линейных уравнений.
6. Теорема Кронекера – Капелли. Решение произвольных линейных систем.
Решение невырожденных систем линейных уравнений
Пусть задана система линейных уравнений
(1.1)
где – заданные числа, – неизвестные, .
Решением системы (1.1) называется такое множество значений неизвестных , при которых каждое уравнение обращается в тождество.
Система уравнений, имеющая хотя бы одно решение, называется совместной, а система, не имеющая решений – несовместной.
и
называются матрицей системы и расширенной матрицей системы соответственно.
Рассмотрим случай, когда число уравнений m системы совпадает с числом неизвестных n (m = n). Тогда матрица системы А является квадратной матрицей порядка n.
Система n уравнений с n неизвестными называется невырожденной, если определитель матрицы системы А отличен от нуля ( ).
Невырожденная система имеет единственное решение. Существует два метода решения таких систем.
1. Правило Крамера. Если определитель Δ отличен от нуля, то решение системы находится по формулам
, (1.2)
где – определитель, полученный из определителя Δ заменой j–го столбца столбцом свободных членов.
2. Матричный метод. Введем матрицу столбец свободных членов системы и матрицу-столбец неизвестных .
Тогда систему n уравнений с n неизвестными можно записать в виде
. (1.3)
Эта форма записи системы называется матричной.
Матрицей , обратной к матрице А размера , называется такая матрица, для которой справедливо равенство
,
где Е – единичная матрица n-го порядка.
Матрица, определитель которой не равен нулю, называется невырожденной.
Для того чтобы данная матрица имела обратную, необходимо и достаточно, чтобы она была невырожденной.
Рассмотрим уравнение (1.3). Пусть А – невырожденная матрица. Тогда решение системы можно найти по формуле
. (1.4)
Пример 1.1. Проверить невырожденность системы линейных уравнений и решить ее: а) по формулам Крамера; б) матричным методом.
Решение. Запишем матрицу системы . Проверим невырожденность системы. Для этого вычисляем определитель Δ матрицы А:
.
Так как , то система невырождена. Решаем ее
а) по формулам Крамера.
.
По формулам (1.2) находим решение системы:
Делаем проверку: .
б) матричным методом.
Находим обратную матрицу
,
где – союзная матрица, составленная из алгебраических дополнений элементов матрицы А.
, ,
где – определитель, полученный из определителя Δ вычеркиванием i-й строки и j-го столбца. Имеем:
,
,
.
.
По формуле (1.4) находим решение:
.
Ответ: .
Решение произвольных систем линейных уравнений
Рассмотрим произвольную систему линейных уравнений (1.1).
Элементарными преобразованиями матрицы называются:
а) перестановка местами любых двух строк;
б) умножение строки на некоторое число ;
в) прибавление к одной строке матрицы любой другой строки, умноженной на некоторое число;
г) удаление нулевой строки.
Решение системы методом Жордана–Гаусса основано на следующем утверждении: элементарные преобразования расширенной матрицы системы не изменяют множества решений системы.
Суть метода заключается в том, чтобы при помощи элементарных преобразований привести расширенную матрицу к наиболее простому виду.
С помощью операции в) можно исключить какое-либо неизвестное из всех уравнений, кроме одного.
Переменная называется базисной в i–м уравнении, если при .
Матрица системы с помощью элементарных преобразований приводится к так называемому базисному виду, если в каждом уравнении системы есть базисная переменная.
Если матрица системы приведена к базисному виду, то переменные, не являющиеся базисными, называются свободными.
Решение системы, полученное после приравнивания нулю всех свободных переменных, называется базисным.
Опишем одну итерацию метода Жордана–Гаусса.
В первой строке расширенной матрицы находим ненулевой элемент . Если таковых нет, то в случае вычеркиваем данную нулевую строку; если , то система несовместна.
Элемент называют ведущим элементом.
Если , то делим первую строку расширенной матрицы на этот элемент . Ко всем строкам, кроме первой, прибавляем первую строку, умноженную на ( ), где i – номер изменяемой строки.
После этой операции коэффициент при в первом уравнении будет равен единице, а во всех остальных уравнениях – нулю. Следовательно, переменная станет базисной.
Описанную итерацию проводим для остальных строк расширенной матрицы, пока не получим m базисных неизвестных ( в каждом уравнении – по одной базисной переменной).
После этого находим общее решение и базисное (приравнивая свободные неизвестные нулю).
Пример 1.2. Решить систему линейных уравнений
методом Жордана–Гаусса. Найти общее и базисное решения.
Решение. Вычисления будем производить в таблице. В исходной части таблицы записываем расширенную матрицу системы.
В первой строке выберем элемент ведущим. Выделим ведущий элемент рамкой. Изменяем вторую, третью и четвертую строки: ко второй строке по элементам прибавляем первую строку, умноженную на (-3), к третьей – первую строку, умноженную на (-1), и к четвертой – первую строку, умноженную на (-3). В результате получим таблицу, в которой переменная стала базисной.
Выбираем элемент ведущим. С помощью элементарных преобразований получаем таблицу, в которой переменная стала базисной.
Выбираем, например, элемент ведущим и делим на него элементы третьей строки. Получаем таблицу
.
Теперь делаем нули в остальных строках четвертого столбца. Получаем таблицу, в которой переменная стала базисной.
Удаляем вторую нулевую строку, получаем таблицу
.
Поскольку каждое уравнение теперь содержит по одной базисной переменной, то оставшаяся небазисная переменная является свободной.
Полагаем . Из последней строки таблицы получаем .
Из второй строки следует , откуда находим или .
Из первой строки следует , откуда получаем или .
Выписываем общее решение: .
Найдем базисное решение. Положим . Тогда имеем .
Сделаем проверку, подставляя найденное решение в исходную систему
Ответ. Общее решение: , базисное решение: .
Задание 1. Проверить невырожденность системы линейных уравнений и решить ее: а) по формулам Крамера; б) матричным методом.
1.1. 1.2. 1.3.
1.4. 1.5 1.6.
1.7 1.8. 1.9
1.10. 1.11. 1.12.
1.13. 1.14. 1.15
1.16. 1.17 1.18.
1.19. 1.20. 1.21.
1.22. 1.23. 1.24.
1.25. 1.26. 1.27.
1.28. 1.29. 1.30.
Задание 2. Решить систему линейных уравнений методом Жордана–Гаусса. Найти общее и базисное решения.
2.1. 2.2.
2.3. 2.4.
2.5. 2.6.
2.7. 2.8.
2.9. 2.10.
2.11. 2.12.
2.13. 2.14.
2.15. 2.16.
2.17. 2.18.
2.19. 2.20.
2.21. 2.22.
2.23. 2.24.
2.25. 2.26.
2.27. 2.28.
2.29. 2.30.
Видео:Матричный метод решения систем уравненийСкачать
Метода Гаусса: примеры решения СЛАУ
В данной статье мы:
- дадим определение методу Гаусса,
- разберем алгоритм действий при решении линейных уравнений, где количество уравнений совпадает c количеством неизвестных переменных, а определитель не равен нулю;
- разберем алгоритм действий при решении СЛАУ с прямоугольной или вырожденной матрицей.
Видео:Метод Крамера за 3 минуты. Решение системы линейных уравнений - bezbotvyСкачать
Метод Гаусса — что это такое?
Метод Гаусса — это метод, который применяется при решении систем линейных алгебраических уравнений и имеет следующие преимущества:
- отсутствует необходимость проверять систему уравнений на совместность;
- есть возможность решать системы уравнений, где:
- количество определителей совпадает с количеством неизвестных переменных;
- количество определителей не совпадает с количеством неизвестных переменных;
- определитель равен нулю.
- результат выдается при сравнительно небольшом количестве вычислительных операций.
Видео:Вырожденные и невырожденные однородные линейные системы. ОтветыСкачать
Основные определения и обозначения
Есть система из р линейных уравнений с n неизвестными ( p может быть равно n ):
a 11 x 1 + a 12 x 2 + . . . + a 1 n x n = b 1 a 21 x 1 + a 22 x 2 + . . . + a 2 n x n = b 2 ⋯ a p 1 x 1 + a p 2 x 2 + . . . + a p n x n = b p ,
где x 1 , x 2 , . . . . , x n — неизвестные переменные, a i j , i = 1 , 2 . . . , p , j = 1 , 2 . . . , n — числа (действительные или комплексные), b 1 , b 2 , . . . , b n — свободные члены.
Если b 1 = b 2 = . . . = b n = 0 , то такую систему линейных уравнений называют однородной, если наоборот — неоднородной.
Решение СЛАУ — совокупность значения неизвестных переменных x 1 = a 1 , x 2 = a 2 , . . . , x n = a n , при которых все уравнения системы становятся тождественными друг другу.
Совместная СЛАУ — система, для которой существует хотя бы один вариант решения. В противном случае она называется несовместной.
Определенная СЛАУ — это такая система, которая имеет единственное решение. В случае, если решений больше одного, то такая система будет называться неопределенной.
Координатный вид записи:
a 11 x 1 + a 12 x 2 + . . . + a 1 n x n = b 1 a 21 x 1 + a 22 x 2 + . . . + a 2 n x n = b 2 ⋯ a p 1 x 1 + a p 2 x 2 + . . . + a p n x n = b p
Матричный вид записи: A X = B , где
A = a 11 a 12 ⋯ a 1 n a 21 a 22 ⋯ a 2 n ⋯ ⋯ ⋯ ⋯ a p 1 a p 2 ⋯ a p n — основная матрица СЛАУ;
X = x 1 x 2 ⋮ x n — матрица-столбец неизвестных переменных;
B = b 1 b 2 ⋮ b n — матрица свободных членов.
Расширенная матрица — матрица, которая получается при добавлении в качестве ( n + 1 ) столбца матрицу-столбец свободных членов и имеет обозначение Т .
T = a 11 a 12 ⋮ a 1 n b 1 a 21 a 22 ⋮ a 2 n b 2 ⋮ ⋮ ⋮ ⋮ ⋮ a p 1 a p 2 ⋮ a p n b n
Вырожденная квадратная матрица А — матрица, определитель которой равняется нулю. Если определитель не равен нулю, то такая матрица, а потом называется невырожденной.
Видео:Система линейных уравнений. Метод обратной матрицы. Матричный метод.Скачать
Описание алгоритма использования метода Гаусса для решения СЛАУ с равным количеством уравнений и неизвестных (обратный и прямой ход метода Гаусса)
Для начала разберемся с определениями прямого и обратного ходов метода Гаусса.
Прямой ход Гаусса — процесс последовательного исключения неизвестных.
Обратный ход Гаусса — процесс последовательного нахождения неизвестных от последнего уравнения к первому.
Алгоритм метода Гаусса:
Решаем систему из n линейных уравнений с n неизвестными переменными:
a 11 x 1 + a 12 x 2 + a 13 x 3 + . . . + a 1 n x n = b 1 a 21 x 1 + a 22 x 2 + a 23 x 3 + . . . + a 2 n x n = b 2 a 31 x 1 + a 32 x 2 + a 33 x 3 + . . . + a 3 n x n = b 3 ⋯ a n 1 x 1 + a n 2 x 2 + a n 3 x 3 + . . . + a n n x n = b n
Определитель матрицы не равен нулю.
- a 11 не равен нулю — всегда можно добиться этого перестановкой уравнений системы;
- исключаем переменную x 1 из всех уравнений систему, начиная со второго;
- прибавим ко второму уравнению системы первое, которое умножено на — a 21 a 11 , прибавим к третьему уравнению первое умноженное на — a 21 a 11 и т.д.
После проведенных действий матрица примет вид:
a 11 x 1 + a 12 x 2 + a 13 x 3 + . . . + a 1 n x n = b 1 a ( 1 ) 22 x 2 + a ( 1 ) 23 x 3 + . . . + a ( 1 ) 2 n x n = b ( 1 ) 2 a ( 1 ) 32 x 2 + a ( 1 ) 33 x 3 + . . . + a ( 1 ) 3 n x n = b ( 1 ) 3 ⋯ a ( 1 ) n 2 x 2 + a ( 1 ) n 3 x 3 + . . . + a ( 1 ) n n x n = b ( 1 ) n ,
где a i j ( 1 ) = a i j + a 1 j ( — a i 1 a 11 ) , i = 2 , 3 , . . . , n , j = 2 , 3 , . . . , n , b i ( 1 ) = b i + b 1 ( — a i 1 a 11 ) , i = 2 , 3 , . . . , n .
Далее производим аналогичные действия с выделенной частью системы:
a 11 x 1 + a 12 x 2 + a 13 x 3 + . . . + a 1 n x n = b 1 a ( 1 ) 22 x 2 + a ( 1 ) 23 x 3 + . . . + a ( 1 ) 2 n x n = b ( 1 ) 2 a ( 1 ) 32 x 2 + a ( 1 ) 33 x 3 + . . . + a ( 1 ) 3 n x n = b ( 1 ) 3 ⋯ a ( 1 ) n 2 x 2 + a ( 1 ) n 3 x 3 + . . . + a ( 1 ) n n x n = b ( 1 ) n
Считается, что a 22 ( 1 ) не равна нулю. Таким образом, приступаем к исключению неизвестной переменной x 2 из всех уравнений, начиная с третьего:
- к третьему уравнению систему прибавляем второе, которое умножено на — a ( 1 ) 42 a ( 1 ) 22 ;
- к четвертому прибавляем второе, которое умножено на — a ( 1 ) 42 a ( 1 ) 22 и т.д.
После таких манипуляций СЛАУ имеет следующий вид:
a 11 x 1 + a 12 x 2 + a 13 x 3 + . . . + a 1 n x n = b 1 a ( 1 ) 22 x 2 + a ( 1 ) 23 x 3 + . . . + a ( 1 ) 2 n x n = b ( 1 ) 2 a ( 2 ) 33 x 3 + . . . + a ( 2 ) 3 n x n = b ( 2 ) 3 ⋯ a ( 2 ) n 3 x 3 + . . . + a ( 2 ) n n x n = b ( 2 ) n ,
где a i j ( 2 ) = a ( 1 ) i j + a 2 j ( — a ( 1 ) i 2 a ( 1 ) 22 ) , i = 3 , 4 , . . . , n , j = 3 , 4 , . . . , n , b i ( 2 ) = b ( 1 ) i + b ( 1 ) 2 ( — a ( 1 ) i 2 a ( 1 ) 22 ) , i = 3 , 4 , . . . , n . .
Таким образом, переменная x 2 исключена из всех уравнений, начиная с третьего.
Далее приступаем к исключению неизвестной x 3 , действуя по аналоги с предыдущим образцом:
a 11 x 1 + a 12 x 2 + a 13 x 3 + . . . + a 1 n x n = b 1 a ( 1 ) 22 x 2 + a ( 1 ) 23 x 3 + . . . + a ( 1 ) 2 n x n = b ( 1 ) 2 a ( 2 ) 33 x 3 + . . . + a ( 2 ) 3 n x n = b ( 2 ) 3 ⋯ a ( n — 1 ) n n x n = b ( n — 1 ) n
После того как система приняла такой вид, можно начать обратный ход метода Гаусса:
- вычисляем x n из последнего уравнения как x n = b n ( n — 1 ) a n n ( n — 1 ) ;
- с помощью полученного x n находим x n — 1 из предпоследнего уравнения и т.д., находим x 1 из первого уравнения.
Найти решение системы уравнений методом Гаусса:
3 x 1 + 2 x 2 + x 3 + x 4 = — 2 x 1 — x 2 + 4 x 3 — x 4 = — 1 — 2 x 1 — 2 x 2 — 3 x 3 + x 4 = 9 x 1 + 5 x 2 — x 3 + 2 x 4 = 4
Коэффициент a 11 отличен от нуля, поэтому приступаем к прямому ходу решения, т.е. к исключению переменной x 11 из всех уравнений системы, кроме первого. Для того, чтобы это сделать, прибавляем к левой и правой частям 2-го, 3-го и 4-го уравнений левую и правую часть первого, которая умножена на — a 21 a 11 :
— 1 3 , — а 31 а 11 = — — 2 3 = 2 3 и — а 41 а 11 = — 1 3 .
3 x 1 + 2 x 2 + x 3 + x 4 = — 2 x 1 — x 2 + 4 x 3 — x 4 = — 1 — 2 x 1 — 2 x 2 — 3 x 3 + x 4 = 9 x 1 + 5 x 2 — x 3 + 2 x 4 = 4 ⇔
⇔ 3 x 1 + 2 x 2 + x 3 + x 4 = — 2 x 1 — x 2 + 4 x 3 — x 4 + ( — 1 3 ) ( 3 x 1 + 2 x 2 + x 3 + x 4 ) = — 1 + ( — 1 3 ) ( — 2 ) — 2 x 1 — 2 x 2 — 3 x 3 + x 4 + 2 3 ( 3 x 1 + 2 x 2 + x 3 + x 4 ) = 9 + 2 3 ( — 2 ) x 1 + 5 x 2 — x 3 + 2 x 4 + ( — 1 3 ) ( 3 x 1 + 2 x 2 + x 3 + x 4 ) = 4 + ( — 1 3 ) ( — 2 ) ⇔
⇔ 3 x 1 + 2 x 2 + x 3 + x 4 = — 2 — 5 3 x 2 + 11 3 x 3 — 4 3 x 4 = — 1 3 — 2 3 x 2 — 7 3 x 3 + 5 3 x 4 = 23 3 13 3 x 2 — 4 3 x 3 + 5 3 x 4 = 14 3
Мы исключили неизвестную переменную x 1 , теперь приступаем к исключению переменной x 2 :
— a 32 ( 1 ) a 22 ( 1 ) = — — 2 3 — 5 3 = — 2 5 и а 42 ( 1 ) а 22 ( 1 ) = — 13 3 — 5 3 = 13 5 :
3 x 1 + 2 x 2 + x 3 + x 4 = — 2 — 5 3 x 2 + 11 3 x 3 — 4 3 x 4 = — 1 3 — 2 3 x 2 — 7 3 x 3 + 5 3 x 4 = 23 3 13 3 x 2 — 4 3 x 3 + 5 3 x 4 = 14 3 ⇔
⇔ 3 x 1 + 2 x 2 + x 3 + x 4 = — 2 — 5 3 x 2 + 11 3 x 3 — 4 3 x 4 = — 1 3 — 2 3 x 2 — 7 3 x 3 + 5 3 x 4 + ( — 2 5 ) ( — 5 3 x 2 + 11 3 x 3 — 4 3 x 4 ) = 23 3 + ( — 2 5 ) ( — 1 3 ) 13 3 x 2 — 4 3 x 3 + 5 3 x 4 + 13 5 ( — 5 3 x 2 + 11 3 x 3 — 4 3 x 4 ) = 14 3 + 13 5 ( — 1 3 ) ⇔
⇔ 3 x 1 + 2 x 2 + x 3 + x 4 = — 2 — 5 3 x 2 + 11 3 x 3 — 4 3 x 4 = — 1 3 — 19 5 x 3 + 11 5 x 4 = 39 5 41 5 x 3 — 9 5 x 4 = 19 5
Для того чтобы завершить прямой ход метода Гаусса, необходимо исключить x 3 из последнего уравнения системы — а 43 ( 2 ) а 33 ( 2 ) = — 41 5 — 19 5 = 41 19 :
3 x 1 + 2 x 2 + x 3 + x 4 = — 2 — 5 3 x 2 + 11 3 x 3 — 4 3 x 4 = — 1 3 — 19 5 x 3 + 11 5 x 4 = 39 5 41 5 x 3 — 9 5 x 4 = 19 5 ⇔
3 x 1 + 2 x 2 + x 3 + x 4 = — 2 — 5 3 x 2 + 11 3 x 3 — 4 3 x 4 = — 1 3 — 19 5 x 3 + 11 5 x 4 = 39 5 41 5 x 3 — 9 5 x 4 + 41 19 ( — 19 5 x 3 + 11 5 x 4 ) = 19 5 + 41 19 39 5 ⇔
⇔ 3 x 1 + 2 x 2 + x 3 + x 4 = — 2 — 5 3 x 2 + 11 3 x 3 — 4 3 x 4 = — 1 3 — 19 5 x 3 + 11 5 x 4 = 39 5 56 19 x 4 = 392 19
Обратный ход метода Гаусса:
- из последнего уравнения имеем: x 4 = 392 19 56 19 = 7 ;
- из 3-го уравнения получаем: x 3 = — 5 19 ( 39 5 — 11 5 x 4 ) = — 5 19 ( 39 5 — 11 5 × 7 ) = 38 19 = 2 ;
- из 2-го: x 2 = — 3 5 ( — 1 3 — 11 3 x 4 + 4 3 x 4 ) = — 3 5 ( — 1 3 — 11 3 × 2 + 4 3 × 7 ) = — 1 ;
- из 1-го: x 1 = 1 3 ( — 2 — 2 x 2 — x 3 — x 4 ) = — 2 — 2 × ( — 1 ) — 2 — 7 3 = — 9 3 = — 3 .
Ответ: x 1 = — 3 ; x 2 = — 1 ; x 3 = 2 ; x 4 = 7
Найти решение этого же примера методом Гаусса в матричной форме записи:
3 x 1 + 2 x 2 + x 3 + x 4 = — 2 x 1 — x 2 + 4 x 3 — x 4 = — 1 — 2 x 1 — 2 x 2 — 3 x 3 + x 4 = 9 x 1 + 5 x 2 — x 3 + 2 x 4 = 4
Расширенная матрица системы представлена в виде:
x 1 x 2 x 3 x 4 3 2 1 1 1 — 1 4 — 1 — 2 — 2 — 3 1 1 5 — 1 2 — 2 — 1 9 4
Прямой ход метода Гаусса в данном случае предполагает приведение расширенной матрицы к трапецеидальному виду при помощи элементарных преобразований. Этот процесс очень поход на процесс исключения неизвестных переменных в координатном виде.
Преобразование матрицы начинается с превращения всех элементов нулевые. Для этого к элементам 2-ой, 3-ей и 4-ой строк прибавляем соответствующие элементы 1-ой строки, которые умножены на — a 21 a 11 = — 1 3 , — a 31 a 11 = — — 2 3 = 2 3 и н а — а 41 а 11 = — 1 3 .
Дальнейшие преобразования происходит по такой схеме: все элементы во 2-ом столбце, начиная с 3-ей строки, становятся нулевыми. Такой процесс соответствует процессу исключения переменной . Для того, чтобы выполнить этой действие, необходимо к элементам 3-ей и 4-ой строк прибавить соответствующие элементы 1-ой строки матрицы, которая умножена на — а 32 ( 1 ) а 22 ( 1 ) = — 2 3 — 5 3 = — 2 5 и — а 42 ( 1 ) а 22 ( 1 ) = — 13 3 — 5 3 = 13 5 :
x 1 x 2 x 3 x 4 3 2 1 1 | — 2 0 — 5 3 11 3 — 4 3 | — 1 3 0 — 2 3 — 7 3 5 3 | 23 3 0 13 3 — 4 3 5 3 | 14 3
x 1 x 2 x 3 x 4
3 2 1 1 | — 2 0 — 5 3 11 3 — 4 3 | — 1 3 0 — 2 3 + ( — 2 5 ) ( — 5 3 ) — 7 3 + ( — 2 5 ) 11 3 5 3 + ( — 2 5 ) ( — 4 3 ) | 23 3 + ( — 2 5 ) ( — 1 3 ) 0 13 3 + 13 5 ( — 5 3 ) — 4 3 + 13 5 × 11 3 5 3 + 13 5 ( — 4 3 ) | 14 3 + 13 5 ( — 1 3 )
x 1 x 2 x 3 x 4
3 2 1 1 | — 2 0 — 5 3 11 3 — 4 3 | — 1 3 0 0 — 19 5 11 5 | 39 5 0 0 41 5 — 9 5 | 19 5
Теперь исключаем переменную x 3 из последнего уравнения — прибавляем к элементам последней строки матрицы соответствующие элементы последней строки, которая умножена на а 43 ( 2 ) а 33 ( 2 ) = — 41 5 — 19 5 = 41 19 .
x 1 x 2 x 3 x 4 3 2 1 1 | — 2 0 — 5 3 11 3 — 4 3 | — 1 3 0 0 — 19 5 11 5 | 39 5 0 0 41 5 — 9 5 | 19 5
x 1 x 2 x 3 x 4
3 2 1 1 | — 2 0 — 5 3 11 3 — 4 3 | — 1 3 0 0 — 19 5 11 5 | 39 5 0 0 41 5 + 41 19 ( — 19 5 ) — 9 5 + 41 19 × 11 5 | 19 5 + 41 19 × 39 5
x 1 x 2 x 3 x 4
3 2 1 1 | — 2 0 — 5 3 11 3 — 4 3 | — 1 3 0 0 — 19 5 11 5 | 39 5 0 0 0 56 19 | 392 19
Теперь применим обратных ход метода. В матричной форме записи такое преобразование матрицы, чтобы матрица, которая отмечена цветом на изображении:
x 1 x 2 x 3 x 4 3 2 1 1 | — 2 0 — 5 3 11 3 — 4 3 | — 1 3 0 0 — 19 5 11 5 | 39 5 0 0 0 56 19 | 392 19
стала диагональной, т.е. приняла следующий вид:
x 1 x 2 x 3 x 4 3 0 0 0 | а 1 0 — 5 3 0 0 | а 2 0 0 — 19 5 0 | а 3 0 0 0 56 19 | 392 19 , где а 1 , а 2 , а 3 — некоторые числа.
Такие преобразования выступают аналогом прямому ходу, только преобразования выполняются не от 1-ой строки уравнения, а от последней. Прибавляем к элементам 3-ей, 2-ой и 1-ой строк соответствующие элементы последней строки, которая умножена на
— 11 5 56 19 = — 209 280 , н а — — 4 3 56 19 = 19 42 и н а — 1 56 19 = 19 56 .
x 1 x 2 x 3 x 4 3 2 1 1 | — 2 0 — 5 3 11 3 — 4 3 | — 1 3 0 0 — 19 5 11 5 | 39 5 0 0 0 56 19 | 392 19
x 1 x 2 x 3 x 4
3 2 1 1 + ( — 19 56 ) 56 19 | — 2 + ( — 19 56 ) 392 19 0 — 5 3 11 3 — 4 3 + 19 42 × 56 19 | — 1 3 + 19 42 × 392 19 0 0 — 19 5 11 5 + ( — 209 280 ) 56 19 | 39 5 + ( — 209 280 ) 392 19 0 0 0 56 19 | 392 19
x 1 x 2 x 3 x 4
3 2 1 0 | — 9 0 — 5 3 11 3 0 | 9 0 0 — 19 5 0 | — 38 5 0 0 0 56 19 | 392 19
Далее прибавляем к элементам 2-ой и 1-ой строк соответствующие элементы 3-ей строки, которые умножены на
— 11 3 — 19 5 = 55 57 и н а — 1 — 19 5 = 5 19 .
x 1 x 2 x 3 x 4 3 2 1 0 | — 9 0 — 5 3 11 3 0 | 9 0 0 — 19 5 0 | — 38 5 0 0 0 56 19 | 392 19
x 1 x 2 x 3 x 4
3 2 1 + 5 19 ( — 19 5 ) 0 | — 9 + 5 19 ( — 38 5 ) 0 — 5 3 11 3 + 55 57 ( — 19 5 ) 0 | 9 + 55 57 ( — 38 5 ) 0 0 — 19 5 0 | — 38 5 0 0 0 56 19 | 392 19
x 1 x 2 x 3 x 4
3 2 1 0 | — 11 0 — 5 3 0 0 | 5 3 0 0 — 19 5 0 | — 38 5 0 0 0 56 19 | 392 19
На последнем этапе прибавляем элементы 2-ой строки к соответствующим элементам 1-ой строки, которые умножены на — 2 — 5 3 = 6 5 .
x 1 x 2 x 3 x 4 3 2 1 0 | — 11 0 — 5 3 0 0 | 5 3 0 0 — 19 5 0 | — 38 5 0 0 0 56 19 | 392 19
x 1 x 2 x 3 x 4
3 2 + 6 5 ( — 5 3 ) 0 0 | — 11 + 6 5 × 5 3 ) 0 — 5 3 0 0 | 5 3 0 0 — 19 5 0 | — 38 5 0 0 0 56 19 | 392 19
x 1 x 2 x 3 x 4
3 0 0 0 | — 9 0 — 5 3 0 0 | 5 3 0 0 — 19 5 0 | — 38 5 0 0 0 56 19 | 392 19
Полученная матрица соответствует системе уравнений
3 x 1 = — 9 — 5 3 x 2 = 5 3 — 19 5 x 3 = — 38 5 56 19 x 4 = 392 19 , откуда находим неизвестные переменные.
Ответ: x 1 = — 3 , x 2 = — 1 , x 3 = 2 , x 4 = 7 .
Видео:Математика без Ху!ни. Метод Гаусса.Скачать
Описание алгоритма использования метода Гаусса для решения СЛАУ с несовпадающим количеством уравнений и неизвестных, или с вырожденной системой матрицы
Если основная матрица квадратная или прямоугольная, то системы уравнений могут иметь единственное решение, могут не иметь решений, а могут иметь бесконечное множество решений.
Из данного раздела мы узнаем, как с помощью метода Гаусса определить совместность или несовместность СЛАУ, а также, в случае совместности, определить количество решений для системы.
В принципе, метод исключения неизвестных при таких СЛАУ остается таким же, однако есть несколько моментов, на которых необходимо заострить внимание.
На некоторых этапах исключения неизвестных, некоторые уравнения обращаются в тождества 0=0. В таком случае, уравнения можно смело убрать из системы и продолжить прямой ход метода Гаусса.
Если мы исключаем из 2-го и 3-го уравнения x 1 , то ситуация оказывается следующей:
x 1 + 2 x 2 — x 3 + 3 x 4 = 7 2 x 1 + 4 x 2 — 2 x 3 + 6 x 4 = 14 x — x + 3 x + x = — 1 ⇔
x 1 + 2 x 2 — x 3 + 3 x 4 = 7 2 x 1 + 4 x 2 — 2 x 3 + 6 x 4 + ( — 2 ) ( x 1 + 2 x 2 — x 3 + 3 x 4 ) = 14 + ( — 2 ) × 7 x — x + 3 x + x + ( — 1 ) ( x 1 + 2 x 2 — x 3 + 3 x 4 ) = — 1 + ( — 1 ) × 7 ⇔
⇔ x 1 + 2 x 2 — x 3 + 3 x 4 = 7 0 = 0 — 3 x 2 + 4 x 3 — 2 x 4 = — 8
Из этого следует, что 2-ое уравнение можно смело удалять из системы и продолжать решение.
Если мы проводим прямой ход метода Гаусса, то одно или несколько уравнений может принять вид — некоторое число, которое отлично от нуля.
Это свидетельствует о том, что уравнение, обратившееся в равенство 0 = λ , не может обратиться в равенство ни при каких любых значениях переменных. Проще говоря, такая система несовместна (не имеет решения).
- В случае если при проведении прямого хода метода Гаусса одно или несколько уравнений принимают вид 0 = λ , где λ — некоторое число, которое отлично от нуля, то система несовместна.
- Если же в конце прямого хода метода Гаусса получается система, число уравнений которой совпадает с количеством неизвестных, то такая система совместна и определена: имеет единственное решение, которое вычисляется обратным ходом метода Гаусса.
- Если при завершении прямого хода метода Гаусса число уравнений в системе оказывается меньше количества неизвестных, то такая система совместна и имеет бесконечно количество решений, которые вычисляются при обратном ходе метода Гаусса.
🎦 Видео
Неоднородная система линейных уравненийСкачать
§17 Невырожденные матрицыСкачать
Обратная матрицаСкачать
Решение системы уравнений методом Крамера 2x2Скачать
15. Однородная система линейных уравнений / фундаментальная система решенийСкачать
Математика Без Ху!ни. Система линейных уравнений. Метод Крамера.Скачать
Решение системы уравнений методом обратной матрицы - bezbotvyСкачать
Вырожденные и невырожденные однородные линейные системы. ВопросыСкачать
Видеоурок "Однородные системы линейных уравнений"Скачать
Вырожденные матрицыСкачать
Решение системы уравнений методом Крамера.Скачать
Решение системы уравнений методом обратной матрицы.Скачать
Решение системы уравнений методом ГауссаСкачать