В стране N число домашних хозяйств разделено на две группы:
первая группа населения (60 %) имеет низкие доходы, составляющие 45 % всех доходов;
вторая группа получает 55 % доходов.
Рассчитайте коэффициент Джини. Какова степень социально-экономического расслоения доходов?
Решение:
Построим кривую Лоренца, с помощью которой рассчитаем коэффициент Джини.
Кривая Лоренца иллюстрирует степень неравномерности в распределении доходов. При равномерном распределении доходов каждая 20% -я группа населения имеет пятую часть доходов общества. На графике это изображается диагональю квадрата АВ, что означает равномерное распределение. При неравномерном распределении «линия концентрации» представляет собой вогнутую вниз кривую. В данной задаче это кривая АСВ.
Чем больше отклонение кривой Лоренца от диагонали квадрата, тем выше поляризация доходов общества.
Коэффициент Джини можно рассчитать по кривой Лоренца как отношение площади фигуры, образуемой кривой Лоренца и линией равномерного распределения (ΔАВС), к площади треугольника ниже линии равномерного распределения (ΔАВЕ).
Площадь ΔАВС определим вычитанием из площади ΔАВЕ площади фигуры АСВЕ, расположенной под кривой Лоренца, которая состоит из площади треугольника ΔАСD и площади трапеции DCBE.
Рассчитаем коэффициент Джини:
Что говорит о низкой степени социально-экономического расслоения доходов.
Видео:Коэффициент Джини и кривая ЛоренцаСкачать
Кривая Лоренца
Дифференциация заработной платы предопределяет неравенство в распределении доходов.
Дифференциация доходов населения — это объективно складывающиеся различия в уровне доходов индивидов и социальных групп, обусловленные различиями в оплате труда и социальных выплат, способностях и предприимчивости, имущественном положении.
Денежные доходы населения включают в себя заработную плату, социальные трансферты, предпринимательские доходы, проценты, дивиденды и другие доходы от собственности, а также общую стоимость продукции –личного подсобного хозяйства, потребленной в семье и проданной. Доходы населения распределяются по группам населения неравномерно.
Помимо анализа распределения доходов населения, кривую Лоренца также используют при конкурентном анализе.
Пример №1 . На основе данных таблицы:
- Рассчитайте коэффициент Джини
- Постройте кривую Лоренца.
Социальная группа населения | Численность населения, % | Денежные доходы, % |
1. | 20 | 6,0 |
2. | 20 | 11,6 |
3. | 20 | 17,6 |
4. | 20 | 26,5 |
5. | 20 | 38,3 |
Итого | 100 | 100,0 |
Денежные доходы населения
Группы по денежным доходам, % | Доля денежных доходов в группе, % |
20 | 6 |
40 | 11.6 |
60 | 17.6 |
80 | 26.5 |
100 | 38.3 |
Линия фактического неравенства строится на основании данных о процентах дохода приходящихся на каждые 20 % населения.
Если нижняя первая часть населения получила 6.0% всех доходов, то графически это будет точка А. Чтобы получить точку В необходимо сложить процент дохода первых 20 % населения с процентами доходов вторых 20 % населения (6.0% + 11.6%) и т.д.
20-ти процентные группы населения | Объем денежных доходов населения, в % к итогу | Доля денежных доходов нарастающим итогом, % | Площадь треугольника | Площадь прямоугольника | Общая площадь фигуры, Si |
20 | 6 | 6 | 60 | 0 | 60 |
40 | 11.6 | 17.6 | 116 | 120 | 236 |
60 | 17.6 | 35.2 | 176 | 352 | 528 |
80 | 26.5 | 61.7 | 265 | 704 | 969 |
100 | 38.3 | 100 | 383 | 1234 | 1617 |
3410 |
Чтобы построить кривую Лоренца откладываем по оси Х значения 1-го столбца, а по оси Y значения 3-го столбца.
2. Индекс Джини.
Для исчисления коэффициента Джини необходимо рассчитать величины pi и qi. Здесь qi — доля денежных доходов нарастающим итогом (столбец №3 табл.1) деленная на 100.
pi | qi | piqi+1 | pi+1qi |
0.2 | 0.06 | 0.0352 | — |
0.4 | 0.18 | 0.14 | 0.024 |
0.6 | 0.35 | 0.37 | 0.11 |
0.8 | 0.62 | 0.8 | 0.28 |
1 | 1 | — | 0.62 |
ВСЕГО | 1.3462 | 1.0282 |
Коэффициент Джини равен: KL = ∑piqi+1 — ∑pi+1qi = 1.3462 — 1.0282 = 0.318
Пример №2 . Имеются следующие данные о распределении доходов населения региона по трем группам и доле населения в каждой группе:
1 группа | 2 группа | 3 группа | |
Доходы населения по группам (руб.) | 5000-10000 | 10000-20000 | 20000-30000 |
Доля населения в группе | 0,15 | 0,60 | 0,25 |
Определить коэффициент концентрации доходов Джинни.
Решение.
Необходимо найти доли среднего дохода на человека в каждой группе, в виде отношения среднего дохода группы к суммарному среднему доходу, и соответствующие накапливаемые частоты этих долей. Чем ближе значение коэффициента к единице, тем выше уровень дифференциации доходов.
1 группа | 2 группа | 3 группа | Итого | |
Доходы населения по группам (руб.) | 5000-10000 | 10000-20000 | 20000-30000 | |
Среднее значение дохода в группе, руб. | 7500 | 15000 | 25000 | 47500 |
Доля доходов в группе, % | 15,8 | 31,6 | 52,6 | 100,0 |
Далее решается через калькулятор.
Доля доходов в группе, % | Доля населения в группе |
15,8 | 0,15 |
31,6 | 0,6 |
52,6 | 0,25 |
Пример №3 . Дать графическое изображение вариационного ряда, приведенного в таблице (гистограмма, полигон, кумулята). Определить средние величины (меры положения) – среднюю арифметическую, моду, медиану, вычислить квартили и показатели вариации – среднее абсолютное отклонение, дисперсию, среднее квадратическое отклонение, относительный квартильный размах, коэффициент вариации. Построить кривую (ломаную) Лоренца, вычислить коэффициент концентрации дохода (индекс Джини). Пояснить статистический, физический, экономический или иной смысл вычисленных величин.
№ группа | Среднедушевые доходы населения (тыс. руб.) | Количество насосов |
1 | 0-30 | 10 |
2 | 30,1-60 | 14 |
3 | 60,1-90 | 19 |
4 | 90,1-120 | 25 |
Пример №4 . Исходные данные:
% | Доход |
10 | 2.3 |
20 | 4.5 |
30 | 4.7 |
40 | 6 |
50 | 7.5 |
60 | 10.2 |
70 | 14.1 |
80 | 16.7 |
90 | 18.5 |
100 | 15.5 |
Линия фактического неравенства строится на основании данных о процентах дохода приходящихся на каждые 10% населения. Если нижняя первая часть населения получила 2.3% всех доходов то графически это будет точка А. Чтобы получить точку В необходимо сложить процент дохода первых 10% населения с процентами доходов вторых 10% населения (2.3% + 4.5%) и т.д.
% | Доход | S=Si+Si-1 | Площадь треугольника | Площадь | Сумма |
10 | 2.3 | 2.3 | 11.5 | 0 | 11.5 |
20 | 4.5 | 6.8 | 22.5 | 23 | 45.5 |
30 | 4.7 | 11.5 | 23.5 | 68 | 91.5 |
40 | 6 | 17.5 | 30 | 115 | 145 |
50 | 7.5 | 25 | 37.5 | 175 | 212.5 |
60 | 10.2 | 35.2 | 51 | 250 | 301 |
70 | 14.1 | 49.3 | 70.5 | 352 | 422.5 |
80 | 16.7 | 66 | 83.5 | 493 | 576.5 |
90 | 18.5 | 84.5 | 92.5 | 660 | 752.5 |
100 | 15.5 | 100 | 77.5 | 845 | 922.5 |
Итого | 3481 |
Чтобы построить кривую Лоренца откладываем по оси Х откладываем значения столбца Процент (%), а по сои Y значения столбца S.
Рассчитаем коэффициенты концентрации доходов (индекс Джини)
Уровень неравенства определяется с помощью коэффициента Джини.
Он рассчитывается как отношение площади фигуры OABCDKLMNPE к площади треугольника ОEG.
Для того чтобы определить площадь фигуры, лежащей ниже кривой Лоренца, соединяем прямыми линиями точки ОА, АВ и т.д.
Опускаем перпендикуляр на ось X и находим площади фигур, лежащих ниже точек А, B , С.
Площадь SABB’A состоит из треугольника и прямоугольника SBCCB’ также состоит из треугольника и прямоугольника.
Сложив все площади фигур, получим площадь фигуры S2.
Площадь треугольника OEG находим по формуле:
1/2 *100%*100% = 5000
Отсюда индекс Джини равен:
I = 1519 / 5000 = 0.3038
Децильный коэффициент дифференциации доходов
Видео:Кривая Лоренца и индекс Джини - измеряем неравенство доходовСкачать
Неравенство доходов в Округе
Сложность
Автор
б) Построим на одном графике кривую Лоренца нашего округа и прямую абсолютного равенства. По определению, искомый коэффициент Джини представляет собой отношение $G = frac<<>> <<+ >> = 2$ (см. рис.):
Теперь нам осталось найти $S_2$ .
Преобразуем уравнение кривой Лоренца:
$y = 1 — sqrt <1 — >$
$1 — y = sqrt <1 — >$
$ + = 1$
Как видим, в данном Округе кривая Лоренца представляет собой не что иное, как участок окружности с центром точке (0;1) и радиусом, равным 1.
Значит, сумма площадей $S_1$ и $S_2$ равна площади четверти соответствующего круга, то есть
$$ + = fracpi cdot = frac.$$
Учитывая то, что $ = frac$, получаем $ = frac — frac$, и значит, $G = 2 = frac — 1 approx 0,57.$
Таким образом, степень неравенства в данном обществе действительно достаточно высока.
📽️ Видео
Коэффицент/индекс Джини, Кривая Лоренца, неравенство в экономикеСкачать
Кривая Лоренца Коэффициент ДжиниСкачать
9.3 Неравенство доходовСкачать
Кривая Лоренца и кривая Герберта Кларка ГувераСкачать
7.1 Экономические приложения. Кривая Лоренца. Коэффициент Джини.Скачать
Понятие неравенства. Кривая Лоренца и коэффициент ДжиниСкачать
Математика без Ху!ни. Кривые второго порядка. Эллипс.Скачать
ЭКОНОМИКА. Лоренц ЖЕСТЬ. Сложение кривых Лоренца. Решение конкретных задачСкачать
Как вычислить коэффициент асимметрии и коэффициент эксцесса?Скачать
Что такое кривая Лоренца? Душкин объяснитСкачать
Что такое коэффициент Джини? Душкин объяснитСкачать
Прогнозирование в Excel с помощью линий трендаСкачать
Понятие неравенства / Кривая Лоренца и подсчет коэффициента ДжиниСкачать
10 класс разбор прош 2 этапСкачать
Коэффициент Джини до и после перераспределенияСкачать
Экономика. Как нормировать / масштабировать ЛоренцовСкачать
Решение тригонометрических уравнений. Подготовка к ЕГЭ | Математика TutorOnlineСкачать
Граница производственных возможностей. Оптимум по ПаретоСкачать