//mailru,yandex,google,vkontakte,odnoklassniki,instagram,wargaming,facebook,twitter,liveid,steam,soundcloud,lastfm, // echo( ‘
- Калькулятор онлайн. Решение системы двух линейных уравнений с двумя переменными. Метод подстановки и сложения.
- Немного теории.
- Решение систем линейных уравнений. Способ подстановки
- Решение систем линейных уравнений способом сложения
- Решение системы линейных уравнений методом сложения
- Алгоритм решения системы линейных уравнений методом сложения
- Примеры
- Системы уравнений по-шагам
- Результат
- Примеры систем уравнений
- Правила ввода
- 🔥 Видео
Видео:Cистемы уравнений. Разбор задания 6 и 21 из ОГЭ. | МатематикаСкачать
Калькулятор онлайн.
Решение системы двух линейных уравнений с двумя переменными.
Метод подстановки и сложения.
С помощью данной математической программы вы можете решить систему двух линейных уравнений с двумя переменными методом подстановки и методом сложения.
Программа не только даёт ответ задачи, но и приводит подробное решение с пояснениями шагов решения двумя способами: методом подстановки и методом сложения.
Данная программа может быть полезна учащимся старших классов общеобразовательных школ при подготовке к контрольным работам и экзаменам, при проверке знаний перед ЕГЭ, родителям для контроля решения многих задач по математике и алгебре. А может быть вам слишком накладно нанимать репетитора или покупать новые учебники? Или вы просто хотите как можно быстрее сделать домашнее задание по математике или алгебре? В этом случае вы также можете воспользоваться нашими программами с подробным решением.
Таким образом вы можете проводить своё собственное обучение и/или обучение своих младших братьев или сестёр, при этом уровень образования в области решаемых задач повышается.
В качестве переменной может выступать любая латинсая буква.
Например: ( x, y, z, a, b, c, o, p, q ) и т.д.
При вводе уравнений можно использовать скобки. При этом уравнения сначала упрощаются. Уравнения после упрощений должны быть линейными, т.е. вида ax+by+c=0 с точностью порядка следования элементов.
Например: 6x+1 = 5(x+y)+2
В уравнениях можно использовать не только целые, но также и дробные числа в виде десятичных и обыкновенных дробей.
Правила ввода десятичных дробей.
Целая и дробная часть в десятичных дробях может разделяться как точкой так и запятой.
Например: 2.1n + 3,5m = 55
Правила ввода обыкновенных дробей.
В качестве числителя, знаменателя и целой части дроби может выступать только целое число.
Знаменатель не может быть отрицательным.
При вводе числовой дроби числитель отделяется от знаменателя знаком деления: /
Целая часть отделяется от дроби знаком амперсанд: &
Примеры.
-1&2/3y + 5/3x = 55
2.1p + 55 = -2/7(3,5p — 2&1/8q)
Решить систему уравнений
Видео:Решение систем уравнений методом сложенияСкачать
Немного теории.
Видео:МЕТОД ПОДСТАНОВКИ 😉 СИСТЕМЫ УРАВНЕНИЙ ЧАСТЬ I#математика #егэ #огэ #shorts #профильныйегэСкачать
Решение систем линейных уравнений. Способ подстановки
Последовательность действий при решении системы линейных уравнений способом подстановки:
1) выражают из какого-нибудь уравнения системы одну переменную через другую;
2) подставляют в другое уравнение системы вместо этой переменной полученное выражение;
3) решают получившееся уравнение с одной переменной;
4) находят соответствующее значение второй переменной.
Пример. Решим систему уравнений:
$$ left< begin 3x+y=7 \ -5x+2y=3 end right. $$
Выразим из первого уравнения y через x: y = 7-3x. Подставив во второе уравнение вместо y выражение 7-Зx, получим систему:
$$ left< begin y = 7—3x \ -5x+2(7-3x)=3 end right. $$
Нетрудно показать, что первая и вторая системы имеют одни и те же решения. Во второй системе второе уравнение содержит только одну переменную. Решим это уравнение:
$$ -5x+2(7-3x)=3 Rightarrow -5x+14-6x=3 Rightarrow -11x=-11 Rightarrow x=1 $$
Подставив в равенство y=7-3x вместо x число 1, найдем соответствующее значение y:
$$ y=7-3 cdot 1 Rightarrow y=4 $$
Пара (1;4) — решение системы
Системы уравнений с двумя переменными, имеющие одни и те же решения, называются равносильными. Системы, не имеющие решений, также считают равносильными.
Видео:Решение систем уравнений. Методом подстановки. Выразить YСкачать
Решение систем линейных уравнений способом сложения
Рассмотрим еще один способ решения систем линейных уравнений — способ сложения. При решении систем этим способом, как и при решении способом подстановки, мы переходим от данной системы к другой, равносильной ей системе, в которой одно из уравнений содержит только одну переменную.
Последовательность действий при решении системы линейных уравнений способом сложения:
1) умножают почленно уравнения системы, подбирая множители так, чтобы коэффициенты при одной из переменных стали противоположными числами;
2) складывают почленно левые и правые части уравнений системы;
3) решают получившееся уравнение с одной переменной;
4) находят соответствующее значение второй переменной.
Пример. Решим систему уравнений:
$$ left< begin 2x+3y=-5 \ x-3y=38 end right. $$
В уравнениях этой системы коэффициенты при y являются противоположными числами. Сложив почленно левые и правые части уравнений, получим уравнение с одной переменной 3x=33. Заменим одно из уравнений системы, например первое, уравнением 3x=33. Получим систему
$$ left< begin 3x=33 \ x-3y=38 end right. $$
Из уравнения 3x=33 находим, что x=11. Подставив это значение x в уравнение ( x-3y=38 ) получим уравнение с переменной y: ( 11-3y=38 ). Решим это уравнение:
( -3y=27 Rightarrow y=-9 )
Таким образом мы нашли решение системмы уравнений способом сложения: ( x=11; y=-9 ) или ( (11; -9) )
Воспользовавшись тем, что в уравнениях системы коэффициенты при y являются противоположными числами, мы свели ее решение к решению равносильной системы (сумировав обе части каждого из уравнений исходной симтемы), в которой одно из уравнений содержит только одну переменную.
Видео:Решение систем уравнений методом подстановкиСкачать
Решение системы линейных уравнений методом сложения
Алгоритм решения системы линейных уравнений методом сложения
- Умножить обе части одного или обоих уравнений так, чтобы коэффициенты при одной из переменных стали противоположными (или равными) числами.
- Сложить (или отнять) уравнения, чтобы избавиться от одной из переменных.
- Решить второе уравнение относительно выраженной переменной.
- Решить полученное уравнение с одной переменной.
- Найти вторую переменную.
- Записать ответ в виде упорядоченной пары найденных значений переменных.
Умножаем первое уравнение на 2
Отнимаем от первого уравнения второе:
Находим y из первого уравнения:
В последовательной записи:
$$ <left< begin 3x+y = 5 | times 2 \ x+2y = 5 end right.> Rightarrow (-) <left< begin 6x+2y = 10 \ x+2y = 5 end right.> Rightarrow <left< begin 5x = 5 \ x+2y = 5 end right.> Rightarrow <left< begin x = 1 \ y = 5-3x = 2 end right.> $$
Примеры
Пример 1. Решите систему уравнений методом сложения:
$ а) <left< begin 5x-4y = 3 | times 2 \ 2x-3y = 4 | times 5 end right.> Rightarrow <left< begin 10x-8y = 6 \ 10x-15y = 20 end right.> Rightarrow <left< begin 7y = -14 \ 2x-3y = 4 end right.> Rightarrow <left< begin x = frac = -1 \ y=-2 end right.> $
$ б) <left< begin 4x-3y = 7 | times 3 \ 3x-4y = 0 | times 4 end right.> Rightarrow (-) <left< begin 12x-9y = 21 \ 12x-16y = 0 end right.> Rightarrow <left< begin 7y = 21 \ x = frac y end right.> Rightarrow <left< begin x = 4 \ y = 3 end right.> $
$ в) <left< begin 5a-4b = 9 | times 2 \ 2a+3b = -1 | times 5 end right.> Rightarrow (-) <left< begin 10a-8b = 18 \ 10a+15b = -5 end right.> Rightarrow <left< begin -23b = 23 \ a = frac end right.> Rightarrow <left< begin a = 1 \ b = -1 end right.> $
$ г) <left< begin 7a+4b = 5 \ 3a+2b = 1 | times (-2) end right.> Rightarrow (+) <left< begin 7a+4b = 5 \ -6a-4b = -2 end right.> Rightarrow <left< begin a = 3 \ b = frac end right.> Rightarrow <left< begin a = 3 \ b = -4 end right.>$
Пример 2. Найдите решение системы уравнений:
$$а) <left< begin frac-y = 7 \ 3x+ frac = 9 | times 2end right.> Rightarrow (+) <left< begin frac -y = 7 \ 6x+y = 18 end right.> Rightarrow <left< begin 6 frac x = 25 \ y = 18-6xend right.> Rightarrow $$
$$Rightarrow <left< begin x = 25: frac = 25 cdot frac = 4 \ y = 18-6 cdot 4 = -6 end right.> $$
$ в) <left< begin 3(5x-y)+14 = 5(x+y) \ 2(x-y)+9 = 3(x+2y)-16 end right.> Rightarrow <left< begin 15x-3y+14 = 5x+5y \ 2x-2y+9 = 3x+6y-16 end right.> Rightarrow $
$ г) <left< begin 5-3(2x+7y) = x+y-52 \ 4+3(7x+2y) = 23x end right.> Rightarrow <left< begin 5-6x-21y = x+y-52 \ 4+21x+6y = 23x end right.> Rightarrow <left< begin 7x+22y = 57 \ 2x-6y = 4 |:2 end right.>$
$$ Rightarrow <left< begin 7x+22y = 57 \ x-3y = 2 | times 7 end right.> Rightarrow (-) <left< begin 7x+22y = 57 \ 7x-21y = 14 end right.> Rightarrow <left< begin 43y = 43 \ x = 3y+2 end right.> Rightarrow <left< begin x = 5 \ y = 1 end right.>$$
Пример 3*. Найдите решение системы уравнений:
Введём новые переменные: $ <left< begin a = frac \ b = frac end right.> $
Перепишем систему и найдём решение для новых переменных:
$$ <left< begin2a+3b = 1| times 3 \ 3a-5b = 11 | times 2 end right.> Rightarrow (-) <left< begin 6a+9b = 3 \ 6a-10b = 22 end right.> Rightarrow <left< begin 19b = -19 \ a = frac end right.> Rightarrow <left< begin a = 2 \ b = -1 end right.> $$
Видео:Решение биквадратных уравнений. 8 класс.Скачать
Системы уравнений по-шагам
Видео:Алгебра 7 класс. 28 октября. Решаем систему уравнений методом сложения #2Скачать
Результат
Примеры систем уравнений
- Метод Гаусса
- Метод Крамера
- Прямой метод
- Система нелинейных уравнений
Указанные выше примеры содержат также:
- квадратные корни sqrt(x),
кубические корни cbrt(x) - тригонометрические функции:
синус sin(x), косинус cos(x), тангенс tan(x), котангенс ctan(x) - показательные функции и экспоненты exp(x)
- обратные тригонометрические функции:
арксинус asin(x), арккосинус acos(x), арктангенс atan(x), арккотангенс actan(x) - натуральные логарифмы ln(x),
десятичные логарифмы log(x) - гиперболические функции:
гиперболический синус sh(x), гиперболический косинус ch(x), гиперболический тангенс и котангенс tanh(x), ctanh(x) - обратные гиперболические функции:
asinh(x), acosh(x), atanh(x), actanh(x) - число Пи pi
- комплексное число i
Правила ввода
Можно делать следующие операции
2*x — умножение 3/x — деление x^3 — возведение в степень x + 7 — сложение x — 6 — вычитание Действительные числа вводить в виде 7.5, не 7,5
Чтобы увидеть подробное решение,
помогите рассказать об этом сайте:
🔥 Видео
Решение систем уравнений методом сложенияСкачать
Сложные уравнения. Как решить сложное уравнение?Скачать
Алгебра. 7 класс. Урок 12 "Системы линейный уравнений: метод сложения"Скачать
Решение систем уравнений способом сложенияСкачать
Способы решения систем нелинейных уравнений. Практическая часть. 9 класс.Скачать
Решение системы линейных уравнений методом сложенияСкачать
Алгоритм решения задач с помощью систем уравнений. Практическая часть. 9 класс.Скачать
Способ сложения в решении систем линейных уравненийСкачать
7 класс | УРОК №14 | Алгебра. Решение систем линейных уравнений методом сложения.Скачать
Нелинейные уравнения с двумя переменными и их геометрический смысл. 9 класс.Скачать
Системы уравнений методы решения. Системы уравнений высших степеней.Скачать
Решение систем уравнений. Метод замены переменных. 9 классСкачать
Решение систем методом сложенияСкачать