Вынужденные колебания заряда конденсатора в колебательном контуре описываются уравнением

Видео:Физика 11 класс (Урок№7 - Свободные и вынужденные электромагнитные колебания. Колебательный контур.)Скачать

Физика 11 класс (Урок№7 - Свободные и вынужденные электромагнитные колебания. Колебательный контур.)

Вынужденные колебания заряда конденсатора в колебательном контуре описываются уравнением

Процессы, возникающие в электрических цепях под действием внешнего периодического источника тока, называются вынужденными колебаниями .

Вынужденные колебания, в отличие от собственных колебаний в электрических цепях, являются незатухающими . Внешний источник периодического воздействия обеспечивает приток энергии к системе и не дает колебаниям затухать, несмотря на наличие неизбежных потерь.

Особый интерес представляет случай, когда внешний источник, напряжение которого изменяется по гармоническому закону с частотой ω, включен в электрическую цепь, способную совершать собственные свободные колебания на некоторой частоте ω0.

Если частота ω0 свободных колебаний определяется параметрами электрической цепи, то установившиеся вынужденные колебания всегда происходят на частоте ω внешнего источника .

Для установления вынужденных стационарных колебаний после включения в цепь внешнего источника необходимо некоторое время Δ. Это время по порядку величины равно времени τ затухания свободных колебаний в цепи.

Электрические цепи, в которых происходят установившиеся вынужденные колебания под действием периодического источника тока, называются цепями переменного тока .

Рассмотрим последовательный колебательный контур, то есть -цепь, в которую включен источник тока, напряжение которого изменяется по периодическому закону (рис. 2.3.1):

Вынужденные колебания заряда конденсатора в колебательном контуре описываются уравнением,

где Вынужденные колебания заряда конденсатора в колебательном контуре описываются уравнением0 – амплитуда, ω – круговая частота.

Вынужденные колебания заряда конденсатора в колебательном контуре описываются уравнением
Рисунок 2.3.1.

Предполагается, что для электрической цепи, изображенной на рис. 2.3.1, выполнено условие квазистационарности. Поэтому для мгновенных значений токов и напряжений можно записать закон Ома:

Вынужденные колебания заряда конденсатора в колебательном контуре описываются уравнением

Величина Вынужденные колебания заряда конденсатора в колебательном контуре описываются уравнением– это ЭДС самоиндукции катушки, перенесенная с изменением знака из правой части уравнения в левую. Эту величину принято называть напряжением на катушке индуктивности .

Уравнение вынужденных колебаний можно записать в виде

Вынужденные колебания заряда конденсатора в колебательном контуре описываются уравнением,

где , и – мгновенные значения напряжений на резисторе, конденсаторе и катушке соответственно. Амплитуды этих напряжений будем обозначать буквами , и . При установившихся вынужденных колебаниях все напряжения изменяются с частотой ω внешнего источника переменного тока. Для наглядного решения уравнения вынужденных колебаний можно использовать метод векторных диаграмм .

На векторной диаграмме колебания определенной заданной частоты ω изображаются с помощью векторов (рис. 2.3.2).

Вынужденные колебания заряда конденсатора в колебательном контуре описываются уравнением
Рисунок 2.3.2.

Длины векторов на диаграмме равны амплитудам и колебаний, а наклон к горизонтальной оси определяется фазами колебаний φ1 и φ2. Взаимная ориентация векторов определяется относительным фазовым сдвигом . Вектор, изображающий суммарное колебание, строится на векторной диаграмме по правилу сложения векторов: Вынужденные колебания заряда конденсатора в колебательном контуре описываются уравнением

Для того, чтобы построить векторную диаграмму напряжений и токов при вынужденных колебаниях в электрической цепи, нужно знать соотношения между амплитудами токов и напряжений и фазовый сдвиг между ними для всех участков цепи.

Рассмотрим по отдельности случаи подключения внешнего источника переменного тока к резистру с сопротивлением , конденсатору с емкостью и катушки с индуктивностью . Во всех трех случаях напряжение на резисторе, конденсаторе и катушке равно напряжению источника переменного тока.

1. Резистор в цепи переменного тока

Вынужденные колебания заряда конденсатора в колебательном контуре описываются уравнением

Здесь через обозначена амплитуда тока, протекающего через резистор. Связь между амплитудами тока и напряжения на резисторе выражается соотношением

.

Фазовый сдвиг между током и напряжением на резисторе равен нулю.

Физическая величина называется активным сопротивлением резистора .

2. Конденсатор в цепи переменного тока

Вынужденные колебания заряда конденсатора в колебательном контуре описываются уравнением

Вынужденные колебания заряда конденсатора в колебательном контуре описываются уравнением

Соотношение между амплитудами тока и напряжения :

Вынужденные колебания заряда конденсатора в колебательном контуре описываются уравнением

Ток опережает по фазе напряжение на угол Вынужденные колебания заряда конденсатора в колебательном контуре описываются уравнением

Физическая величина Вынужденные колебания заряда конденсатора в колебательном контуре описываются уравнениемназывается емкостным сопротивлением конденсатора .

3. Катушка в цепи переменного тока

Вынужденные колебания заряда конденсатора в колебательном контуре описываются уравнением

Вынужденные колебания заряда конденсатора в колебательном контуре описываются уравнением

Соотношение между амплитудами тока и напряжения :

.

Ток отстает по фазе от напряжения на угол Вынужденные колебания заряда конденсатора в колебательном контуре описываются уравнением

Физическая величина называется индуктивным сопротивлением катушки .

Теперь можно построить векторную диаграмму для последовательного -контура, в котором происходят вынужденные колебания на частоте ω. Поскольку ток, протекающий через последовательно соединенные участки цепи, один и тот же, векторную диаграмму удобно строить относительно вектора, изображающего колебания тока в цепи. Амплитуду тока обозначим через . Фаза тока принимается равной нулю. Это вполне допустимо, так как физический интерес представляют не абсолютные значения фаз, а относительные фазовые сдвиги. Векторная диаграмма для последовательного -контура изображена на рис. 2.3.2.

Вынужденные колебания заряда конденсатора в колебательном контуре описываются уравнением
Рисунок 2.3.3.

Векторная диаграмма на рис. 2.3.2 построена для случая, когда Вынужденные колебания заряда конденсатора в колебательном контуре описываются уравнениемили Вынужденные колебания заряда конденсатора в колебательном контуре описываются уравнениемВ этом случае напряжение внешнего источника опережает по фазе ток, текущий в цепи, на некоторый угол φ.

Из рисунка видно, что

Вынужденные колебания заряда конденсатора в колебательном контуре описываются уравнением

откуда следует

Вынужденные колебания заряда конденсатора в колебательном контуре описываются уравнением

Из выражения для видно, что амплитуда тока принимает максимальное значение при условии

Вынужденные колебания заряда конденсатора в колебательном контуре описываются уравнением

или

Вынужденные колебания заряда конденсатора в колебательном контуре описываются уравнением

Явление возрастания амплитуды колебаний тока при совпадении частоты ω колебаний внешнего источника с собственной частотой ω0 электрической цепи называется электрическим резонансом . При резонансе

Вынужденные колебания заряда конденсатора в колебательном контуре описываются уравнением

Сдвиг фаз φ между приложенным напряжением и током в цепи при резонансе обращается в нуль. Резонанс в последовательной -цепи называется резонансом напряжений . Аналогичным образом с помощью векторной диаграммы можно исследовать явление резонанса при параллельном соединении элементов , и (так называемый резонанс токов ).

При последовательном резонансе () амплитуды и напряжений на конденсаторе и катушке резко возрастают:

Вынужденные колебания заряда конденсатора в колебательном контуре описываются уравнением

В § 2.2 было введено понятие добротности -контура:

Вынужденные колебания заряда конденсатора в колебательном контуре описываются уравнением

Таким образом, при резонансе амплитуды напряжений на конденсаторе и катушке в раз превышают амплитуду напряжения внешнего источника.

Вынужденные колебания заряда конденсатора в колебательном контуре описываются уравнением
Рисунок 2.3.4.

Рис. 2.3.4 иллюстрирует явление резонанса в последовательном электрическом контуре. На рисунке графически изображена зависимость отношения амплитуды напряжения на конденсаторе к амплитуде Вынужденные колебания заряда конденсатора в колебательном контуре описываются уравнением0 напряжения источника от его частоты ω для различных значений добротности . Кривые на рис. 2.3.3 называются резонансными кривыми .

Можно показать, что максимум резонансных кривых для контуров с низкой добротностью несколько сдвинуты в область низких частот.

Видео:Вынужденные колебания. Резонанс | Физика 11 класс #9 | ИнфоурокСкачать

Вынужденные колебания. Резонанс | Физика 11 класс #9 | Инфоурок

Вынужденные колебания. Переменный ток

Дадим определение понятию вынужденных колебаний.

Вынужденные колебания – это процессы, которые происходят в электрических цепях под воздействием периодического источника тока.

Основным отличием вынужденных колебаний по сравнению с собственными колебаниями в электрических цепях является то, что они являются незатухающими. Неизбежные потери энергии компенсируются за счет внешнего источника периодического воздействия, который не позволяет колебаниям затухать.

Видео:Урок 361. Вынужденные колебания в последовательном колебательном контуреСкачать

Урок 361. Вынужденные колебания в последовательном колебательном контуре

Что такое переменный ток?

Переменный ток — электрический ток, который с течением времени изменяется по величине и направлению или, в частном случае, изменяется по величине, сохраняя своё направление в электрической цепи неизменным.

Рассмотрим случай, когда электрическая цепь способна совершать собственные свободные колебания с некоторой частотой ω 0 . Предположим, что к этой цепи подключен внешний источник, напряжение которого изменяется по гармоническому закону с частотой ω .

Частота свободных колебаний в электрической сети ω 0 будет определяться параметрами этой сети. Вынужденные колебания, которые установятся при подключении внешнего источника ω , будут происходить на частоте этого внешнего источника.

Частота вынужденных колебаний устанавливается не сразу после включения внешнего источника, а спустя некоторое время Δ t . По порядку величины это время будет равно времени затухания свободных колебаний в сети τ .

Видео:Вынужденные колебания, резонансСкачать

Вынужденные колебания, резонанс

Цепи переменного тока

Цепи переменного тока – это такие электрические цепи, в которых под воздействием периодического источника тока происходят установившиеся вынужденные колебания.

Рассмотрим устройство колебательного контура, в который включен источник тока с напряжением, изменяющимся по периодическому закону:

e ( t ) = ε 0 cos ω t,

где ε 0 – амплитуда, ω – круговая частота.

Фактически, это будет R L C -цепь.

Вынужденные колебания заряда конденсатора в колебательном контуре описываются уравнением

Рисунок 2 . 3 . 1 . Вынужденные колебания в контуре.

Будем считать, что для изображенной на этом рисунке электрической цепи выполняется условие квазистационарности. Это позволит нам записать закон Ома для мгновенных значений токов и напряжений:

R J + q C + L d J d t = ε 0 c o c ω t.

Величину L d J d t принято называть напряжением на катушке индуктивности. Фактически, это ЭДС самоиндукции катушки, которую мы для простоты вычислений перенесли с противоположным знаком в левую часть уравнения из правой.

Уравнение вынужденных колебаний можно записать в виде:

u R + u C + u L = e ( t ) = ε 0 cos ω t.

где u R ( t ) , u C ( t ) и u L ( t ) – мгновенные значения напряжений на резисторе, конденсаторе и катушке соответственно. Амплитуды этих напряжений будем обозначать буквами U R , U C и U L . Напряжения при установившихся вынужденных колебаниях изменяются с частотой внешнего источника переменного тока ω .

Видео:Затухающие колебания. Вынужденные колебания | Физика 9 класс #26 | ИнфоурокСкачать

Затухающие колебания. Вынужденные колебания | Физика 9 класс #26 | Инфоурок

Векторная диаграмма токов и напряжений

Для решения уравнения вынужденных колебаний мы можем использовать достаточно наглядный метод векторных диаграмм. Для этого используем векторную диаграмму, на которой с помощью векторов изобразим колебания определенной заданной частоты ω .

Давайте посмотрим, как построить векторную диаграмму токов и напряжений.

Вынужденные колебания заряда конденсатора в колебательном контуре описываются уравнением

Рисунок 2 . 3 . 2 . Векторная диаграмма, на которой с помощью векторов изображены гармонические колебания A cos ( ω t + φ 1 ) , B cos ( ω t + φ 2 ) и их суммы C cos ( ω t + φ ) .

Наклон векторов к горизонтальной оси определяется фазой колебаний φ 1 и φ 2 , а длины векторов соответствуют амплитудам колебаний A и B . Относительный фазовый сдвиг определяет взаимную ориентацию векторов: ∆ φ = φ 1 — φ 2 . Для того, чтобы построить вектор, изображающий суммарное колебание, нам необходимо использовать правило сложения векторов: C → = A → + B → .

При вынужденных колебаниях в электрической цепи для построения векторной диаграммы напряжений и токов нам необходимо знать соотношения между амплитудами токов и напряжений и фазовый сдвиг между ними для любого участка цепи.

Источник переменного тока может быть подключен к:

  • катушке индуктивности L ;
  • резистору с сопротивлением R ;
  • конденсатору с емкостью С .

Рассмотрим эти три примера подробнее. Будем считать, что напряжение на резисторе, катушке и конденсаторе во всех трех случаях равно напряжению внешнего источника переменного тока.

Резистор в цепи переменного тока

J R R = u R = U R cos ω t ; J R = U R R cos ω t = I R cos ω t

Мы обозначили амплитуду тока, который протекает через резистор, через I R . Соотношение R I R = U R выражает связь между амплитудами тока и напряжения на резисторе. Фазовый сдвиг в этом случае равен нулю. Физическая величина R – это активное сопротивление на резисторе.

Конденсатор в цепи переменного тока

u C = q C = U C cos ω t

J C = d q d t = C d u C d t = C U C ( — ω sin ω t ) = ω C U C cos ω t + π 2 = I C cos ω t + π 2 .

Соотношение между амплитудами тока I C и напряжения U C : 1 ω C I C = U C .

Ток опережает по фазе напряжение на угол π 2 .

Физическая величина X C = 1 ω C — это емкостное сопротивление конденсатора.

Видео:Урок 347. Вынужденные колебания. Резонанс (часть 1)Скачать

Урок 347. Вынужденные колебания. Резонанс (часть 1)

Вынужденные колебания в контуре. Резонанс

Вы будете перенаправлены на Автор24

Видео:Вынужденные электромагнитные колебания. Автоколебания. 11 класс.Скачать

Вынужденные электромагнитные колебания. Автоколебания. 11 класс.

Уравнение вынужденных колебаний

Вынужденными колебаниями называют периодические изменения параметров, которые описывают систему под влиянием внешней силы. Для реализации вынужденных электрических колебаний в $RLC$ контуре в него включают переменную ЭДС (рис.1).

Вынужденные колебания заряда конденсатора в колебательном контуре описываются уравнением

В общем случае вынужденные колебания в таком контуре можно записать как:

где $L$ — индуктивность, $R$ — сопротивление, $C$ — емкость, $Uleft(tright)$ — внешнее воздействие.

Рассмотрим случай, когда в контур подается переменное напряжение ($U$) изменяющееся по гармоническому закону:

Тогда уравнение колебаний запишется в виде:

где $_0=frac<sqrt>$- собственная частота колебаний контура, $beta =frac.$ По аналогии с механическими колебаниями можно записать частное решение данного уравнения как:

Как известно, общее решение неоднородного уравнения получают как сумму частного решения данного уравнения (в нашем случае это (4)) и общего решения соответствующего однородного уравнения. Так для уравнения:

общим решением является выражение:

Так как выражение (6) содержит множитель $e^$, то при $tto infty , $ $e^to 0,$ поэтому для установившихся колебаний решением уравнения (3) считают функцию (4).

Сила тока для установившихся вынужденных колебаний может быть записана как:

где $I_m=_m$, $varphi =Psi-frac$ — сдвиг фаз между тока и приложенного напряжения. Соответственно:

Готовые работы на аналогичную тему

Надо отметить, что выполняется равенство:

Выражение (9) означает, что сумма напряжений на каждом из элементов цепи в момент времени $t$ равна приложенному напряжению.

Видео:Свободные электромагнитные колебания. 11 класс.Скачать

Свободные электромагнитные колебания. 11 класс.

Резонанс

Появление сильных колебаний при частоте внешней силы равной (или почти равной) собственной частоте колебательного контура, называют резонансом. Суть явления заключается в том, что как бы одиночные «толчки» усиливают друг друга. В таком случае получается, что энергия, которая вкладывается в систему, является максимальной. Амплитуда колебаний нарастает до тех пор, пока увеличивающиеся силы трения (в среднем) за период толчка не станут компенсировать действие каждого «толчка». В этот момент устанавливается максимум энергии и максимум амплитуды.

Резонансной частотой для заряда ($_$) и напряжения ($_$) на конденсаторе являются частоты, заданные уравнениями:

Резонансные кривые для заряда и напряжения на конденсаторе имеют одинаковый вид (рис.2).

Вынужденные колебания заряда конденсатора в колебательном контуре описываются уравнением

Если $omega =0$ кривые (рис.2) сходятся в одной точке, при этом напряжение на конденсаторе равно напряжению, которое возникает на нем при подключении источника:

Максимум резонансной кривой выше и острее, чем меньше коэффициент затухания (меньше $R$, больше $L$).

Кривые для силы тока изображены на рис. 3. Амплитудное значение силы тока максимально, если $omega L-frac=0. $Частота силы тока при резонансе ($_$):

Вынужденные колебания заряда конденсатора в колебательном контуре описываются уравнением

Задание: Получите функции $U_R(t),U_C(t),U_L(t)$ в $RCL$ контуре, если приложенное напряжение задано уравнением: $U=U_m.$

Решение:

В качестве основы для решения задачи используем выражение:

[Ileft(tright)=left(omega t-varphi right)left(1.1right).]

Исходя из (1.1) для напряжения на сопротивлении ($U_R$) в соответствии с законом Ома для участка цепи можно записать, что:

[U_Rleft(tright)=RIleft(tright)=<_m cos >left(omega t-varphi right)left(1.2right).]

Используя закон изменения заряда в контуре, заданном в условии:

найдем $U_Cleft(tright)$ как:

где $U_=frac=frac.$ Напряжение на катушке индуктивности найдем как:

Задание: Определите, во сколько раз напряжение на конденсаторе может превышать напряжение, которое приложено к $RLC$ контуру, если добротность контура равна $O$. Считать, что внешнее напряжение подчиняется гармоническому закону, затухание в контуре мало.

Решение:

Условие малости затухания для контура означает, что:

и резонансную частоту можно считать равной собственной частоте.

Напряжение на конденсаторе можно выразить как:

где $q_m=frac<omega sqrt<^2>>$. Если при резонансе в нашем случае $omega approx _0$, то максимальное напряжение на конденсаторе при резонансе равно ($U_$):

где при малом затухании можно считать, что $_0L-frac<_0C>approx 0$

Найдем отношение $frac<U_>$, получим:

Получи деньги за свои студенческие работы

Курсовые, рефераты или другие работы

Автор этой статьи Дата последнего обновления статьи: 26.04.2021

📺 Видео

Свободные и вынужденные электромагнитные колебания. Колебательный контурСкачать

Свободные и вынужденные электромагнитные колебания. Колебательный контур

Урок 353. Колебательный контурСкачать

Урок 353. Колебательный контур

Физика. 11 класс. Свободные и вынужденные электромагнитные колебания /07.09.2020/Скачать

Физика. 11 класс. Свободные и вынужденные электромагнитные колебания /07.09.2020/

Уравнения и графики механических гармонических колебаний. 11 класс.Скачать

Уравнения и графики механических гармонических колебаний. 11 класс.

Резонанс в колебательном контуреСкачать

Резонанс в колебательном контуре

71. Вынужденные колебанияСкачать

71. Вынужденные колебания

ЭЛЕКТРОМАГНИТНЫЕ КОЛЕБАНИЯ И ВОЛНЫСкачать

ЭЛЕКТРОМАГНИТНЫЕ КОЛЕБАНИЯ И ВОЛНЫ

Вынужденные электромагнитные колебания. Переменный ток. 11 класс.Скачать

Вынужденные электромагнитные колебания. Переменный ток. 11 класс.

Колебательный контур | ЕГЭ Физика | Николай НьютонСкачать

Колебательный контур | ЕГЭ Физика | Николай Ньютон

Урок 354. Математическое описание процессов в колебательном контуреСкачать

Урок 354. Математическое описание процессов в колебательном контуре

Тема 8. Колебательный контур. Свободные электромагнитные колебания в контуре. Формула ТомсонаСкачать

Тема 8. Колебательный контур. Свободные электромагнитные колебания в контуре. Формула Томсона

Вынужденные электромагнитные колебания. Переменный ток. Практ. часть - решение задачи. 11 класс.Скачать

Вынужденные электромагнитные колебания. Переменный ток. Практ. часть - решение задачи. 11 класс.
Поделиться или сохранить к себе: