Выборочные уравнения прямых линий регрессии y на x и x на y

Корреляционная таблица

Пример 1 . По данной корреляционной таблице построить прямые регрессии с X на Y и с Y на X . Найти соответствующие коэффициенты регрессии и коэффициент корреляции между X и Y .

y/x152025303540
10022
12043103
140250710
160143
18011

Решение:
Уравнение линейной регрессии с y на x будем искать по формуле
Выборочные уравнения прямых линий регрессии y на x и x на y
а уравнение регрессии с x на y, использовав формулу:
Выборочные уравнения прямых линий регрессии y на x и x на y
где x x , y — выборочные средние величин x и y, σx, σy — выборочные среднеквадратические отклонения.
Находим выборочные средние:
x = (15(1 + 1) + 20(2 + 4 + 1) + 25(4 + 50) + 30(3 + 7 + 3) + 35(2 + 10 + 10) + 40(2 + 3))/103 = 27.961
y = (100(2 + 2) + 120(4 + 3 + 10 + 3) + 140(2 + 50 + 7 + 10) + 160(1 + 4 + 3) + 180(1 + 1))/103 = 136.893
Выборочные дисперсии:
σ 2 x = (15 2 (1 + 1) + 20 2 (2 + 4 + 1) + 25 2 (4 + 50) + 30 2 (3 + 7 + 3) + 35 2 (2 + 10 + 10) + 40 2 (2 + 3))/103 — 27.961 2 = 30.31
σ 2 y = (100 2 (2 + 2) + 120 2 (4 + 3 + 10 + 3) + 140 2 (2 + 50 + 7 + 10) + 160 2 (1 + 4 + 3) + 180 2 (1 + 1))/103 — 136.893 2 = 192.29
Откуда получаем среднеквадратические отклонения:
Выборочные уравнения прямых линий регрессии y на x и x на yи Выборочные уравнения прямых линий регрессии y на x и x на y
Определим коэффициент корреляции:
Выборочные уравнения прямых линий регрессии y на x и x на y
где ковариация равна:
Cov(x,y) = (35•100•2 + 40•100•2 + 25•120•4 + 30•120•3 + 35•120•10 + 40•120•3 + 20•140•2 + 25•140•50 + 30•140•7 + 35•140•10 + 15•160•1 + 20•160•4 + 30•160•3 + 15•180•1 + 20•180•1)/103 — 27.961 • 136.893 = -50.02
Запишем уравнение линий регрессии y(x):
Выборочные уравнения прямых линий регрессии y на x и x на y
и уравнение x(y):
Выборочные уравнения прямых линий регрессии y на x и x на y
Построим найденные уравнения регрессии на чертеже, из которого сделаем следующие вывод:
1) обе линии проходят через точку с координатами (27.961; 136.893)
2) все точки расположены близко к линиям регрессии.

Выборочные уравнения прямых линий регрессии y на x и x на y

Пример 2 . По данным корреляционной таблицы найти условные средние y и x . Оценить тесноту линейной связи между признаками x и y и составить уравнения линейной регрессии y по x и x по y . Сделать чертеж, нанеся его на него условные средние и найденные прямые регрессии. Оценить силу связи между признаками с помощью корреляционного отношения.
Корреляционная таблица:

X / Y246810
154200
206330
300123
500001

Уравнение линейной регрессии с y на x имеет вид:
Выборочные уравнения прямых линий регрессии y на x и x на y
Уравнение линейной регрессии с x на y имеет вид:
Выборочные уравнения прямых линий регрессии y на x и x на y
найдем необходимые числовые характеристики.
Выборочные средние:
x = (2(5) + 4(4 + 6) + 6(2 + 3 + 1) + 8(3 + 2) + 10(3 + 1) + )/30 = 5.53
y = (2(5) + 4(4 + 6) + 6(2 + 3 + 1) + 8(3 + 2) + 10(3 + 1) + )/30 = 1.93
Дисперсии:
σ 2 x = (2 2 (5) + 4 2 (4 + 6) + 6 2 (2 + 3 + 1) + 8 2 (3 + 2) + 10 2 (3 + 1))/30 — 5.53 2 = 6.58
σ 2 y = (1 2 (5 + 4 + 2) + 2 2 (6 + 3 + 3) + 3 2 (1 + 2 + 3) + 5 2 (1))/30 — 1.93 2 = 0.86
Откуда получаем среднеквадратические отклонения:
σx = 2.57 и σy = 0.93
и ковариация:
Cov(x,y) = (2•1•5 + 4•1•4 + 6•1•2 + 4•2•6 + 6•2•3 + 8•2•3 + 6•3•1 + 8•3•2 + 10•3•3 + 10•5•1)/30 — 5.53 • 1.93 = 1.84
Определим коэффициент корреляции:
Выборочные уравнения прямых линий регрессии y на x и x на y
Выборочные уравнения прямых линий регрессии y на x и x на y
Запишем уравнения линий регрессии y(x):
Выборочные уравнения прямых линий регрессии y на x и x на y
и вычисляя, получаем:
yx = 0.28 x + 0.39
Запишем уравнения линий регрессии x(y):
Выборочные уравнения прямых линий регрессии y на x и x на y
и вычисляя, получаем:
xy = 2.13 y + 1.42
Если построить точки, определяемые таблицей и линии регрессии, увидим, что обе линии проходят через точку с координатами (5.53; 1.93) и точки расположены близко к линиям регрессии.
Значимость коэффициента корреляции.
Выборочные уравнения прямых линий регрессии y на x и x на y
По таблице Стьюдента с уровнем значимости α=0.05 и степенями свободы k=30-m-1 = 28 находим tкрит:
tкрит (n-m-1;α/2) = (28;0.025) = 2.048
где m = 1 — количество объясняющих переменных.
Если tнабл > tкритич, то полученное значение коэффициента корреляции признается значимым (нулевая гипотеза, утверждающая равенство нулю коэффициента корреляции, отвергается).
Поскольку tнабл > tкрит, то отклоняем гипотезу о равенстве 0 коэффициента корреляции. Другими словами, коэффициент корреляции статистически — значим.

Пример 3 . Распределение 50 предприятий пищевой промышленности по степени автоматизации производства Х (%) и росту производительности труда Y (%) представлено в таблице. Необходимо:
1. Вычислить групповые средние i и j x y, построить эмпирические линии регрессии.
2. Предполагая, что между переменными Х и Y существует линейная корреляционная зависимость:
а) найти уравнения прямых регрессии, построить их графики на одном чертеже с эмпирическими линиями регрессии и дать экономическую интерпретацию полученных уравнений;
б) вычислить коэффициент корреляции; на уровне значимости α= 0,05 оценить его значимость и сделать вывод о тесноте и направлении связи между переменными Х и Y;
в) используя соответствующее уравнение регрессии, оценить рост производительности труда при степени автоматизации производства 43%.
Скачать решение

Пример . По корреляционной таблице рассчитать ковариацию и коэффициент корреляции, построить прямые регрессии.

Пример 4 . Найти выборочное уравнение прямой Y регрессии Y на X по данной корреляционной таблице.
Решение находим с помощью калькулятора.
Скачать
Пример №4

Пример 5 . С целью анализа взаимного влияния прибыли предприятия и его издержек выборочно были проведены наблюдения за этими показателями в течение ряда месяцев: X — величина месячной прибыли в тыс. руб., Y — месячные издержки в процентах к объему продаж.
Результаты выборки сгруппированы и представлены в виде корреляционной таблицы, где указаны значения признаков X и Y и количество месяцев, за которые наблюдались соответствующие пары значений названных признаков.
Решение.
Пример №5
Пример №6
Пример №7

Пример 6 . Данные наблюдений над двумерной случайной величиной (X, Y) представлены в корреляционной таблице. Методом наименьших квадратов найти выборочное уравнение прямой регрессии Y на X. Построить график уравнения регрессии и показать точки (x;y)б рассчитанные по таблице данных.
Решение.
Скачать решение

Пример 7 . Дана корреляционная таблица для величин X и Y, X- срок службы колеса вагона в годах, а Y — усредненное значение износа по толщине обода колеса в миллиметрах. Определить коэффициент корреляции и уравнения регрессий.

X / Y02712172227323742
03600000000
125108448200000
230506021550000
311133321323100
4055131372000
500121263210
60101002101
70011000100

Решение.
Скачать решение

Пример 8 . По заданной корреляционной таблице определить групповые средние количественных признаков X и Y. Построить эмпирические и теоретические линии регрессии. Предполагая, что между переменными X и Y существует линейная зависимость:

  1. Вычислить выборочный коэффициент корреляции и проанализировать степень тесноты и направления связи между переменными.
  2. Определить линии регрессии и построить их графики.

Скачать

Видео:9 класс, 7 урок, Уравнение прямойСкачать

9 класс, 7 урок, Уравнение прямой

Выборочные уравнения прямых линий регрессии y на x и x на y

Запрошуємо усіх хто любить цікаві задачі та головоломки відвідати групу! Зараз діє акція — підтримай студента! Знижки на роботи + безкоштовні консультації.

Контакты

Администратор, решение задач
Роман

Tel. +380685083397
[email protected]
skype, facebook:
roman.yukhym

Решение задач
Андрей

facebook:
dniprovets25

Видео:Математика #1 | Корреляция и регрессияСкачать

Математика #1 | Корреляция и регрессия

6.7.2. Отыскание параметров выборочного уравнения прямой линии регрессии по сгруппированным данным

При большом числе испытаний одно и то же значение X может встретиться nx раз, одно и то ж значение У может встретиться ny раз и одна и та же пара чисел (x; у) может встретиться nxy раз,

причем обычно— объем выборки.

Поэтому данные наблюденийВыборочные уравнения прямых линий регрессии y на x и x на yГруппируют, т. е. подсчитывают nx, ny, nxy. Все сгруппированные данные записывают в виде таблицы, которую называют корреляционной.

Если обе линии регрессии У на X и X на У — прямые, то корреляция является линейной.

Выборочное уравнение прямой линии регрессии У на X имеет вид:

Выборочные уравнения прямых линий регрессии y на x и x на y

Параметры pyx и В, которые определяются методом наименьших квадратов, имеют вид:

где yx — условная средняя; XВ и Ув — выборочные средние признаков X и У; —x и —у — выборочные средние квадратические отклонения; гВ — выборочный коэффициент корреляции.

Выборочное уравнение прямой линии регресии X на У имеет вид:

Выборочные уравнения прямых линий регрессии y на x и x на y

Считаем, что данные наблюдений над признаками X и У заданы в виде корреляционной таблицы с равноотстоящими вариантами.

Тогда переходим к условным вариантам:

Выборочные уравнения прямых линий регрессии y на x и x на y

где С1 — варианта признака X, имеющая наибольшую частоту; С 2 — варианта признака У, имеющая наибольшую частоту; h1 — шаг (разность между двумя соседними вариантами X); h2 — шаг (разность между двумя соседними вариантами У).

Тогда выборочный коэффициент корреляции

Выборочные уравнения прямых линий регрессии y на x и x на y

Величины u, v, su, sv могут быть найдены методом произведений, либо непосредственно по формулам

Выборочные уравнения прямых линий регрессии y на x и x на y

Зная эти величины, найдем параметры, входящие в уравнения регрессии, по формулам

Выборочные уравнения прямых линий регрессии y на x и x на y

12.1. Случайные события

12.1.1. В ящике находятся 6 одинаковых пар перчаток черного цвета и 4 одинаковых пары перчаток бежевого цвета. Найти вероятность того, что две наудачу извлеченные перчатки образуют пару.

Решение. Рассмотрим событие А — две извлеченные наудачу перчатки образуют пару; и гипотезы: B1 — извлечена пара перчаток черного цвета, B2 — извлечена пара перчаток бежевого цвета, B3 — извлеченные перчатки пару не образуют.

Вероятность гипотезы B1 по теореме умножения равна произведению вероятностей того, что первая перчатка черного цвета и вторая перчатка черного цвета, т. е.

Выборочные уравнения прямых линий регрессии y на x и x на y

Аналогично, вероятность гипотезы Bi равна:

Выборочные уравнения прямых линий регрессии y на x и x на y

Так как гипотезы B1, B2 и B3 составляют полную группу событий, то вероятность гипотезы B3 равна:

Выборочные уравнения прямых линий регрессии y на x и x на y

По формуле полной вероятности имеем:

Выборочные уравнения прямых линий регрессии y на x и x на y

где Pb (A) есть вероятность того, что пару образуют две черные перчатки и Pb1 (A) = 1; pB1 (A) — вероятность того, что пару образуют две бежевые перчатки и Pb2 (A) = 1; и, наконец, РВз( A) — вероятность того, что пару образуют перчатки разного цвета и

Выборочные уравнения прямых линий регрессии y на x и x на y

Таким образом, вероятность того, что две наудачу извлеченные перчатки образуют пару равнаВыборочные уравнения прямых линий регрессии y на x и x на y

12.1.2. В урне находятся 3 шара белого цвета и 5 шаров черного цвета. Наудачу по одному извлекают 3 шара и после каждого извлечения возвращают обратно в урну. Найти вероятность того, что среди извлеченных шаров окажется:

а) ровно два белых шара, б) не мене двух белых шаров.

Решение. Имеем схему с возвращением, т. е. каждый раз состав шаров не изменяется:

а) при извлечении трех шаров два из них должны быть белыми, а один черный. При этом черный может оказаться или первым, или вторым, или третьим. Применяя совместно теоремы сложения и умножения вероятностей, имеем:

Выборочные уравнения прямых линий регрессии y на x и x на y

б) вынуть не менее двух белых шаров означает, что белых шаров должно быть или два, или три:

Выборочные уравнения прямых линий регрессии y на x и x на y

12.1.3. В урне находятся 6 белых и 5 черных шаров. Три шара наудачу последовательно извлекаются без возвращения их в урну. Найти вероятность, что третий по счету шар окажется белым.

Решение. Если третий по счету шар должен быть белым, то первые два шара могут быть белыми, или белым и черным, или черным и белым, или черными, т. е. имеются четыре группы не-

совместных событий. Применяя к ним теорему умножения вероятностей, получим:

P = P1(5 • P2(5 • P3(5 + (P1(5 • Р2ч • P3(5 + P14 • P2(5 • P3(5 ) + Р1ч • Р2ч • P3(5 =

= A A 4 A A 5 A A 5 A A 6=540 = A

= П • 10 • 9 + И • 10 • 9 + И • 10 • 9 + И • 10 • 9 = 990 = IT

📸 Видео

Лекция 23. Виды уравнений прямой на плоскости.Скачать

Лекция 23. Виды уравнений прямой на плоскости.

Аналитическая геометрия, 6 урок, Уравнение прямойСкачать

Аналитическая геометрия, 6 урок, Уравнение прямой

ГЕОМЕТРИЯ 9 класс: Уравнение окружности и прямойСкачать

ГЕОМЕТРИЯ 9 класс: Уравнение окружности и прямой

Линейная функция: краткие ответы на важные вопросы | Математика | TutorOnlineСкачать

Линейная функция: краткие ответы на важные вопросы | Математика | TutorOnline

Линейная регрессияСкачать

Линейная регрессия

Математика без Ху!ни. Уравнения прямой. Часть 2. Каноническое, общее и в отрезках.Скачать

Математика без Ху!ни. Уравнения прямой. Часть 2. Каноническое, общее и в отрезках.

Видеоурок "Параметрические уравнения прямой"Скачать

Видеоурок "Параметрические уравнения прямой"

Как вычислить линейный коэффициент корреляции по таблице? Корреляционное поле и прямая регрессииСкачать

Как вычислить линейный коэффициент корреляции по таблице? Корреляционное поле и прямая регрессии

Что такое линейная регрессия? Душкин объяснитСкачать

Что такое линейная регрессия? Душкин объяснит

Парная регрессия: линейная зависимостьСкачать

Парная регрессия: линейная зависимость

Прогнозирование с помощью уравнения прямой линии регрессииСкачать

Прогнозирование с помощью уравнения прямой линии регрессии

Эконометрика. Оценка значимости уравнения регрессии. Критерий ФишераСкачать

Эконометрика. Оценка значимости уравнения регрессии. Критерий Фишера

Уравнение прямой.Скачать

Уравнение прямой.

Уравнения прямой на плоскости | Векторная алгебраСкачать

Уравнения прямой на плоскости | Векторная алгебра

11. Прямая в пространстве и ее уравненияСкачать

11. Прямая в пространстве и ее уравнения

Метод наименьших квадратов. Линейная аппроксимацияСкачать

Метод наименьших квадратов. Линейная аппроксимация

Регрессия - как строить и интерпретировать. Примеры линейной и множественной регрессии.Скачать

Регрессия - как строить и интерпретировать. Примеры линейной и множественной регрессии.
Поделиться или сохранить к себе:
Выборочные уравнения прямых линий регрессии y на x и x на y