Вынужденные колебания заряда конденсатора в колебательном контуре описываются уравнением
Обновлено
Поделиться
Вынужденные колебания заряда конденсатора в колебательном контуре описываются уравнением
Процессы, возникающие в электрических цепях под действием внешнего периодического источника тока, называются вынужденными колебаниями .
Вынужденные колебания, в отличие от собственных колебаний в электрических цепях, являются незатухающими . Внешний источник периодического воздействия обеспечивает приток энергии к системе и не дает колебаниям затухать, несмотря на наличие неизбежных потерь.
Особый интерес представляет случай, когда внешний источник, напряжение которого изменяется по гармоническому закону с частотой ω, включен в электрическую цепь, способную совершать собственные свободные колебания на некоторой частоте ω0.
Если частота ω0 свободных колебаний определяется параметрами электрической цепи, то установившиеся вынужденные колебания всегда происходят на частоте ω внешнего источника .
Для установления вынужденных стационарных колебаний после включения в цепь внешнего источника необходимо некоторое время Δ. Это время по порядку величины равно времени τ затухания свободных колебаний в цепи.
Электрические цепи, в которых происходят установившиеся вынужденные колебания под действием периодического источника тока, называются цепями переменного тока .
Рассмотрим последовательный колебательный контур, то есть -цепь, в которую включен источник тока, напряжение которого изменяется по периодическому закону (рис. 2.3.1):
,
где 0 – амплитуда, ω – круговая частота.
Рисунок 2.3.1.
Предполагается, что для электрической цепи, изображенной на рис. 2.3.1, выполнено условие квазистационарности. Поэтому для мгновенных значений токов и напряжений можно записать закон Ома:
Величина – это ЭДС самоиндукции катушки, перенесенная с изменением знака из правой части уравнения в левую. Эту величину принято называть напряжением на катушке индуктивности .
Уравнение вынужденных колебаний можно записать в виде
,
где , и – мгновенные значения напряжений на резисторе, конденсаторе и катушке соответственно. Амплитуды этих напряжений будем обозначать буквами , и . При установившихся вынужденных колебаниях все напряжения изменяются с частотой ω внешнего источника переменного тока. Для наглядного решения уравнения вынужденных колебаний можно использовать метод векторных диаграмм .
На векторной диаграмме колебания определенной заданной частоты ω изображаются с помощью векторов (рис. 2.3.2).
Рисунок 2.3.2.
Длины векторов на диаграмме равны амплитудам и колебаний, а наклон к горизонтальной оси определяется фазами колебаний φ1 и φ2. Взаимная ориентация векторов определяется относительным фазовым сдвигом . Вектор, изображающий суммарное колебание, строится на векторной диаграмме по правилу сложения векторов:
Для того, чтобы построить векторную диаграмму напряжений и токов при вынужденных колебаниях в электрической цепи, нужно знать соотношения между амплитудами токов и напряжений и фазовый сдвиг между ними для всех участков цепи.
Рассмотрим по отдельности случаи подключения внешнего источника переменного тока к резистру с сопротивлением , конденсатору с емкостью и катушки с индуктивностью . Во всех трех случаях напряжение на резисторе, конденсаторе и катушке равно напряжению источника переменного тока.
1. Резистор в цепи переменного тока
Здесь через обозначена амплитуда тока, протекающего через резистор. Связь между амплитудами тока и напряжения на резисторе выражается соотношением
.
Фазовый сдвиг между током и напряжением на резисторе равен нулю.
Физическая величина называется активным сопротивлением резистора .
2. Конденсатор в цепи переменного тока
Соотношение между амплитудами тока и напряжения :
Ток опережает по фазе напряжение на угол
Физическая величина называется емкостным сопротивлением конденсатора .
3. Катушка в цепи переменного тока
Соотношение между амплитудами тока и напряжения :
.
Ток отстает по фазе от напряжения на угол
Физическая величина называется индуктивным сопротивлением катушки .
Теперь можно построить векторную диаграмму для последовательного -контура, в котором происходят вынужденные колебания на частоте ω. Поскольку ток, протекающий через последовательно соединенные участки цепи, один и тот же, векторную диаграмму удобно строить относительно вектора, изображающего колебания тока в цепи. Амплитуду тока обозначим через . Фаза тока принимается равной нулю. Это вполне допустимо, так как физический интерес представляют не абсолютные значения фаз, а относительные фазовые сдвиги. Векторная диаграмма для последовательного -контура изображена на рис. 2.3.2.
Рисунок 2.3.3.
Векторная диаграмма на рис. 2.3.2 построена для случая, когда или В этом случае напряжение внешнего источника опережает по фазе ток, текущий в цепи, на некоторый угол φ.
Из рисунка видно, что
откуда следует
Из выражения для видно, что амплитуда тока принимает максимальное значение при условии
или
Явление возрастания амплитуды колебаний тока при совпадении частоты ω колебаний внешнего источника с собственной частотой ω0 электрической цепи называется электрическим резонансом . При резонансе
Сдвиг фаз φ между приложенным напряжением и током в цепи при резонансе обращается в нуль. Резонанс в последовательной -цепи называется резонансом напряжений . Аналогичным образом с помощью векторной диаграммы можно исследовать явление резонанса при параллельном соединении элементов , и (так называемый резонанс токов ).
При последовательном резонансе () амплитуды и напряжений на конденсаторе и катушке резко возрастают:
В § 2.2 было введено понятие добротности -контура:
Таким образом, при резонансе амплитуды напряжений на конденсаторе и катушке в раз превышают амплитуду напряжения внешнего источника.
Рисунок 2.3.4.
Рис. 2.3.4 иллюстрирует явление резонанса в последовательном электрическом контуре. На рисунке графически изображена зависимость отношения амплитуды напряжения на конденсаторе к амплитуде 0 напряжения источника от его частоты ω для различных значений добротности . Кривые на рис. 2.3.3 называются резонансными кривыми .
Можно показать, что максимум резонансных кривых для контуров с низкой добротностью несколько сдвинуты в область низких частот.
Видео:Вынужденные колебания. Резонанс | Физика 11 класс #9 | ИнфоурокСкачать
Вынужденные колебания. Переменный ток
Дадим определение понятию вынужденных колебаний.
Вынужденные колебания – это процессы, которые происходят в электрических цепях под воздействием периодического источника тока.
Основным отличием вынужденных колебаний по сравнению с собственными колебаниями в электрических цепях является то, что они являются незатухающими. Неизбежные потери энергии компенсируются за счет внешнего источника периодического воздействия, который не позволяет колебаниям затухать.
Видео:Урок 361. Вынужденные колебания в последовательном колебательном контуреСкачать
Что такое переменный ток?
Переменный ток — электрический ток, который с течением времени изменяется по величине и направлению или, в частном случае, изменяется по величине, сохраняя своё направление в электрической цепи неизменным.
Рассмотрим случай, когда электрическая цепь способна совершать собственные свободные колебания с некоторой частотой ω 0 . Предположим, что к этой цепи подключен внешний источник, напряжение которого изменяется по гармоническому закону с частотой ω .
Частота свободных колебаний в электрической сети ω 0 будет определяться параметрами этой сети. Вынужденные колебания, которые установятся при подключении внешнего источника ω , будут происходить на частоте этого внешнего источника.
Частота вынужденных колебаний устанавливается не сразу после включения внешнего источника, а спустя некоторое время Δ t . По порядку величины это время будет равно времени затухания свободных колебаний в сети τ .
Видео:Физика 11 класс (Урок№7 - Свободные и вынужденные электромагнитные колебания. Колебательный контур.)Скачать
Цепи переменного тока
Цепи переменного тока – это такие электрические цепи, в которых под воздействием периодического источника тока происходят установившиеся вынужденные колебания.
Рассмотрим устройство колебательного контура, в который включен источник тока с напряжением, изменяющимся по периодическому закону:
Будем считать, что для изображенной на этом рисунке электрической цепи выполняется условие квазистационарности. Это позволит нам записать закон Ома для мгновенных значений токов и напряжений:
R J + q C + L d J d t = ε 0 c o c ω t.
Величину L d J d t принято называть напряжением на катушке индуктивности. Фактически, это ЭДС самоиндукции катушки, которую мы для простоты вычислений перенесли с противоположным знаком в левую часть уравнения из правой.
Уравнение вынужденных колебаний можно записать в виде:
u R + u C + u L = e ( t ) = ε 0 cos ω t.
где u R ( t ) , u C ( t ) и u L ( t ) – мгновенные значения напряжений на резисторе, конденсаторе и катушке соответственно. Амплитуды этих напряжений будем обозначать буквами U R , U C и U L . Напряжения при установившихся вынужденных колебаниях изменяются с частотой внешнего источника переменного тока ω .
Для решения уравнения вынужденных колебаний мы можем использовать достаточно наглядный метод векторных диаграмм. Для этого используем векторную диаграмму, на которой с помощью векторов изобразим колебания определенной заданной частоты ω .
Давайте посмотрим, как построить векторную диаграмму токов и напряжений.
Рисунок 2 . 3 . 2 . Векторная диаграмма, на которой с помощью векторов изображены гармонические колебания A cos ( ω t + φ 1 ) , B cos ( ω t + φ 2 ) и их суммы C cos ( ω t + φ ) .
Наклон векторов к горизонтальной оси определяется фазой колебаний φ 1 и φ 2 , а длины векторов соответствуют амплитудам колебаний A и B . Относительный фазовый сдвиг определяет взаимную ориентацию векторов: ∆ φ = φ 1 — φ 2 . Для того, чтобы построить вектор, изображающий суммарное колебание, нам необходимо использовать правило сложения векторов: C → = A → + B → .
При вынужденных колебаниях в электрической цепи для построения векторной диаграммы напряжений и токов нам необходимо знать соотношения между амплитудами токов и напряжений и фазовый сдвиг между ними для любого участка цепи.
Источник переменного тока может быть подключен к:
катушке индуктивности L ;
резистору с сопротивлением R ;
конденсатору с емкостью С .
Рассмотрим эти три примера подробнее. Будем считать, что напряжение на резисторе, катушке и конденсаторе во всех трех случаях равно напряжению внешнего источника переменного тока.
Резистор в цепи переменного тока
J R R = u R = U R cos ω t ; J R = U R R cos ω t = I R cos ω t
Мы обозначили амплитуду тока, который протекает через резистор, через I R . Соотношение R I R = U R выражает связь между амплитудами тока и напряжения на резисторе. Фазовый сдвиг в этом случае равен нулю. Физическая величина R – это активное сопротивление на резисторе.
Конденсатор в цепи переменного тока
u C = q C = U C cos ω t
J C = d q d t = C d u C d t = C U C ( — ω sin ω t ) = ω C U C cos ω t + π 2 = I C cos ω t + π 2 .
Соотношение между амплитудами тока I C и напряжения U C : 1 ω C I C = U C .
Ток опережает по фазе напряжение на угол π 2 .
Физическая величина X C = 1 ω C — это емкостное сопротивление конденсатора.
Видео:Затухающие колебания. Вынужденные колебания | Физика 9 класс #26 | ИнфоурокСкачать
Уравнение вынужденных колебаний
Вынужденными колебаниями называют периодические изменения параметров, которые описывают систему под влиянием внешней силы. Для реализации вынужденных электрических колебаний в $RLC$ контуре в него включают переменную ЭДС (рис.1).
В общем случае вынужденные колебания в таком контуре можно записать как:
Рассмотрим случай, когда в контур подается переменное напряжение ($U$) изменяющееся по гармоническому закону:
Тогда уравнение колебаний запишется в виде:
где $_0=frac<sqrt>$- собственная частота колебаний контура, $beta =frac.$ По аналогии с механическими колебаниями можно записать частное решение данного уравнения как:
Как известно, общее решение неоднородного уравнения получают как сумму частного решения данного уравнения (в нашем случае это (4)) и общего решения соответствующего однородного уравнения. Так для уравнения:
общим решением является выражение:
Так как выражение (6) содержит множитель $e^$, то при $tto infty , $ $e^to 0,$ поэтому для установившихся колебаний решением уравнения (3) считают функцию (4).
Сила тока для установившихся вынужденных колебаний может быть записана как:
где $I_m=_m$, $varphi =Psi-frac$ — сдвиг фаз между тока и приложенного напряжения. Соответственно:
Готовые работы на аналогичную тему
Надо отметить, что выполняется равенство:
Выражение (9) означает, что сумма напряжений на каждом из элементов цепи в момент времени $t$ равна приложенному напряжению.
Появление сильных колебаний при частоте внешней силы равной (или почти равной) собственной частоте колебательного контура, называют резонансом. Суть явления заключается в том, что как бы одиночные «толчки» усиливают друг друга. В таком случае получается, что энергия, которая вкладывается в систему, является максимальной. Амплитуда колебаний нарастает до тех пор, пока увеличивающиеся силы трения (в среднем) за период толчка не станут компенсировать действие каждого «толчка». В этот момент устанавливается максимум энергии и максимум амплитуды.
Резонансной частотой для заряда ($_$) и напряжения ($_$) на конденсаторе являются частоты, заданные уравнениями:
Резонансные кривые для заряда и напряжения на конденсаторе имеют одинаковый вид (рис.2).
Если $omega =0$ кривые (рис.2) сходятся в одной точке, при этом напряжение на конденсаторе равно напряжению, которое возникает на нем при подключении источника:
Максимум резонансной кривой выше и острее, чем меньше коэффициент затухания (меньше $R$, больше $L$).
Кривые для силы тока изображены на рис. 3. Амплитудное значение силы тока максимально, если $omega L-frac=0. $Частота силы тока при резонансе ($_$):
Задание: Получите функции $U_R(t),U_C(t),U_L(t)$ в $RCL$ контуре, если приложенное напряжение задано уравнением: $U=U_m.$
Решение:
В качестве основы для решения задачи используем выражение:
Исходя из (1.1) для напряжения на сопротивлении ($U_R$) в соответствии с законом Ома для участка цепи можно записать, что:
[U_Rleft(tright)=RIleft(tright)=<_m cos >left(omega t-varphi right)left(1.2right).]
Используя закон изменения заряда в контуре, заданном в условии:
найдем $U_Cleft(tright)$ как:
где $U_=frac=frac.$ Напряжение на катушке индуктивности найдем как:
Задание: Определите, во сколько раз напряжение на конденсаторе может превышать напряжение, которое приложено к $RLC$ контуру, если добротность контура равна $O$. Считать, что внешнее напряжение подчиняется гармоническому закону, затухание в контуре мало.
Решение:
Условие малости затухания для контура означает, что:
и резонансную частоту можно считать равной собственной частоте.
Напряжение на конденсаторе можно выразить как:
где $q_m=frac<omega sqrt<^2>>$. Если при резонансе в нашем случае $omega approx _0$, то максимальное напряжение на конденсаторе при резонансе равно ($U_$):
где при малом затухании можно считать, что $_0L-frac<_0C>approx 0$
Найдем отношение $frac<U_>$, получим:
Получи деньги за свои студенческие работы
Курсовые, рефераты или другие работы
Автор этой статьи Дата последнего обновления статьи: 26.04.2021