Квадратный корень из комплексного числа
Деление комплексных чисел
Умножение комплексных чисел
Корни четвертой и пятой степени
Реальная часть комплексного числа
Возведение в степень
Мнимая и действительная часть
Модуль комплексного числа
Комплексный знак числа
Можно использовать следующие функции от z (например, от z = 1 + 2.5j):
- Правила ввода выражений и функций
- Где учитесь?
- Калькулятор комплексных чисел. Вычисление выражений с комплексными числами
- Как пользоваться калькулятором
- Ввод комплексных чисел
- Поддерживаемые операции и математические функции
- Примеры корректных выражений
- Комплексные числа
- Примеры комплексных чисел
- Основные действия с комплексными числами
- Примеры
- Другие действия над комплексными числами
- Примеры
- Формы представления комплексных чисел
- Пример:
- Тесты по теме: «Комплексные числа»
- Просмотр содержимого документа «Тесты по теме: «Комплексные числа»»
- 📸 Видео
Правила ввода выражений и функций
3.14159.. e Число e — основание натурального логарифма, примерно равно
2,7183.. i Комплексная единица oo Символ бесконечности — знак для бесконечности
© Контрольная работа РУ — калькуляторы онлайн
Видео:Решение тригонометрических уравнений. Подготовка к ЕГЭ | Математика TutorOnlineСкачать
Где учитесь?
Для правильного составления решения, укажите:
Видео:Решение простых уравнений. Что значит решить уравнение? Как проверить решение уравнения?Скачать
Калькулятор комплексных чисел. Вычисление выражений с комплексными числами
Калькулятор комплексных чисел позволяет вычислять арифметические выражения, содержащие комплексные числа, знаки арифметических действий (+, -, *, /, ^), а также некоторые математические функции.
Калькулятор комплексных чисел
Видео:Реакция на результаты ЕГЭ 2022 по русскому языкуСкачать
Как пользоваться калькулятором
- Введите в поле ввода выражение с комплексными числами
- Укажите, требуется ли вывод решения переключателем «С решением»
- Нажмите на кнопку «Построить»
Видео:как решать дробиСкачать
Ввод комплексных чисел
комплексные числа можно вводить в следующих трёх форматах:
- Только действительная часть: 2, 2.5, -6.7, 12.25
- Только мнимая часть: i, -i, 2i, -5i, 2.16i, -12.5i
- Действительная и мнимая части: 2+i, -5+15i, -7+2.5i, -6+i
- Математические константы: π, e
Видео:Как решать уравнение с модулем Уравнение с модулями как решать Как раскрыть модуль в уравненииСкачать
Поддерживаемые операции и математические функции
- Арифметические операции: +, -, *, /, ^
- Получение абсолютного значения числа: abs
- Базовые математические функции: exp, ln, sqrt
- Получение действительной и мнимой частей: re, im
- Тригонометрические функции: sin, cos, tg, ctg
- Гиперболические функции: sh, ch, th, cth
- Обратные тригонометрические функции: arcsin, arccos, arctg, arcctg
- Обратные гиперболические функции: arsh, arch, arth, arcth
Видео:РЕШЕНИЕ УРАВНЕНИЙ |ПОДРОБНОЕ ОБЪЯСНЕНИЕ КАК РЕШИТЬ УРАВНЕНИЯ / ПРОСТЫЕ УРАВНЕНИЯ 2 КЛАСС МАТЕМАТИКАСкачать
Примеры корректных выражений
- (2+3i)*(5-7i)
- sh(i)
- (4+i) / (3 — 4i)
- sqrt(2i)
- (-3+4i)*2i / exp(2i + (15 — 8i)/4 — 3.75)
Видео:Решение уравнений, 6 классСкачать
Комплексные числа
Комплексные числа — это числа вида x+iy , где x , y — вещественные числа, а i — мнимая единица (специальное число, квадрат которого равен -1, то есть i 2 = -1 ).
Так же, как и для вещественных чисел, для комплексных чисел определены операции сложения, разности, умножения и деления, однако комплексные числа нельзя сравнивать.
Видео:Сложные уравнения. Как решить сложное уравнение?Скачать
Примеры комплексных чисел
- 4+3i — действительная часть = 4, мнимая = 3
- -2+i — действительная часть = -2, мнимая = 1
- i — действительная часть = 0, мнимая = 1
- -i — действительная часть = 0, мнимая = -1
- 10 — действительная часть = 10, мнимая = 0
Видео:Математика без Ху!ни. Уравнение плоскости.Скачать
Основные действия с комплексными числами
Основными операциями, определёнными для комплексных чисел, являются сложение, разность, произведение и деление комплексных чисел. Операции для двух произвольных комплексных чисел (a + bi) и (c + di) определяются следующим образом:
- сложение: (a + bi) + (c + di) = (a + c) + (b + d)i
- вычитание: (a + bi) — (c + di) = (a — c) + (b — d)i
- умножение: (a + bi) · (c + di) = ac + bci + adi + bdi 2 = (ac — bd) + (bc + ad)i
- деление:
Примеры
Найти сумму чисел 5+7i и 5.5-2i :
Найдём отдельно суммы действительных частей и сумму мнимых частей: re = 5 + 5.5 = 10.5, im = 7 — 2 = 5.
Запишем их рядом, добавив к мнимой части i: 10.5 + 5i
Полученное число и будет ответом: 5+7i + 5.5-2i = 10.5 + 5i
Найти разность чисел 12-i и -2i :
Найдём отдельно разности действительных частей и разности мнимых частей: re = 12 — 0 = 12, im = -1 — (-2) = 1.
Запишем их рядом, добавив к мнимой части i: 12 + 1i
Полученное число и будет ответом: 12-i — (-2i) = 12 + i
Найти произведение чисел 2+3i и 5-7i :
Найдём по формуле действительную и мнимую части: re = 2·5 — 3·(-7) = 31, im = 3·5 + 2·(-7) = 1.
Запишем их рядом, добавив к мнимой части i: 31 + 1i
Полученное число и будет ответом: 2+3i * (5-7i) = 31 + i
Найти отношение чисел 75-50i и 3+4i :
Найдём по формуле действительную и мнимую части: re = (75·3 — 50·4) / 25 = 1, im = (-50·3 — 75·4) / 25 = -18.
Запишем их рядом, добавив к мнимой части i: 1 — 18i
Полученное число и будет ответом: 75-50i / (3+4i) = 1 — 18i
Видео:Cистемы уравнений. Разбор задания 6 и 21 из ОГЭ. | МатематикаСкачать
Другие действия над комплексными числами
Помимо базовых операций сложения, вычитания, умножения и деления комплексных чисел существуют также различные математические функции. Рассмотрим некоторые из них:
- Получение действительной части числа: Re(z) = a
- Получение мнимой части числа: Im(z) = b
- Модуль числа: |z| = √(a 2 + b 2 )
- Аргумент числа: arg z = arctg(b / a)
- Экспонента: e z = e a ·cos(b) + i·e a ·sin(b)
- Логарифм: Ln(z) = ln |z| + i·arg(z)
- Тригонометрические функции: sin z, cos z, tg z, ctg z
- Гиперболические функции: sh z, ch z, th z, cth z
- Обратные тригонометрические функции: arcsin z, arccos z, arctg z, arcctg z
- Обратные гиперболические функции: arsh z, arch z, arth z, arcth z
Примеры
Найти действительную и мнимую части числа z, а также его модуль, если z = 4 — 3i
Re(z) = Re(4 — 3i) = 4
Im(z) = Im(4 — 3i) = -3
|z| = √(4 2 + (-3) 2 ) = √25 = 5
Видео:Переставь одну цифру! Задача на логикуСкачать
Формы представления комплексных чисел
Комплексные числа принято представлять в одной из трёх следующих форм: алгебраической, тригонометрической и показательной.
- Алгебраическая форма — наиболее часто используемая форма комплексного числа, запись числа в виде суммы действительной и мнимой частей: x+iy , где x — действительная часть, а y — мнимая часть
- Тригонометричкая форма — запись вида r·(cos φ + isin φ) , где r — модуль комплексного числа (r = |z|), а φ — аргумент этого числа (φ = arg(z))
- Показательная форма — запись вида r·e iφ , где r — модуль комплексного числа (r = |z|), e — число Эйлера, а φ — аргумент комплексного числа (φ = arg(z))
Пример:
Переведите число 1+i в тригонометрическую и показательную формы:
- Найдём радиус (модуль) комплексного числа r: r = √(1 2 + 1 2 ) = √2
- Найдём аргумент числа: φ = arctan(
Видео:Зарешали уже с этим примеромСкачать
Тесты по теме: «Комплексные числа»
Просмотр содержимого документа
«Тесты по теме: «Комплексные числа»»
Тест «Комплексные числа»
Часть I. Выберите один правильный ответ.
1. На множестве действительных чисел не выполнима операция:
а) деления чисел
б) возведения в степень отрицательного числа
в) извлечения арифметического корня из отрицательного числа
г) сравнения чисел
2. Комплексные числа были введены для получения дополнительных возможностей при решении:
а) систем линейных уравнений
б) квадратных уравнений
в) уравнений высших степеней
г) тригонометрических уравнений
3. Что представляет собой число i:
а) число, квадратный корень из которого равен – 1
б) число, квадрат которого равен – 1
в) число, квадратный корень из которого равен 1
г) число, квадрат которого равен 1
а) действительных чисел
в) иррациональных чисел
г) комплексных чисел
5. Термин «мнимые числа» ввел:
6. Из предложенных чисел выберите чисто мнимое число:
а) вещественной частью комплексного числа
б) мнимой частью комплексного числа
в) тригонометрической формой комплексного числа
г) алгебраической формой комплексного числа
10. На координатной плоскости число изображается:
а) точкой или радиус-вектором
в) плоской геометрической фигурой
г) заштрихованной частью плоскости
11. Модулем комплексного числа называется:
а) данное комплексное число без учета знака
б) расстояние от начала координат до точки, в виде которой отображается комплексное число
в) расстояние от осей координат до точки, в виде которой отображается комплексное число
г) сумма вещественной и мнимой части
12. Модуль комплексного числа z= 4 + 3i равен:
📸 Видео
Математика без Ху!ни. Кривые второго порядка. Эллипс.Скачать
9 класс, 26 урок, Комбинаторные задачиСкачать
Я В ШОКЕ😳Лайфхак, как умножать на пальцах 😎 Таблица умножения легкоСкачать
Думала не справлюсь😂 #shortsСкачать
Задача Рокфеллера. Где рубль? Немногие могут найти подвохСкачать
ЧТО НАДО ГОВОРИТЬ ЕСЛИ НЕ СДЕЛАЛ ДОМАШКУ!Скачать
Как решать уравнения с модулем или Математический торт с кремом (часть 1) | МатематикаСкачать
Умножение, деление и сложение дробей #математика #алгебра #дроби #5классСкачать