Выберите систему в которой одно уравнение является линейным а другое второй степени

Видео:Решение систем уравнений второй степени. Алгебра, 9 классСкачать

Решение систем уравнений второй степени. Алгебра, 9 класс

Выберите систему в которой одно уравнение является линейным а другое второй степени

Выберите систему в которой одно уравнение является линейным а другое второй степени

Выберите систему в которой одно уравнение является линейным а другое второй степени

Выберите систему в которой одно уравнение является линейным а другое второй степени

Система уравнений второй степени. Способы решения

Система уравнений второй степени – это система уравнений, в которой есть хотя бы одно уравнение второй степени.

Систему из двух уравнений, в которой одно уравнение второй степени, а второе уравнение первой степени, решают следующим образом:

1) в уравнении первой степени одну переменную выражают через другую;

2) подставляют полученное выражение в уравнение второй степени, благодаря чему получается уравнение с одной переменной;

3) решают получившееся уравнение с одной переменной;

4) находят соответствующие значения второй переменной.

Пример : Решим систему уравнений

1) Второе уравнение является уравнением первой степени. В ней выражаем переменную x через y:

2) в первом уравнении вместо x подставляем полученное выражение 1 – 2y:

Раскрываем скобки и упрощаем:

Приравниваем уравнение к нулю и решаем получившееся квадратное уравнение:

3) Решив квадратное уравнение, найдем его корни:

4) Осталось найти значения x. Для этого в одно из двух уравнений системы просто подставляем значение y. Второе уравнение проще, поэтому выберем его.
Итак, подставляем значения y в уравнение x + 2y = 1 и получаем:
1) х + 2(-0,125) = 1
х – 0,25 = 1
х = 1 + 0,25
х1 = 1,25.

Способы решения системы уравнений с двумя уравнениями второй степени.

1. Замена системы уравнений равносильной совокупностью двух систем.

Пример : Решим систему уравнений

Здесь нет уравнений первой степени, поэтому решать их вроде бы сложнее. Но в первом уравнении многочлен можно разложить на линейные множители и применить метод группировки:

(Пояснение-напоминание: x – 3y встречается в выражении дважды и является общим множителем в многочлене (x – 3y)(x + 3y) – 1(x – 3y). По правилу группировки, мы умножили его на сумму вторых множителей и получили равносильное уравнение).

В результате наша система уравнений обретает иной вид:

Первое уравнение равно нулю только в том случае, если x – 3y = 0 или x + 3y – 1 = 0.

Значит, нашу систему уравнений мы можем записать в виде двух систем следующего вида:

Мы получили две системы, где первые уравнения являются уравнениями первой степени. Мы уже можем легко решить их. Понятно, что решив их и объединив затем множество решений этих двух систем, мы получим множество решений исходной системы. Говоря иначе, данная система равносильна совокупности двух систем уравнений.

Итак, решаем эти две системы уравнений. Очевидно, что здесь мы применим метод подстановки, подробно изложенный в предыдущем разделе.

Обратимся сначала к первой системе.
В уравнении первой степени выразим х через у:

Подставим это значение во второе уравнение и преобразим его в квадратное уравнение:

Как решается квадратное – см.раздел «Квадратное уравнение». Здесь мы сразу напишем ответ:

Теперь подставим полученные значения у в первое уравнение первой системы и решим его:

Итак, у нас есть первые ответы:

Переходим ко второй системе. Не будем производить вычисления – их порядок точно такой же, что и в случае с уравнениями первой системы. Поэтому сразу напишем результаты вычислений:

Таким образом, исходная система уравнений решена.

1 1
(–3 — ; –1 — ), (3; 1), (2,5; –0,5), (–2; 1).
2 6

2. Решение способом сложения.

Пример 2 : Решим систему уравнений

Второе уравнение умножим на 3:

Зачем мы умножили уравнение на 3? Благодаря этому мы получили равносильное уравнение с числом -3y, которое встречается и в первом уравнении, но с противоположным знаком. Это поможет нам буквально при следующем шаге получить упрощенное уравнение (они будут взаимно сокращены).

Сложим почленно левые и правые части первого уравнения системы и нашего нового уравнения:

Сводим подобные члены и получаем уравнение следующего вида:

Упростим уравнение еще, для этого сокращаем обе части уравнения на 5 и получаем:

Приравняем уравнение к нулю:

Это уравнение можно представить в виде x(x – 2y) = 0.

Здесь мы получаем ситуацию, с которой уже сталкивались в предыдущем примере: уравнение верно только в том случае, если x = 0 или x – 2y = 0.

Значит, исходную систему опять-таки можно заменить равносильной ей совокупностью двух систем:

Обратите внимание: во второй системе уравнение x – 2y = 0 мы преобразовали в x = 2y.

Итак, в первой системе мы уже знаем значение x. Это ноль. То есть x1 = 0. Легко вычислить и значение y: это тоже ноль. Таким образом, первая система имеет единственное решение: (0; 0).

Решив вторую систему, мы увидим, что она имеет два решения: (0; 0) и (–1; –0,5).

Таким образом, исходная система имеет следующие решения: (0; 0) и (–1; –0,5).

3. Решение методом подстановки.

Этот метод был применен в начале раздела. Здесь мы выделяем его в качестве одного из способов решения. Приведем еще один пример.

Пример . Решить систему уравнений

│х + у = 9
│у 2 + х = 29

Первое уравнение проще, поэтому выразим в нем х через у:

Теперь произведем подстановку. Подставим это значение х во второе уравнение, получим квадратное уравнение и решим его:

у 2 + 9 – у = 29
у 2 – у – 20 = 0

D = b 2 – 4ас = 1 – 4 · 1 · (–20) = 81

Осталось найти значения х. Первое уравнение проще, поэтому им и воспользуемся:

1) х + 5 = 9
х = 9 – 5
х1 = 4

2) х – 4 = 9
х = 9 + 4
х2 = 13

Видео:Решение систем уравнений второго порядка. 8 класс.Скачать

Решение систем уравнений второго порядка. 8 класс.

Тест с ответами: “Система линейных уравнений”

1. Укажите пару чисел, которая является решением системы уравнений y + 2x = 7 и 3x – 5y = 4:
а) (3; 1) +
б) (1; -0.2)
в) (1; 3)

2. Выберите линейное уравнение с двумя переменными:
а) 3ху = 18
б) х – 4у = 26 +
в) (5х – 4) (у + = 5

3. Способом подставки найдите решение (х0, у0) системы уравнений у – 2х = 1 и 12х – у = 9. Вычислите у0 – х0:
а) 0
б) -2
в) 2 +

4. Подберите к данному уравнению 2х + 3у = -11 такое уравнение, чтобы решением получившейся системы была пара (2; -5):
а) –х – 4у = 18 +
б) у – 5х = -20
в) 3х – у = 14

5. Найдите решение (х0; у0) системы уравнений 7х – 2у = 0 и 3х + 6у = 24. Вычислите х0 + 2у0:
а) -6
б) 0
в) 8 +

6. Сколько решений имеет система 6х − 4у = 12 и −2у + 3х = 6:
а) ни одного
б) бесконечно много +
в) один

7. Способом сложения найдите решение (х0, у0), системы уравнений х – у = 2 и х + у = -6. Вычислите х0 + 3у0:
а) 14
б) 10
в) -14 +

8. Решением системы х + у = 1 и 2х − у = −10 служит пара:
а) (-3; 4) +
б) (3; -4)
в) (4; -3)

9. Угловой коэффициент прямой y + 2x + 3 является:
а) -3
б) 2
в) -2 +

10. Пара чисел (-4; -1) является решением уравнения ах + 3у – 5 = 0,если а равно:
а) -4
б) 4 +
в) -5

11. Решите систему уравнений способом подстановки 3x – 2y = -5 и x + 2y = 2. Ответ ввести разность x-y:
а) 2
б) -2 +
в) 7

12. Абсцисса точки, принадлежащей графику уравнения 2х – 3у = -7, равна 4. Найдите ординату этой точки:
а) -5
б) 5 +
в) 0

13. Найдите абсциссу точки пересечения прямых y = 2x + 3 и -1/3x + 24:
а) 9 +
б) 7
в) 3

14. Выразите переменную х через переменную у из уравнения 5у – 2х = -15:
а) х = -15 – 5у
б) х= -2,5у + 7,5
в) х = 2,5у + 7,5 +

15. Укажите пару чисел, являющуюся решением уравнения 2x+4y=-3:
а) (-0,5; -0,5) +
б) (-2; 1)
в) (1; -2)

16. Найдите решение уравнения 2х + 3у = 2:
а) (5; -4)
б) (-5; 4) +
в) (-5; -4)

17. Подберите к данному уравнению 4х –2у = -18 такое уравнение, чтобы решением получившейся системы была пара (-2; 5):
а) у –4х = 24
б) –х +3у = 18
в) 2х –3у = -19 +

18. Выберите линейное уравнение с двумя переменными:
а) ху + 6 = 26
б) 3х – у = 18 +
в) (х + 4) (у – 3) = 5

19. Выясните, сколько решений имеет система 3х + 5у = 12 и −2у + 3х = 6:
а) ни одного
б) бесконечно много
в) одно +

20. Система уравнений, каждое уравнение в которой является линейным – алгебраическим уравнением первой степени:
а) система криволинейных уравнений
б) система линейных уравнений +
в) система линейно-простых уравнений

21. Решением системы х − у = 2 и 3х − у = 10 служит пара:
а) (4; 2) +
б) (2;-4)
в) (-2; 4)

22. Одна из классических задач линейной алгебры, во многом определившая её объекты и методы:
а) теория систем линейных алгебраических уравнений
б) решение систем линейных алгебраических уравнений +
в) сравнение систем линейных алгебраических уравнений

23. Пара чисел (-4;-1) является решением уравнения 4х + ау + 5 = 0, если а равно:
а) -21
б) 11
в) -11 +

24. Система, у которой количество уравнений совпадает с числом неизвестных (m = n):
а) кубическая система линейных уравнений
б) квадратная система линейных уравнений +
в) сложная система линейных уравнений

25. Ордината точки, принадлежащей графику уравнения 6х + 2у = 2, равна 4. Найдите абсциссу этой точки:
а) 1
б) -11
в) -1 +

26. Система, у которой число неизвестных больше числа уравнений является:
а) неопределенной
б) недоопределённой +
в) переопределённой

27. Выразите переменную х через переменную у из уравнения -6у + 3х = 24:
а) х = 2у + 8 +
б) х = -4 – 2у
в) х = 8 – 3у

28. Если уравнений больше, чем неизвестных, то система является:
а) недоопределённой
б) неопределенной
в) переопределённой +

29. Найдите решение уравнения: 4х – 3у = 5:
а) (2; 1) +
б) (1;2)
в) (-2; 1)

30. Такие методы дают алгоритм, по которому можно найти точное решение систем линейных алгебраических уравнений:
а) дифференциальные
б) прямые +
в) искаженные

Видео:Системы уравнений Тема3 С истемы ур-й в которых одно ур-е 1ой степени а другие 2ой и более высокой.Скачать

Системы уравнений Тема3 С истемы ур-й в которых одно ур-е 1ой степени а другие 2ой и более высокой.

Решение задач по математике онлайн

//mailru,yandex,google,vkontakte,odnoklassniki,instagram,wargaming,facebook,twitter,liveid,steam,soundcloud,lastfm, // echo( ‘

Видео:Линейное уравнение с двумя переменными. 7 класс.Скачать

Линейное уравнение с двумя переменными. 7 класс.

Калькулятор онлайн.
Решение системы двух линейных уравнений с двумя переменными.
Метод подстановки и сложения.

С помощью данной математической программы вы можете решить систему двух линейных уравнений с двумя переменными методом подстановки и методом сложения.

Программа не только даёт ответ задачи, но и приводит подробное решение с пояснениями шагов решения двумя способами: методом подстановки и методом сложения.

Данная программа может быть полезна учащимся старших классов общеобразовательных школ при подготовке к контрольным работам и экзаменам, при проверке знаний перед ЕГЭ, родителям для контроля решения многих задач по математике и алгебре. А может быть вам слишком накладно нанимать репетитора или покупать новые учебники? Или вы просто хотите как можно быстрее сделать домашнее задание по математике или алгебре? В этом случае вы также можете воспользоваться нашими программами с подробным решением.

Таким образом вы можете проводить своё собственное обучение и/или обучение своих младших братьев или сестёр, при этом уровень образования в области решаемых задач повышается.

В качестве переменной может выступать любая латинсая буква.
Например: ( x, y, z, a, b, c, o, p, q ) и т.д.

При вводе уравнений можно использовать скобки. При этом уравнения сначала упрощаются. Уравнения после упрощений должны быть линейными, т.е. вида ax+by+c=0 с точностью порядка следования элементов.
Например: 6x+1 = 5(x+y)+2

В уравнениях можно использовать не только целые, но также и дробные числа в виде десятичных и обыкновенных дробей.

Правила ввода десятичных дробей.
Целая и дробная часть в десятичных дробях может разделяться как точкой так и запятой.
Например: 2.1n + 3,5m = 55

Правила ввода обыкновенных дробей.
В качестве числителя, знаменателя и целой части дроби может выступать только целое число.
Знаменатель не может быть отрицательным.
При вводе числовой дроби числитель отделяется от знаменателя знаком деления: /
Целая часть отделяется от дроби знаком амперсанд: &

Примеры.
-1&2/3y + 5/3x = 55
2.1p + 55 = -2/7(3,5p — 2&1/8q)

Решить систему уравнений

Видео:Урок СИСТЕМЫ ЛИНЕЙНЫХ УРАВНЕНИЙ С ДВУМЯ ПЕРЕМЕННЫМИ 7 КЛАСССкачать

Урок СИСТЕМЫ ЛИНЕЙНЫХ УРАВНЕНИЙ С ДВУМЯ ПЕРЕМЕННЫМИ 7 КЛАСС

Немного теории.

Видео:Алгебра 7 класс (Урок№45 - Уравнения первой степени с двумя неизвестными.)Скачать

Алгебра 7 класс (Урок№45 - Уравнения первой степени с двумя неизвестными.)

Решение систем линейных уравнений. Способ подстановки

Последовательность действий при решении системы линейных уравнений способом подстановки:
1) выражают из какого-нибудь уравнения системы одну переменную через другую;
2) подставляют в другое уравнение системы вместо этой переменной полученное выражение;
3) решают получившееся уравнение с одной переменной;
4) находят соответствующее значение второй переменной.

Пример. Решим систему уравнений:
$$ left< begin 3x+y=7 \ -5x+2y=3 end right. $$

Выразим из первого уравнения y через x: y = 7-3x. Подставив во второе уравнение вместо y выражение 7-Зx, получим систему:
$$ left< begin y = 7—3x \ -5x+2(7-3x)=3 end right. $$

Нетрудно показать, что первая и вторая системы имеют одни и те же решения. Во второй системе второе уравнение содержит только одну переменную. Решим это уравнение:
$$ -5x+2(7-3x)=3 Rightarrow -5x+14-6x=3 Rightarrow -11x=-11 Rightarrow x=1 $$

Подставив в равенство y=7-3x вместо x число 1, найдем соответствующее значение y:
$$ y=7-3 cdot 1 Rightarrow y=4 $$

Пара (1;4) — решение системы

Системы уравнений с двумя переменными, имеющие одни и те же решения, называются равносильными. Системы, не имеющие решений, также считают равносильными.

Видео:Решение систем уравнений второй степениСкачать

Решение систем уравнений второй степени

Решение систем линейных уравнений способом сложения

Рассмотрим еще один способ решения систем линейных уравнений — способ сложения. При решении систем этим способом, как и при решении способом подстановки, мы переходим от данной системы к другой, равносильной ей системе, в которой одно из уравнений содержит только одну переменную.

Последовательность действий при решении системы линейных уравнений способом сложения:
1) умножают почленно уравнения системы, подбирая множители так, чтобы коэффициенты при одной из переменных стали противоположными числами;
2) складывают почленно левые и правые части уравнений системы;
3) решают получившееся уравнение с одной переменной;
4) находят соответствующее значение второй переменной.

Пример. Решим систему уравнений:
$$ left< begin 2x+3y=-5 \ x-3y=38 end right. $$

В уравнениях этой системы коэффициенты при y являются противоположными числами. Сложив почленно левые и правые части уравнений, получим уравнение с одной переменной 3x=33. Заменим одно из уравнений системы, например первое, уравнением 3x=33. Получим систему
$$ left< begin 3x=33 \ x-3y=38 end right. $$

Из уравнения 3x=33 находим, что x=11. Подставив это значение x в уравнение ( x-3y=38 ) получим уравнение с переменной y: ( 11-3y=38 ). Решим это уравнение:
( -3y=27 Rightarrow y=-9 )

Таким образом мы нашли решение системмы уравнений способом сложения: ( x=11; y=-9 ) или ( (11; -9) )

Воспользовавшись тем, что в уравнениях системы коэффициенты при y являются противоположными числами, мы свели ее решение к решению равносильной системы (сумировав обе части каждого из уравнений исходной симтемы), в которой одно из уравнений содержит только одну переменную.

🎦 Видео

Cистемы уравнений. Разбор задания 6 и 21 из ОГЭ. | МатематикаСкачать

Cистемы уравнений. Разбор задания 6 и 21 из ОГЭ.  | Математика

Графический метод решения систем линейных уравнений с двумя переменнымиСкачать

Графический метод решения систем линейных уравнений с двумя переменными

Системы уравнений с двумя переменными. Алгебра 9 классСкачать

Системы уравнений с двумя переменными. Алгебра 9 класс

Решение системы линейных уравнений графическим методом. 7 класс.Скачать

Решение системы линейных уравнений графическим методом. 7 класс.

МЕТОД ПОДСТАНОВКИ 😉 СИСТЕМЫ УРАВНЕНИЙ ЧАСТЬ I#математика #егэ #огэ #shorts #профильныйегэСкачать

МЕТОД ПОДСТАНОВКИ 😉 СИСТЕМЫ УРАВНЕНИЙ ЧАСТЬ I#математика #егэ #огэ #shorts #профильныйегэ

Алгебра 9 класс (Урок№25 - Решение систем уравнений второй степени.)Скачать

Алгебра 9 класс (Урок№25 - Решение систем уравнений второй степени.)

ПОСМОТРИ это видео, если хочешь решить систему линейных уравнений! Метод ПодстановкиСкачать

ПОСМОТРИ это видео, если хочешь решить систему линейных уравнений! Метод Подстановки

Решение систем уравнений методом подстановкиСкачать

Решение систем уравнений методом подстановки

Решение системы линейных уравнений с двумя переменными способом подстановки. 6 класс.Скачать

Решение системы линейных уравнений с двумя переменными способом подстановки. 6 класс.

Алгебра 7 класс (Урок№43 - Решение линейных уравнений с одним неизвестным.)Скачать

Алгебра 7 класс (Урок№43 - Решение линейных уравнений с одним неизвестным.)

9 класс, 11 урок, Методы решения систем уравненийСкачать

9 класс, 11 урок, Методы решения систем уравнений

ЛИНЕЙНОЕ УРАНЕНИЕ С ДВУМЯ ПЕРЕМЕННЫМИ — Как решать линейное уравнение // Алгебра 7 классСкачать

ЛИНЕЙНОЕ УРАНЕНИЕ С ДВУМЯ ПЕРЕМЕННЫМИ — Как решать линейное уравнение // Алгебра 7 класс

Решение системы неравенствСкачать

Решение системы неравенств
Поделиться или сохранить к себе: