Введение новых неизвестных в уравнении

Видео:Решение биквадратных уравнений. 8 класс.Скачать

Решение биквадратных уравнений. 8 класс.

Решение уравнений методом введения новой переменной, теория, практика

В этой статье мы всесторонне разберем метод введения новой переменной. Здесь мы выясним, для решения каких уравнений этот метод предназначен, проникнем в его суть, приведем обоснование метода, доказав соответствующее утверждение, запишем алгоритм решения уравнений методом введения новой переменной и рассмотрим решения характерных примеров.

Видео:Cистемы уравнений. Разбор задания 6 и 21 из ОГЭ. | МатематикаСкачать

Cистемы уравнений. Разбор задания 6 и 21 из ОГЭ.  | Математика

Когда применяется и в чем суть метода

Метод введения новой переменной предназначен для решения уравнений, имеющих вид f(g(x))=0 или f1(g(x))=f2(g(x)) , где f , f1 и f2 – некоторые функции, а x – неизвестная переменная. Для лучшего восприятия приведем примеры таких уравнений:

  • (x 2 ) 3 −3·x 2 +2=0 , это уравнение имеет вид f(g(x))=0 , здесь g(x)=x 2 , а функция f такая, что f(t)=t 2 −3·t+2 ;
  • Введение новых неизвестных в уравнении, это уравнение вида f1(g(x))=f2(g(x)) , здесь в качестве g(x) можно рассматривать x 2 +2·x , тогда функции f1 и f2 таковы, что Введение новых неизвестных в уравнениии Введение новых неизвестных в уравнении;
  • Введение новых неизвестных в уравнении, это уравнение, имеющее вид f(g(x))=0 , где Введение новых неизвестных в уравнении, а функция f описывается как Введение новых неизвестных в уравнении.

Понятно, что f(g(x))=0 и f1(g(x))=f2(g(x)) — равносильные уравнения, так как уравнение f1(g(x))=f2(g(x)) приводится к виду f(g(x))=0 при помощи равносильного преобразования, заключающегося в переносе выражения f2(g(x)) из правой части в левую с противоположным знаком. Поэтому дальнейшую теорию мы будем излагать только для уравнений вида f(g(x))=0 , это сделано в угоду краткости без ущерба для общности.

Суть метода введения новой переменной для решения уравнения f(g(x))=0 состоит во введении новой переменной t как g(x)=t с целью нахождения всех корней исходного уравнения через множество решений T уравнения f(t)=0 с новой переменной t и использование равенства g(x)=t . Забегая немного вперед, скажем, что корнями исходного уравнения являются все такие значения x , которые удовлетворяют условию g(x)∈T . В частности,

  • если T – пустое множество, то есть, уравнение f(t)=0 не имеет решений, то условие g(x)∈T определяет пустое множество, а это означает, что исходное уравнение не имеет решений;
  • если T – конечное множество, то есть, уравнение f(t)=0 имеет n решений t1, t2, …, tn , то условие g(x)∈T есть не что иное, как совокупность уравнений g(x)=t1, g(x)=t2, …, g(x)=tn , а это означает, что решением исходного уравнения является решение совокупности уравнений g(x)=t1, g(x)=t2, …, g(x)=tn .

Поясним на примере. Возьмем уже упомянутое выше уравнение (x 2 ) 3 −3·x 2 +2=0 . Введение новой переменной x 2 =t позволяет от исходного уравнения перейти к кубическому уравнению t 3 −3·t+2=0 с новой переменной (заменяем в исходном уравнении x 2 на t ). Множество решений этого уравнения T (оно в нашем случае состоит из двух чисел t1=1 и t2=−2 , то есть, T= ) и использование равенства x 2 =t дают возможность определить все корни исходного уравнения. Они определяются по условию x 2 ∈ , которое есть не что иное, как совокупность двух уравнений x 2 =−2 , x 2 =1 .

В основе метода введения новой переменной лежит следующее утверждение:

Решение уравнения f(g(x))=0 есть множество значений переменной x , удовлетворяющих условию g(x)∈T , где T – множество всех корней уравнения f(t)=0 .

Приведем обоснование озвученного утверждения в следующем пункте.

Видео:Решение уравнения методом замены переменнойСкачать

Решение уравнения методом замены переменной

Обоснование

Докажем утверждение, лежащее в основе метода введения новой переменной, которое мы привели в предыдущем пункте. Для этого нужно доказать два момента:

  • что любой корень уравнения f(g(x))=0 удовлетворяет условию g(x)∈T , где T – множество всех корней уравнения f(t)=0 ,
  • что любое значение переменной x , удовлетворяющее условию g(x)∈T , где T – множество всех корней уравнения f(t)=0 , является корнем уравнения f(g(x))=0 .

Начнем с первой части. Пусть x0 – корень уравнения f(g(x))=0 . Докажем, что x0 удовлетворяет условию g(x)∈T , где T – множество всех корней уравнения f(t)=0 .

Так как x0 – корень уравнения f(g(x))=0 , то f(g(x0))=0 – верное числовое равенство. Из этого равенства следует, что g(x0) – корень уравнения f(t)=0 . А из этого следует, что g(x0) принадлежит множеству всех корней уравнения f(t)=0 .

Первая часть доказана. Переходим к доказательству второй части утверждения.

Пусть x0 удовлетворяет условию g(x)∈T , где T – множество всех корней уравнения f(t)=0 . Докажем, что x0 является корнем уравнения f(g(x))=0 .

Так как x0 удовлетворяет условию g(x)∈T , то g(x0)∈T , то есть, g(x0) – это один из корней уравнения f(t)=0 . Значит, f(g(x0))=0 – верное числовое равенство. А из этого равенства следует, что x0 – корень уравнения f(g(x))=0 .

Так доказана вторая часть утверждения и все утверждение в целом.

Видео:Математика. Линейные диофантовы уравнения с двумя неизвестными. Центр онлайн-обучения «Фоксфорд»Скачать

Математика. Линейные диофантовы уравнения с двумя неизвестными. Центр онлайн-обучения «Фоксфорд»

Алгоритм решения уравнений методом введения новой переменной

Приведенная выше информация позволяет записать алгоритм решения уравнения f(g(x))=0 методом введения новой переменной:

  • Вводится новая переменная t как g(x)=t , и осуществляется переход от исходного уравнения f(g(x))=0 со старой переменной x к уравнению f(t)=0 с новой переменной t .
  • Решается полученное уравнение с новой переменной. При этом
    • если оно не имеет корней, то делается вывод об отсутствии корней у исходного уравнения,
    • если уравнение имеет корни, то выполняются следующие шаги алгоритма.
  • Осуществляется возврат к старой переменной. Для этого
    • если решенное на предыдущем шаге уравнение имеет единственный корень, обозначим его t1 , то составляется уравнение g(x)=t1 ,
    • если решенное на предыдущем шаге уравнение имеет два, три или любое другое, но конечное число корней, обозначим их t1, t2, …, tn , то составляется совокупность уравнений g(x)=t1, g(x)=t2, …, g(x)=tn ,
    • если же решенное на предыдущем шаге уравнение имеет бесконечно много корней, и они составляют числовое множество T , то составляется совокупность уравнений, неравенств и двойных неравенств, отвечающая выражению g(x)∈T (например, если решением уравнения с новой переменной t является числовое множество (−∞, t1)∪<t2>∪[t3, t4) , что то же самое Введение новых неизвестных в уравнении, то соответствующая совокупность будет иметь вид Введение новых неизвестных в уравнении).
  • Наконец, решается составленное уравнение или совокупность – ее решение есть искомое решение исходного уравнения.

Видео:§101 Метод введения новой переменнойСкачать

§101 Метод введения новой переменной

Решение примеров

Обычно первое знакомство с методом введения новой переменной происходит в школе в рамках темы «решение рациональных уравнений». В частности, рациональными являются биквадратные уравнения, стандартным методом решения которых как раз является метод введения новой переменной. Для примера приведем краткое решение методом введения новой переменной биквадратного уравнения x 4 −3·x 2 +5=0 . После представления его в виде (x 2 ) 2 −3·x 2 +5=0 , вводим новую переменную x 2 =t , это позволяет перейти к квадратному уравнению с новой переменной: t 2 −3·t+5=0 . Оно не имеет действительных корней, так как его дискриминант D=(−3) 2 −4·1·5=−11 – отрицательный, откуда заключаем, что исходное уравнение не имеет корней.

Среди рациональных уравнений масса и других типичных представителей, решающихся методом введения новой переменной. Такими, во-первых, являются уравнения, в которых переменная фигурирует только в одинаковых квадратных двучленах, например (x 2 −5·x+4)·(x 2 −5·x+6)=120 , (x 2 +5) 2 −11·(x 2 +5)+28=0 , Введение новых неизвестных в уравнении. Во-вторых, через введение новой переменной решаются уравнения, в которых переменная находится только во взаимно обратных дробях, например, Введение новых неизвестных в уравнении, здесь одна из дробей принимается за t , а другая, очевидно, выражается через t как 1/t , ведь на ОДЗ для данного уравнения Введение новых неизвестных в уравнении. В-третьих, упомянем про возвратные уравнения, которые тоже решаются методом введения новой переменной, а именно Введение новых неизвестных в уравнении. Решения подобных уравнений Вы без труда найдете в статье, упомянутой в первом предложении этого пункта, а также на страницах школьных учебников, например, [1, c. 74-75, 80; 2, с. 150-152; 3, с. 213-216].

Продвигаясь дальше в школьном курсе математики по пути знакомства с уравнениями, нам встречаются иррациональные, тригонометрические, показательные, логарифмические и другие уравнения, и каждый раз мы возвращаемся к методу введения новой переменной для их решения. Для уравнений каждого вида есть свои особенности в плане введения новой переменной. Рекомендуем ознакомиться с ними в следующих материалах:

  • решение иррациональных уравнений методом введения новой переменной,
  • метод введения новой переменной при решении показательных уравнений,
  • решение показательных уравнений методом введения новой переменной,
  • решение тригонометрических уравнений методом введения новой переменной.

В заключение покажем пример решения уравнения, которое после введения новой переменной имеет бесконечное множество решений. Подобные случаи встречаются крайне редко, и тем они еще более интересны. В них главное разобраться с особенностями возврата к старой переменной.

Решите уравнение Введение новых неизвестных в уравнении

Видео:9 класс, 11 урок, Методы решения систем уравненийСкачать

9 класс, 11 урок, Методы решения систем уравнений

Решение уравнения методом введения новой переменной

Введение новых неизвестных в уравнении

Математика. Уравнения. 283гр. Дистанционное обучение.

Просмотр содержимого документа
«Решение уравнения методом введения новой переменной»

21.04.20. Задание: Записать конспект и решить уравнения

Тема: Основные приемы решения уравнений:

Решение уравнения методом введения новой переменной

Метод введения новой переменной:

1. в уравнении какая-то его часть заменяется другой переменной (a, y, t. )

(прежнее неизвестное одновременно с новым в уравнении быть не может);

2. решается новое уравнение;

3. возвращаются к обозначенному и, используя полученное число (корни), вычисляют требуемое неизвестное.

Пример: Решить уравнение (2x−21) 2 −5(2x−21)+4=0.

Это уравнение можно решить и без использования новой переменной (раскрываются скобки по формуле разности квадратов и т. д.), но решение будет длинным и с большими числами.

Используем то, что обе скобки равны.

Обозначаем 2x−21=y. Получается простое квадратное уравнение:

D=b 2 -4ac=(-5) 2 -4•1•4=25-16=9

Возвращаемся к обозначенному:

Методом введения новой переменной решаются биквадратные уравнения:

ax 4 +bx 2 +c=0, где a,b,c ∈R; x 2 =y; ay 2 +by+c=0. В биквадратных уравнениях всегда используется новая переменная. Получается квадратное уравнение

Пример: Решить уравнение:

x 4 −13x 2 +12=0; x 2 =y, тогда

1)x 2 =12; или 2) x 2 =1,

Задание: Решить уравнения 1. (3x−4) 2 +3 (3x−4)-4=0.

Видео:Дробно-рациональные уравнения. 8 класс.Скачать

Дробно-рациональные уравнения. 8 класс.

Общие сведения об уравнениях

Уравнения — одна из сложных тем для усвоения, но при этом они являются достаточно мощным инструментом для решения большинства задач.

С помощью уравнений описываются различные процессы, протекающие в природе. Уравнения широко применяются в других науках: в экономике, физике, биологии и химии.

В данном уроке мы попробуем понять суть простейших уравнений, научимся выражать неизвестные и решим несколько уравнений. По мере усвоения новых материалов, уравнения будут усложняться, поэтому понять основы очень важно.

Видео:Алгебра 7 класс (Урок№45 - Уравнения первой степени с двумя неизвестными.)Скачать

Алгебра 7 класс (Урок№45 - Уравнения первой степени с двумя неизвестными.)

Что такое уравнение?

Уравнение — это равенство, содержащее в себе переменную, значение которой требуется найти. Это значение должно быть таким, чтобы при его подстановке в исходное уравнение получалось верное числовое равенство.

Например выражение 3 + 2 = 5 является равенством. При вычислении левой части получается верное числовое равенство 5 = 5 .

А вот равенство 3 + x = 5 является уравнением, поскольку содержит в себе переменную x , значение которой можно найти. Значение должно быть таким, чтобы при подстановке этого значения в исходное уравнение, получилось верное числовое равенство.

Другими словами, мы должны найти такое значение, при котором знак равенства оправдал бы свое местоположение — левая часть должна быть равна правой части.

Уравнение 3 + x = 5 является элементарным. Значение переменной x равно числу 2. При любом другом значении равенство соблюдáться не будет

Введение новых неизвестных в уравнении

Говорят, что число 2 является корнем или решением уравнения 3 + x = 5

Корень или решение уравнения — это значение переменной, при котором уравнение обращается в верное числовое равенство.

Корней может быть несколько или не быть совсем. Решить уравнение означает найти его корни или доказать, что корней нет.

Переменную, входящую в уравнение, иначе называют неизвестным. Вы вправе называть как вам удобнее. Это синонимы.

Примечание. Словосочетание «решить уравнение» говорит самó за себя. Решить уравнение означает «уравнять» равенство — сделать его сбалансированным, чтобы левая часть равнялась правой части.

Видео:Алгебра 9 класс. Решение систем уравнений методом замены переменныхСкачать

Алгебра 9 класс. Решение систем уравнений методом замены переменных

Выразить одно через другое

Изучение уравнений по традиции начинается с того, чтобы научиться выражать одно число, входящее в равенство, через ряд других. Давайте не будем нарушать эту традицию и поступим также.

Рассмотрим следующее выражение:

Данное выражение является суммой чисел 8 и 2. Значение данного выражения равно 10

Получили равенство. Теперь можно выразить любое число из этого равенства через другие числа, входящие в это же равенство. К примеру, выразим число 2.

Чтобы выразить число 2, нужно задать вопрос: «что нужно сделать с числами 10 и 8, чтобы получить число 2». Понятно, что для получения числа 2, нужно из числа 10 вычесть число 8.

Так и делаем. Записываем число 2 и через знак равенства говорим, что для получения этого числа 2 мы из числа 10 вычли число 8:

Мы выразили число 2 из равенства 8 + 2 = 10 . Как видно из примера, ничего сложного в этом нет.

При решении уравнений, в частности при выражении одного числа через другие, знак равенства удобно заменять на слово «есть». Делать это нужно мысленно, а не в самом выражении.

Так, выражая число 2 из равенства 8 + 2 = 10 мы получили равенство 2 = 10 − 8 . Данное равенство можно прочесть так:

2 есть 10 − 8

То есть знак = заменен на слово «есть». Более того, равенство 2 = 10 − 8 можно перевести с математического языка на полноценный человеческий язык. Тогда его можно будет прочитать следующим образом:

Число 2 есть разность числа 10 и числа 8

Число 2 есть разница между числом 10 и числом 8.

Но мы ограничимся лишь заменой знака равенства на слово «есть», и то будем делать это не всегда. Элементарные выражения можно понимать и без перевода математического языка на язык человеческий.

Вернём получившееся равенство 2 = 10 − 8 в первоначальное состояние:

Выразим в этот раз число 8. Что нужно сделать с остальными числами, чтобы получить число 8? Верно, нужно из числа 10 вычесть число 2

Вернем получившееся равенство 8 = 10 − 2 в первоначальное состояние:

В этот раз выразим число 10. Но оказывается, что десятку выражать не нужно, поскольку она уже выражена. Достаточно поменять местами левую и правую часть, тогда получится то, что нам нужно:

Пример 2. Рассмотрим равенство 8 − 2 = 6

Выразим из этого равенства число 8. Чтобы выразить число 8 остальные два числа нужно сложить:

Вернем получившееся равенство 8 = 6 + 2 в первоначальное состояние:

Выразим из этого равенства число 2. Чтобы выразить число 2, нужно из 8 вычесть 6

Пример 3. Рассмотрим равенство 3 × 2 = 6

Выразим число 3. Чтобы выразить число 3, нужно 6 разделить 2

Введение новых неизвестных в уравнении

Вернем получившееся равенство Введение новых неизвестных в уравнениив первоначальное состояние:

Выразим из этого равенства число 2. Чтобы выразить число 2, нужно 6 разделить 3

Введение новых неизвестных в уравнении

Пример 4. Рассмотрим равенство Введение новых неизвестных в уравнении

Выразим из этого равенства число 15. Чтобы выразить число 15, нужно перемножить числа 3 и 5

Вернем получившееся равенство 15 = 3 × 5 в первоначальное состояние:

Введение новых неизвестных в уравнении

Выразим из этого равенства число 5. Чтобы выразить число 5, нужно 15 разделить 3

Введение новых неизвестных в уравнении

Видео:Алгебра 7 класс (Урок№43 - Решение линейных уравнений с одним неизвестным.)Скачать

Алгебра 7 класс (Урок№43 - Решение линейных уравнений с одним неизвестным.)

Правила нахождения неизвестных

Рассмотрим несколько правил нахождения неизвестных. Возможно, они вам знакомы, но не мешает повторить их ещё раз. В дальнейшем их можно будет забыть, поскольку мы научимся решать уравнения, не применяя эти правила.

Вернемся к первому примеру, который мы рассматривали в предыдущей теме, где в равенстве 8 + 2 = 10 требовалось выразить число 2.

В равенстве 8 + 2 = 10 числа 8 и 2 являются слагаемыми, а число 10 — суммой.

Введение новых неизвестных в уравнении

Чтобы выразить число 2, мы поступили следующим образом:

То есть из суммы 10 вычли слагаемое 8.

Теперь представим, что в равенстве 8 + 2 = 10 вместо числа 2 располагается переменная x

В этом случае равенство 8 + 2 = 10 превращается в уравнение 8 + x = 10 , а переменная x берет на себя роль так называемого неизвестного слагаемого

Введение новых неизвестных в уравнении

Наша задача найти это неизвестное слагаемое, то есть решить уравнение 8 + x = 10 . Для нахождения неизвестного слагаемого предусмотрено следующее правило:

Чтобы найти неизвестное слагаемое, нужно из суммы вычесть известное слагаемое.

Что мы в принципе и сделали, когда выражали двойку в равенстве 8 + 2 = 10 . Чтобы выразить слагаемое 2, мы из суммы 10 вычли другое слагаемое 8

А сейчас, чтобы найти неизвестное слагаемое x , мы должны из суммы 10 вычесть известное слагаемое 8:

Если вычислить правую часть получившегося равенства, то можно узнать чему равна переменная x

Мы решили уравнение. Значение переменной x равно 2 . Для проверки значение переменной x отправляют в исходное уравнение 8 + x = 10 и подставляют вместо x. Так желательно поступать с любым решённым уравнением, поскольку нельзя быть точно уверенным, что уравнение решено правильно:

Введение новых неизвестных в уравнении

В результате получается верное числовое равенство. Значит уравнение решено правильно.

Это же правило действовало бы в случае, если неизвестным слагаемым было бы первое число 8.

В этом уравнении x — это неизвестное слагаемое, 2 — известное слагаемое, 10 — сумма. Чтобы найти неизвестное слагаемое x , нужно из суммы 10 вычесть известное слагаемое 2

Введение новых неизвестных в уравнении

Вернемся ко второму примеру из предыдущей темы, где в равенстве 8 − 2 = 6 требовалось выразить число 8.

В равенстве 8 − 2 = 6 число 8 это уменьшаемое, число 2 — вычитаемое, число 6 — разность

Введение новых неизвестных в уравнении

Чтобы выразить число 8, мы поступили следующим образом:

То есть сложили разность 6 и вычитаемое 2.

Теперь представим, что в равенстве 8 − 2 = 6 вместо числа 8 располагается переменная x

В этом случае переменная x берет на себя роль так называемого неизвестного уменьшаемого

Введение новых неизвестных в уравнении

Для нахождения неизвестного уменьшаемого предусмотрено следующее правило:

Чтобы найти неизвестное уменьшаемое, нужно к разности прибавить вычитаемое.

Что мы и сделали, когда выражали число 8 в равенстве 8 − 2 = 6 . Чтобы выразить уменьшаемое 8, мы к разности 6 прибавили вычитаемое 2.

А сейчас, чтобы найти неизвестное уменьшаемое x , мы должны к разности 6 прибавить вычитаемое 2

Если вычислить правую часть, то можно узнать чему равна переменная x

Теперь представим, что в равенстве 8 − 2 = 6 вместо числа 2 располагается переменная x

В этом случае переменная x берет на себя роль неизвестного вычитаемого

Введение новых неизвестных в уравнении

Для нахождения неизвестного вычитаемого предусмотрено следующее правило:

Чтобы найти неизвестное вычитаемое, нужно из уменьшаемого вычесть разность.

Что мы и сделали, когда выражали число 2 в равенстве 8 − 2 = 6. Чтобы выразить число 2, мы из уменьшаемого 8 вычли разность 6.

А сейчас, чтобы найти неизвестное вычитаемое x, нужно опять же из уменьшаемого 8 вычесть разность 6

Вычисляем правую часть и находим значение x

Вернемся к третьему примеру из предыдущей темы, где в равенстве 3 × 2 = 6 мы пробовали выразить число 3.

В равенстве 3 × 2 = 6 число 3 — это множимое, число 2 — множитель, число 6 — произведение

Введение новых неизвестных в уравнении

Чтобы выразить число 3 мы поступили следующим образом:

Введение новых неизвестных в уравнении

То есть разделили произведение 6 на множитель 2.

Теперь представим, что в равенстве 3 × 2 = 6 вместо числа 3 располагается переменная x

В этом случае переменная x берет на себя роль неизвестного множимого.

Введение новых неизвестных в уравнении

Для нахождения неизвестного множимого предусмотрено следующее правило:

Чтобы найти неизвестное множимое, нужно произведение разделить на множитель.

Что мы и сделали, когда выражали число 3 из равенства 3 × 2 = 6 . Произведение 6 мы разделили на множитель 2.

А сейчас для нахождения неизвестного множимого x , нужно произведение 6 разделить на множитель 2.

Введение новых неизвестных в уравнении

Вычисление правой части позволяет нам найти значение переменной x

Это же правило применимо в случае, если переменная x располагается вместо множителя, а не множимого. Представим, что в равенстве 3 × 2 = 6 вместо числа 2 располагается переменная x .

Введение новых неизвестных в уравнении

В этом случае переменная x берет на себя роль неизвестного множителя. Для нахождения неизвестного множителя предусмотрено такое же, что и для нахождения неизвестного множимого, а именно деление произведения на известный множитель:

Чтобы найти неизвестный множитель, нужно произведение разделить на множимое.

Введение новых неизвестных в уравнении

Что мы и сделали, когда выражали число 2 из равенства 3 × 2 = 6 . Тогда для получения числа 2 мы разделили произведение 6 на множимое 3.

А сейчас для нахождения неизвестного множителя x мы разделили произведение 6 на множимое 3.

Вычисление правой части равенства Введение новых неизвестных в уравнениипозволяет узнать чему равно x

Множимое и множитель вместе называют сомножителями. Поскольку правила нахождения множимого и множителя совпадают, мы можем сформулировать общее правило нахождения неизвестного сомножителя:

Чтобы найти неизвестный сомножитель, нужно произведение разделить на известный сомножитель.

Например, решим уравнение 9 × x = 18 . Переменная x является неизвестным сомножителем. Чтобы найти этот неизвестный сомножитель, нужно произведение 18 разделить на известный сомножитель 9

Введение новых неизвестных в уравнении

Отсюда Введение новых неизвестных в уравнении.

Решим уравнение x × 3 = 27 . Переменная x является неизвестным сомножителем. Чтобы найти этот неизвестный сомножитель, нужно произведение 27 разделить на известный сомножитель 3

Введение новых неизвестных в уравнении

Отсюда Введение новых неизвестных в уравнении.

Вернемся к четвертому примеру из предыдущей темы, где в равенстве Введение новых неизвестных в уравнениитребовалось выразить число 15. В этом равенстве число 15 — это делимое, число 5 — делитель, число 3 — частное.

Введение новых неизвестных в уравнении

Чтобы выразить число 15 мы поступили следующим образом:

То есть умножили частное 3 на делитель 5.

Теперь представим, что в равенстве Введение новых неизвестных в уравнениивместо числа 15 располагается переменная x

Введение новых неизвестных в уравнении

В этом случае переменная x берет на себя роль неизвестного делимого.

Введение новых неизвестных в уравнении

Для нахождения неизвестного делимого предусмотрено следующее правило:

Чтобы найти неизвестное делимое, нужно частное умножить на делитель.

Что мы и сделали, когда выражали число 15 из равенства Введение новых неизвестных в уравнении. Чтобы выразить число 15, мы умножили частное 3 на делитель 5.

А сейчас, чтобы найти неизвестное делимое x , нужно частное 3 умножить на делитель 5

Вычислим правую часть получившегося равенства. Так мы узнаем чему равна переменная x .

Теперь представим, что в равенстве Введение новых неизвестных в уравнениивместо числа 5 располагается переменная x .

Введение новых неизвестных в уравнении

В этом случае переменная x берет на себя роль неизвестного делителя.

Введение новых неизвестных в уравнении

Для нахождения неизвестного делителя предусмотрено следующее правило:

Чтобы найти неизвестный делитель, нужно делимое разделить на частное.

Что мы и сделали, когда выражали число 5 из равенства Введение новых неизвестных в уравнении. Чтобы выразить число 5, мы разделили делимое 15 на частное 3.

А сейчас, чтобы найти неизвестный делитель x , нужно делимое 15 разделить на частное 3

Введение новых неизвестных в уравнении

Вычислим правую часть получившегося равенства. Так мы узнаем чему равна переменная x .

Итак, для нахождения неизвестных мы изучили следующие правила:

  • Чтобы найти неизвестное слагаемое, нужно из суммы вычесть известное слагаемое;
  • Чтобы найти неизвестное уменьшаемое, нужно к разности прибавить вычитаемое;
  • Чтобы найти неизвестное вычитаемое, нужно из уменьшаемого вычесть разность;
  • Чтобы найти неизвестное множимое, нужно произведение разделить на множитель;
  • Чтобы найти неизвестный множитель, нужно произведение разделить на множимое;
  • Чтобы найти неизвестное делимое, нужно частное умножить на делитель;
  • Чтобы найти неизвестный делитель, нужно делимое разделить на частное.

Видео:Вся суть уравнений за 1 секунду. Хватит путать знаки в уравнениях!Скачать

Вся суть уравнений за 1 секунду. Хватит путать знаки в уравнениях!

Компоненты

Компонентами мы будем называть числа и переменные, входящие в равенство

Так, компонентами сложения являются слагаемые и сумма

Введение новых неизвестных в уравнении

Компонентами вычитания являются уменьшаемое, вычитаемое и разность

Введение новых неизвестных в уравнении

Компонентами умножения являются множимое, множитель и произведение

Введение новых неизвестных в уравнении

Компонентами деления являются делимое, делитель и частное

Введение новых неизвестных в уравнении

В зависимости от того, с какими компонентами мы будем иметь дело, будут применяться соответствующие правила нахождения неизвестных. Эти правила мы изучили в предыдущей теме. При решении уравнений желательно знать эти правило наизусть.

Пример 1. Найти корень уравнения 45 + x = 60

45 — слагаемое, x — неизвестное слагаемое, 60 — сумма. Имеем дело с компонентами сложения. Вспоминаем, что для нахождения неизвестного слагаемого, нужно из суммы вычесть известное слагаемое:

Вычислим правую часть, получим значение x равное 15

Значит корень уравнения 45 + x = 60 равен 15.

Чаще всего неизвестное слагаемое необходимо привести к виду при котором его можно было бы выразить.

Пример 2. Решить уравнение Введение новых неизвестных в уравнении

Здесь в отличие от предыдущего примера, неизвестное слагаемое нельзя выразить сразу, поскольку оно содержит коэффициент 2. Наша задача привести это уравнение к виду при котором можно было бы выразить x

В данном примере мы имеем дело с компонентами сложения — слагаемыми и суммой. 2x — это первое слагаемое, 4 — второе слагаемое, 8 — сумма.

Введение новых неизвестных в уравнении

При этом слагаемое 2x содержит переменную x . После нахождения значения переменной x слагаемое 2x примет другой вид. Поэтому слагаемое 2x можно полностью принять за неизвестное слагаемое:

Введение новых неизвестных в уравнении

Теперь применяем правило нахождения неизвестного слагаемого. Вычитаем из суммы известное слагаемое:

Введение новых неизвестных в уравнении

Вычислим правую часть получившегося уравнения:

Введение новых неизвестных в уравнении

Мы получили новое уравнение Введение новых неизвестных в уравнении. Теперь мы имеем дело с компонентами умножения: множимым, множителем и произведением. 2 — множимое, x — множитель, 4 — произведение

Введение новых неизвестных в уравнении

При этом переменная x является не просто множителем, а неизвестным множителем

Введение новых неизвестных в уравнении

Чтобы найти этот неизвестный множитель, нужно произведение разделить на множимое:

Введение новых неизвестных в уравнении

Вычислим правую часть, получим значение переменной x

Введение новых неизвестных в уравнении

Для проверки найденный корень отправим в исходное уравнение Введение новых неизвестных в уравнениии подставим вместо x

Введение новых неизвестных в уравнении

Получили верное числовое равенство. Значит уравнение решено правильно.

Пример 3. Решить уравнение 3x + 9x + 16x = 56

Cразу выразить неизвестное x нельзя. Сначала нужно привести данное уравнение к виду при котором его можно было бы выразить.

Приведем подобные слагаемые в левой части данного уравнения:

Введение новых неизвестных в уравнении

Имеем дело с компонентами умножения. 28 — множимое, x — множитель, 56 — произведение. При этом x является неизвестным множителем. Чтобы найти неизвестный множитель, нужно произведение разделить на множимое:

Введение новых неизвестных в уравнении

Отсюда x равен 2

Введение новых неизвестных в уравнении

Видео:Линейное уравнение с двумя переменными. 7 класс.Скачать

Линейное уравнение с двумя переменными. 7 класс.

Равносильные уравнения

В предыдущем примере при решении уравнения 3x + 9x + 16x = 56 , мы привели подобные слагаемые в левой части уравнения. В результате получили новое уравнение 28x = 56 . Старое уравнение 3x + 9x + 16x = 56 и получившееся новое уравнение 28x = 56 называют равносильными уравнениями, поскольку их корни совпадают.

Уравнения называют равносильными, если их корни совпадают.

Проверим это. Для уравнения 3x + 9x + 16x = 56 мы нашли корень равный 2 . Подставим этот корень сначала в уравнение 3x + 9x + 16x = 56 , а затем в уравнение 28x = 56 , которое получилось в результате приведения подобных слагаемых в левой части предыдущего уравнения. Мы должны получить верные числовые равенства

Введение новых неизвестных в уравнении

Согласно порядку действий, в первую очередь выполняется умножение:

Введение новых неизвестных в уравнении

Подставим корень 2 во второе уравнение 28x = 56

Введение новых неизвестных в уравнении

Видим, что у обоих уравнений корни совпадают. Значит уравнения 3x + 9x + 16x = 56 и 28x = 56 действительно являются равносильными.

Для решения уравнения 3x + 9x + 16x = 56 мы воспользовались одним из тождественных преобразований — приведением подобных слагаемых. Правильное тождественное преобразование уравнения позволило нам получить равносильное уравнение 28x = 56 , которое проще решать.

Из тождественных преобразований на данный момент мы умеем только сокращать дроби, приводить подобные слагаемые, выносить общий множитель за скобки, а также раскрывать скобки. Существуют и другие преобразования, которые следует знать. Но для общего представления о тождественных преобразованиях уравнений, изученных нами тем вполне хватает.

Рассмотрим некоторые преобразования, которые позволяют получить равносильное уравнение

Если к обеим частям уравнения прибавить одно и то же число, то получится уравнение равносильное данному.

Если из обеих частей уравнения вычесть одно и то же число, то получится уравнение равносильное данному.

Другими словами, корень уравнения не изменится, если к обеим частям данного уравнения прибавить (или вычесть из обеих частей) одно и то же число.

Пример 1. Решить уравнение Введение новых неизвестных в уравнении

Вычтем из обеих частей уравнения число 10

Введение новых неизвестных в уравнении

Приведем подобные слагаемые в обеих частях:

Введение новых неизвестных в уравнении

Получили уравнение 5x = 10 . Имеем дело с компонентами умножения. Чтобы найти неизвестный сомножитель x , нужно произведение 10 разделить на известный сомножитель 5.

Введение новых неизвестных в уравнении

Отсюда Введение новых неизвестных в уравнении.

Вернемся к исходному уравнению Введение новых неизвестных в уравнениии подставим вместо x найденное значение 2

Введение новых неизвестных в уравнении

Получили верное числовое равенство. Значит уравнение решено правильно.

Решая уравнение Введение новых неизвестных в уравнениимы вычли из обеих частей уравнения число 10 . В результате получили равносильное уравнение Введение новых неизвестных в уравнении. Корень этого уравнения, как и уравнения Введение новых неизвестных в уравнениитак же равен 2

Введение новых неизвестных в уравнении

Пример 2. Решить уравнение 4(x + 3) = 16

Раскроем скобки в левой части равенства:

Введение новых неизвестных в уравнении

Вычтем из обеих частей уравнения число 12

Введение новых неизвестных в уравнении

Приведем подобные слагаемые в обеих частях уравнения:

Введение новых неизвестных в уравненииВ левой части останется 4x , а в правой части число 4

Введение новых неизвестных в уравнении

Получили уравнение 4x = 4 . Имеем дело с компонентами умножения. Чтобы найти неизвестный сомножитель x , нужно произведение 4 разделить на известный сомножитель 4

Введение новых неизвестных в уравнении

Отсюда Введение новых неизвестных в уравнении

Вернемся к исходному уравнению 4(x + 3) = 16 и подставим вместо x найденное значение 1

Введение новых неизвестных в уравнении

Получили верное числовое равенство. Значит уравнение решено правильно.

Решая уравнение 4(x + 3) = 16 мы вычли из обеих частей уравнения число 12 . В результате получили равносильное уравнение 4x = 4 . Корень этого уравнения, как и уравнения 4(x + 3) = 16 так же равен 1

Введение новых неизвестных в уравнении

Пример 3. Решить уравнение Введение новых неизвестных в уравнении

Раскроем скобки в левой части равенства:

Введение новых неизвестных в уравнении

Прибавим к обеим частям уравнения число 8

Введение новых неизвестных в уравнении

Приведем подобные слагаемые в обеих частях уравнения:

Введение новых неизвестных в уравнении

В левой части останется 2x , а в правой части число 9

Введение новых неизвестных в уравнении

В получившемся уравнении 2x = 9 выразим неизвестное слагаемое x

Введение новых неизвестных в уравнении

Отсюда Введение новых неизвестных в уравнении

Вернемся к исходному уравнению Введение новых неизвестных в уравнениии подставим вместо x найденное значение 4,5

Введение новых неизвестных в уравнении

Получили верное числовое равенство. Значит уравнение решено правильно.

Решая уравнение Введение новых неизвестных в уравнениимы прибавили к обеим частям уравнения число 8. В результате получили равносильное уравнение Введение новых неизвестных в уравнении. Корень этого уравнения, как и уравнения Введение новых неизвестных в уравнениитак же равен 4,5

Введение новых неизвестных в уравнении

Следующее правило, которое позволяет получить равносильное уравнение, выглядит следующим образом

Если в уравнении перенести слагаемое из одной части в другую, изменив его знак, то получится уравнение равносильное данному.

То есть корень уравнения не изменится, если мы перенесем слагаемое из одной части уравнения в другую, изменив его знак. Это свойство является одним из важных и одним из часто используемых при решении уравнений.

Рассмотрим следующее уравнение:

Введение новых неизвестных в уравнении

Корень данного уравнения равен 2. Подставим вместо x этот корень и проверим получается ли верное числовое равенство

Введение новых неизвестных в уравнении

Получается верное равенство. Значит число 2 действительно является корнем уравнения Введение новых неизвестных в уравнении.

Теперь попробуем поэкспериментировать со слагаемыми этого уравнения, перенося их из одной части в другую, изменяя знаки.

Например, слагаемое 3x располагается в левой части равенства. Перенесём его в правую часть, изменив знак на противоположный:

Введение новых неизвестных в уравнении

Получилось уравнение 12 = 9x − 3x . Приведем подобные слагаемые в правой части данного уравнения:

Введение новых неизвестных в уравнении

Имеем дело с компонентами умножения. Переменная x является неизвестным сомножителем. Найдём этот известный сомножитель:

Введение новых неизвестных в уравнении

Отсюда x = 2 . Как видим, корень уравнения не изменился. Значит уравнения 12 + 3x = 9x и 12 = 9x − 3x являются равносильными.

На самом деле данное преобразование является упрощенным методом предыдущего преобразования, где к обеим частям уравнения прибавлялось (или вычиталось) одно и то же число.

Мы сказали, что в уравнении 12 + 3x = 9x слагаемое 3x было перенесено в правую часть, изменив знак. В реальности же происходило следующее: из обеих частей уравнения вычли слагаемое 3x

Введение новых неизвестных в уравнении

Затем в левой части были приведены подобные слагаемые и получено уравнение 12 = 9x − 3x. Затем опять были приведены подобные слагаемые, но уже в правой части, и получено уравнение 12 = 6x.

Но так называемый «перенос» более удобен для подобных уравнений, поэтому он и получил такое широкое распространение. Решая уравнения, мы часто будем пользоваться именно этим преобразованием.

Равносильными также являются уравнения 12 + 3x = 9x и 3x − 9x = −12 . В этот раз в уравнении 12 + 3x = 9x слагаемое 12 было перенесено в правую часть, а слагаемое 9x в левую. Не следует забывать, что знаки этих слагаемых были изменены во время переноса

Введение новых неизвестных в уравнении

Следующее правило, которое позволяет получить равносильное уравнение, выглядит следующим образом:

Если обе части уравнения умножить или разделить на одно и то же число, не равное нулю, то получится уравнение равносильное данному.

Другими словами, корни уравнения не изменятся, если обе его части умножить или разделить на одно и то же число. Это действие часто применяется тогда, когда нужно решить уравнение содержащее дробные выражения.

Сначала рассмотрим примеры, в которых обе части уравнения будут умножаться на одно и то же число.

Пример 1. Решить уравнение Введение новых неизвестных в уравнении

При решении уравнений, содержащих дробные выражения, сначала принято упростить это уравнение.

В данном случае мы имеем дело именно с таким уравнением. В целях упрощения данного уравнения обе его части можно умножить на 8:

Введение новых неизвестных в уравнении

Мы помним, что для умножения дроби на число, нужно числитель данной дроби умножить на это число. У нас имеются две дроби и каждая из них умножается на число 8. Наша задача умножить числители дробей на это число 8

Введение новых неизвестных в уравнении

Теперь происходит самое интересное. В числителях и знаменателях обеих дробей содержится множитель 8, который можно сократить на 8. Это позволит нам избавиться от дробного выражения:

Введение новых неизвестных в уравнении

В результате останется простейшее уравнение

Введение новых неизвестных в уравнении

Ну и нетрудно догадаться, что корень этого уравнения равен 4

Введение новых неизвестных в уравнении

Вернемся к исходному уравнению Введение новых неизвестных в уравнениии подставим вместо x найденное значение 4

Введение новых неизвестных в уравнении

Получается верное числовое равенство. Значит уравнение решено правильно.

При решении данного уравнения мы умножили обе его части на 8. В результате получили уравнение Введение новых неизвестных в уравнении. Корень этого уравнения, как и уравнения Введение новых неизвестных в уравненииравен 4. Значит эти уравнения равносильны.

Множитель на который умножаются обе части уравнения принято записывать перед частью уравнения, а не после неё. Так, решая уравнение Введение новых неизвестных в уравнении, мы умножили обе части на множитель 8 и получили следующую запись:

Введение новых неизвестных в уравнении

От этого корень уравнения не изменился, но если бы мы сделали это находясь в школе, то нам сделали бы замечание, поскольку в алгебре множитель принято записывать перед тем выражением, с которым он перемножается. Поэтому умножение обеих частей уравнения Введение новых неизвестных в уравнениина множитель 8 желательно переписать следующим образом:

Введение новых неизвестных в уравнении

Пример 2. Решить уравнение Введение новых неизвестных в уравнении

Умнóжим обе части уравнения на 15

Введение новых неизвестных в уравнении

В левой части множители 15 можно сократить на 15, а в правой части множители 15 и 5 можно сократить на 5

Введение новых неизвестных в уравнении

Перепишем то, что у нас осталось:

Введение новых неизвестных в уравнении

Раскроем скобки в правой части уравнения:

Введение новых неизвестных в уравнении

Перенесем слагаемое x из левой части уравнения в правую часть, изменив знак. А слагаемое 15 из правой части уравнения перенесем в левую часть, опять же изменив знак:

Введение новых неизвестных в уравнении

Приведем подобные слагаемые в обеих частях, получим

Введение новых неизвестных в уравнении

Имеем дело с компонентами умножения. Переменная x является неизвестным сомножителем. Найдём этот известный сомножитель:

Введение новых неизвестных в уравнении

Отсюда Введение новых неизвестных в уравнении

Вернемся к исходному уравнению Введение новых неизвестных в уравнениии подставим вместо x найденное значение 5

Введение новых неизвестных в уравнении

Получается верное числовое равенство. Значит уравнение решено правильно. При решении данного уравнения мы умножили обе го части на 15 . Далее выполняя тождественные преобразования, мы получили уравнение 10 = 2x . Корень этого уравнения, как и уравнения Введение новых неизвестных в уравненииравен 5 . Значит эти уравнения равносильны.

Пример 3. Решить уравнение Введение новых неизвестных в уравнении

Умнóжим обе части уравнения на 3

Введение новых неизвестных в уравнении

В левой части можно сократить две тройки, а правая часть будет равна 18

Введение новых неизвестных в уравнении

Останется простейшее уравнение Введение новых неизвестных в уравнении. Имеем дело с компонентами умножения. Переменная x является неизвестным сомножителем. Найдём этот известный сомножитель:

Введение новых неизвестных в уравнении

Отсюда Введение новых неизвестных в уравнении

Вернемся к исходному уравнению Введение новых неизвестных в уравнениии подставим вместо x найденное значение 9

Введение новых неизвестных в уравнении

Получается верное числовое равенство. Значит уравнение решено правильно.

Пример 4. Решить уравнение Введение новых неизвестных в уравнении

Умнóжим обе части уравнения на 6

Введение новых неизвестных в уравнении

В левой части уравнения раскроем скобки. В правой части множитель 6 можно поднять в числитель:

Введение новых неизвестных в уравнении

Сократим в обеих частях уравнениях то, что можно сократить:

Введение новых неизвестных в уравнении

Перепишем то, что у нас осталось:

Введение новых неизвестных в уравнении

Раскроем скобки в обеих частях уравнения:

Введение новых неизвестных в уравнении

Воспользуемся переносом слагаемых. Слагаемые, содержащие неизвестное x , сгруппируем в левой части уравнения, а слагаемые свободные от неизвестных — в правой:

Введение новых неизвестных в уравнении

Приведем подобные слагаемые в обеих частях:

Введение новых неизвестных в уравнении

Теперь найдем значение переменной x . Для этого разделим произведение 28 на известный сомножитель 7

Введение новых неизвестных в уравнении

Вернемся к исходному уравнению Введение новых неизвестных в уравнениии подставим вместо x найденное значение 4

Введение новых неизвестных в уравнении

Получилось верное числовое равенство. Значит уравнение решено правильно.

Пример 5. Решить уравнение Введение новых неизвестных в уравнении

Раскроем скобки в обеих частях уравнения там, где это можно:

Введение новых неизвестных в уравнении

Умнóжим обе части уравнения на 15

Введение новых неизвестных в уравнении

Раскроем скобки в обеих частях уравнения:

Введение новых неизвестных в уравнении

Сократим в обеих частях уравнения, то что можно сократить:

Введение новых неизвестных в уравнении

Перепишем то, что у нас осталось:

Введение новых неизвестных в уравнении

Раскроем скобки там, где это можно:

Введение новых неизвестных в уравнении

Воспользуемся переносом слагаемых. Слагаемые, содержащие неизвестное, сгруппируем в левой части уравнения, а слагаемые, свободные от неизвестных — в правой. Не забываем, что во время переноса, слагаемые меняют свои знаки на противоположные:

Введение новых неизвестных в уравнении

Приведем подобные слагаемые в обеих частях уравнения:

Введение новых неизвестных в уравнении

Найдём значение x

Введение новых неизвестных в уравнении

В получившемся ответе можно выделить целую часть:

Введение новых неизвестных в уравнении

Вернемся к исходному уравнению и подставим вместо x найденное значение Введение новых неизвестных в уравнении

Введение новых неизвестных в уравнении

Получается довольно громоздкое выражение. Воспользуемся переменными. Левую часть равенства занесем в переменную A , а правую часть равенства в переменную B

Введение новых неизвестных в уравнении

Наша задача состоит в том, чтобы убедиться равна ли левая часть правой. Другими словами, доказать равенство A = B

Найдем значение выражения, находящегося в переменной А.

Введение новых неизвестных в уравнении

Значение переменной А равно Введение новых неизвестных в уравнении. Теперь найдем значение переменной B . То есть значение правой части нашего равенства. Если и оно равно Введение новых неизвестных в уравнении, то уравнение будет решено верно

Введение новых неизвестных в уравнении

Видим, что значение переменной B , как и значение переменной A равно Введение новых неизвестных в уравнении. Это значит, что левая часть равна правой части. Отсюда делаем вывод, что уравнение решено правильно.

Теперь попробуем не умножать обе части уравнения на одно и то же число, а делить.

Рассмотрим уравнение 30x + 14x + 14 = 70x − 40x + 42 . Решим его обычным методом: слагаемые, содержащие неизвестные, сгруппируем в левой части уравнения, а слагаемые, свободные от неизвестных — в правой. Далее выполняя известные тождественные преобразования, найдем значение x

Введение новых неизвестных в уравнении

Подставим найденное значение 2 вместо x в исходное уравнение:

Введение новых неизвестных в уравнении

Теперь попробуем разделить все слагаемые уравнения 30x + 14x + 14 = 70x − 40x + 42 на какое-нибудь число. Замечаем, что все слагаемые этого уравнения имеют общий множитель 2. На него и разделим каждое слагаемое:

Введение новых неизвестных в уравнении

Выполним сокращение в каждом слагаемом:

Введение новых неизвестных в уравнении

Перепишем то, что у нас осталось:

Введение новых неизвестных в уравнении

Решим это уравнение, пользуясь известными тождественными преобразованиями:

Введение новых неизвестных в уравнении

Получили корень 2 . Значит уравнения 15x + 7x + 7 = 35x − 20x + 21 и 30x + 14x + 14 = 70x − 40x + 42 равносильны.

Деление обеих частей уравнения на одно и то же число позволяет освобождать неизвестное от коэффициента. В предыдущем примере когда мы получили уравнение 7x = 14 , нам потребовалось разделить произведение 14 на известный сомножитель 7. Но если бы мы в левой части освободили неизвестное от коэффициента 7, корень нашелся бы сразу. Для этого достаточно было разделить обе части на 7

Введение новых неизвестных в уравнении

Этим методом мы тоже будем пользоваться часто.

Видео:Решение системы линейных уравнений с двумя переменными способом подстановки. 6 класс.Скачать

Решение системы линейных уравнений с двумя переменными способом подстановки. 6 класс.

Умножение на минус единицу

Если обе части уравнения умножить на минус единицу, то получится уравнение равносильное данному.

Это правило следует из того, что от умножения (или деления) обеих частей уравнения на одно и то же число, корень данного уравнения не меняется. А значит корень не поменяется если обе его части умножить на −1 .

Данное правило позволяет поменять знаки всех компонентов, входящих в уравнение. Для чего это нужно? Опять же, чтобы получить равносильное уравнение, которое проще решать.

Рассмотрим уравнение Введение новых неизвестных в уравнении. Чему равен корень этого уравнения?

Прибавим к обеим частям уравнения число 5

Введение новых неизвестных в уравнении

Приведем подобные слагаемые:

Введение новых неизвестных в уравнении

А теперь вспомним про коэффициент буквенного выражения. Что же представляет собой левая часть уравнения Введение новых неизвестных в уравнении. Это есть произведение минус единицы и переменной x

Введение новых неизвестных в уравнении

То есть минус, стоящий перед переменной x, относится не к самой переменной x , а к единице, которую мы не видим, поскольку коэффициент 1 принято не записывать. Это означает, что уравнение Введение новых неизвестных в уравнениина самом деле выглядит следующим образом:

Введение новых неизвестных в уравнении

Имеем дело с компонентами умножения. Чтобы найти х , нужно произведение −5 разделить на известный сомножитель −1 .

Введение новых неизвестных в уравнении

или разделить обе части уравнения на −1 , что еще проще

Введение новых неизвестных в уравнении

Итак, корень уравнения Введение новых неизвестных в уравненииравен 5 . Для проверки подставим его в исходное уравнение. Не забываем, что в исходном уравнении минус стоящий перед переменной x относится к невидимой единице

Введение новых неизвестных в уравнении

Получилось верное числовое равенство. Значит уравнение решено верно.

Теперь попробуем умножить обе части уравнения Введение новых неизвестных в уравнениина минус единицу:

Введение новых неизвестных в уравнении

После раскрытия скобок в левой части образуется выражение Введение новых неизвестных в уравнении, а правая часть будет равна 10

Введение новых неизвестных в уравнении

Корень этого уравнения, как и уравнения Введение новых неизвестных в уравненииравен 5

Введение новых неизвестных в уравнении

Значит уравнения Введение новых неизвестных в уравнениии Введение новых неизвестных в уравненииравносильны.

Пример 2. Решить уравнение Введение новых неизвестных в уравнении

В данном уравнении все компоненты являются отрицательными. С положительными компонентами работать удобнее, чем с отрицательными, поэтому поменяем знаки всех компонентов, входящих в уравнение Введение новых неизвестных в уравнении. Для этого умнóжим обе части данного уравнения на −1 .

Понятно, что от умножения на −1 любое число поменяет свой знак на противоположный. Поэтому саму процедуру умножения на −1 и раскрытие скобок подробно не расписывают, а сразу записывают компоненты уравнения с противоположными знаками.

Так, умножение уравнения Введение новых неизвестных в уравнениина −1 можно записать подробно следующим образом:

Введение новых неизвестных в уравнении

либо можно просто поменять знаки всех компонентов:

Введение новых неизвестных в уравнении

Получится то же самое, но разница будет в том, что мы сэкономим себе время.

Итак, умножив обе части уравнения Введение новых неизвестных в уравнениина −1 , мы получили уравнение Введение новых неизвестных в уравнении. Решим данное уравнение. Из обеих частей вычтем число 4 и разделим обе части на 3

Введение новых неизвестных в уравнении

Когда корень найден, переменную обычно записывают в левой части, а её значение в правой, что мы и сделали.

Пример 3. Решить уравнение Введение новых неизвестных в уравнении

Умнóжим обе части уравнения на −1 . Тогда все компоненты поменяют свои знаки на противоположные:

Введение новых неизвестных в уравнении

Из обеих частей получившегося уравнения вычтем 2x и приведем подобные слагаемые:

Введение новых неизвестных в уравнении

Прибавим к обеим частям уравнения единицу и приведем подобные слагаемые: Введение новых неизвестных в уравнении

Видео:2 уравнения и 3 неизвестных — система, которая на олимпиаде вынесла почти всехСкачать

2 уравнения и 3 неизвестных — система, которая на олимпиаде вынесла почти всех

Приравнивание к нулю

Недавно мы узнали, что если в уравнении перенести слагаемое из одной части в другую, изменив его знак, то получится уравнение равносильное данному.

А что будет если перенести из одной части в другую не одно слагаемое, а все слагаемые? Верно, в той части откуда забрали все слагаемые останется ноль. Иными словами, не останется ничего.

В качестве примера рассмотрим уравнение Введение новых неизвестных в уравнении. Решим данное уравнение, как обычно — слагаемые, содержащие неизвестные сгруппируем в одной части, а числовые слагаемые, свободные от неизвестных оставим в другой. Далее выполняя известные тождественные преобразования, найдем значение переменной x

Введение новых неизвестных в уравнении

Теперь попробуем решить это же уравнение, приравняв все его компоненты к нулю. Для этого перенесем все слагаемые из правой части в левую, изменив знаки:

Введение новых неизвестных в уравнении

Приведем подобные слагаемые в левой части:

Введение новых неизвестных в уравнении

Прибавим к обеим частям 77 , и разделим обе части на 7

Видео:Одно уравнение и 3 неизвестныхСкачать

Одно уравнение и 3 неизвестных

Альтернатива правилам нахождения неизвестных

Очевидно, что зная о тождественных преобразованиях уравнений, можно не заучивать наизусть правила нахождения неизвестных.

К примеру, для нахождения неизвестного в уравнении Введение новых неизвестных в уравнениимы произведение 10 делили на известный сомножитель 2

Введение новых неизвестных в уравнении

Но если в уравнении Введение новых неизвестных в уравненииобе части разделить на 2 корень найдется сразу. В левой части уравнения в числителе множитель 2 и в знаменателе множитель 2 сократятся на 2. А правая часть будет равна 5

Введение новых неизвестных в уравнении

Уравнения вида Введение новых неизвестных в уравнениимы решали выражая неизвестное слагаемое:

Введение новых неизвестных в уравнении

Введение новых неизвестных в уравнении

Введение новых неизвестных в уравнении

Но можно воспользоваться тождественными преобразованиями, которые мы сегодня изучили. В уравнении Введение новых неизвестных в уравнениислагаемое 4 можно перенести в правую часть, изменив знак:

Введение новых неизвестных в уравнении

Введение новых неизвестных в уравнении

Далее разделить обе части на 2

Введение новых неизвестных в уравнении

В левой части уравнения сократятся две двойки. Правая часть будет равна 2. Отсюда Введение новых неизвестных в уравнении.

Либо можно было из обеих частей уравнения вычесть 4. Тогда получилось бы следующее:

Введение новых неизвестных в уравнении

В случае с уравнениями вида Введение новых неизвестных в уравненииудобнее делить произведение на известный сомножитель. Сравним оба решения:

Введение новых неизвестных в уравнении

Первое решение намного короче и аккуратнее. Второе решение можно значительно укоротить, если выполнить деление в уме.

Тем не менее, необходимо знать оба метода, и только затем использовать тот, который больше нравится.

Видео:Математика 2 класс (Урок№26 - Уравнение. Решение уравнений подбором неизвестного числа.)Скачать

Математика 2 класс (Урок№26 - Уравнение. Решение уравнений подбором неизвестного числа.)

Когда корней несколько

Уравнение может иметь несколько корней. Например уравнение x(x + 9) = 0 имеет два корня: 0 и −9 .

Введение новых неизвестных в уравнении

В уравнении x(x + 9) = 0 нужно было найти такое значение x при котором левая часть была бы равна нулю. В левой части этого уравнения содержатся выражения x и (x + 9) , которые являются сомножителями. Из законов умножения мы знаем, что произведение равно нулю, если хотя бы один из сомножителей равен нулю (или первый сомножитель или второй).

То есть в уравнении x(x + 9) = 0 равенство будет достигаться, если x будет равен нулю или (x + 9) будет равно нулю.

Приравняв к нулю оба этих выражения, мы сможем найти корни уравнения x(x + 9) = 0 . Первый корень, как видно из примера, нашелся сразу. Для нахождения второго корня нужно решить элементарное уравнение x + 9 = 0 . Несложно догадаться, что корень этого уравнения равен −9 . Проверка показывает, что корень верный:

Пример 2. Решить уравнение Введение новых неизвестных в уравнении

Данное уравнение имеет два корня: 1 и 2. Левая часть уравнения является произведение выражений (x − 1) и (x − 2) . А произведение равно нулю, если хотя бы один из сомножителей равен нулю (или сомножитель (x − 1) или сомножитель (x − 2) ).

Найдем такое x при котором выражения (x − 1) или (x − 2) обращаются в нули:

Введение новых неизвестных в уравнении

Подставляем по-очереди найденные значения в исходное уравнение Введение новых неизвестных в уравнениии убеждаемся, что при этих значениях левая часть равняется нулю:

Введение новых неизвестных в уравнении

Видео:Решение уравнений в несколько действий. Как объяснить ребенку решение уравнений?Скачать

Решение уравнений в несколько действий. Как объяснить ребенку решение уравнений?

Когда корней бесконечно много

Уравнение может иметь бесконечно много корней. То есть подставив в такое уравнение любое число, мы получим верное числовое равенство.

Пример 1. Решить уравнение Введение новых неизвестных в уравнении

Корнем данного уравнения является любое число. Если раскрыть скобки в левой части уравнения и привести подобные слагаемые, то получится равенство 14 = 14 . Это равенство будет получаться при любом x

Введение новых неизвестных в уравнении

Пример 2. Решить уравнение Введение новых неизвестных в уравнении

Корнем данного уравнения является любое число. Если раскрыть скобки в левой части уравнения, то получится равенство 10x + 12 = 10x + 12. Это равенство будет получаться при любом x

Видео:Алгебра Система уравнений Метод замены переменной № 6.22 9 классСкачать

Алгебра Система уравнений Метод замены переменной № 6.22  9 класс

Когда корней нет

Случается и так, что уравнение вовсе не имеет решений, то есть не имеет корней. Например уравнение Введение новых неизвестных в уравнениине имеет корней, поскольку при любом значении x , левая часть уравнения не будет равна правой части. Например, пусть Введение новых неизвестных в уравнении. Тогда уравнение примет следующий вид

Введение новых неизвестных в уравнении

Пусть Введение новых неизвестных в уравнении

Введение новых неизвестных в уравнении

Пример 2. Решить уравнение Введение новых неизвестных в уравнении

Раскроем скобки в левой части равенства:

Введение новых неизвестных в уравнении

Приведем подобные слагаемые:

Введение новых неизвестных в уравнении

Видим, что левая часть не равна правой части. И так будет при любом значении y . Например, пусть y = 3 .

Введение новых неизвестных в уравнении

Видео:Решение простых уравнений. Что значит решить уравнение? Как проверить решение уравнения?Скачать

Решение простых уравнений. Что значит решить уравнение? Как проверить решение уравнения?

Буквенные уравнения

Уравнение может содержать не только числа с переменными, но и буквы.

Например, формула нахождения скорости является буквенным уравнением:

Введение новых неизвестных в уравнении

Данное уравнение описывает скорость движения тела при равноускоренном движении.

Полезным навыком является умение выразить любой компонент, входящий в буквенное уравнение. Например, чтобы из уравнения Введение новых неизвестных в уравненииопределить расстояние, нужно выразить переменную s .

Умнóжим обе части уравнения Введение новых неизвестных в уравнениина t

Введение новых неизвестных в уравнении

В правой части переменные t сократим на t и перепишем то, что у нас осталось:

Введение новых неизвестных в уравнении

В получившемся уравнении левую и правую часть поменяем местами:

Введение новых неизвестных в уравнении

У нас получилась формула нахождения расстояния, которую мы изучали ранее.

Попробуем из уравнения Введение новых неизвестных в уравненииопределить время. Для этого нужно выразить переменную t .

Умнóжим обе части уравнения на t

Введение новых неизвестных в уравнении

В правой части переменные t сократим на t и перепишем то, что у нас осталось:

Введение новых неизвестных в уравнении

В получившемся уравнении v × t = s обе части разделим на v

Введение новых неизвестных в уравнении

В левой части переменные v сократим на v и перепишем то, что у нас осталось:

Введение новых неизвестных в уравнении

У нас получилась формула определения времени, которую мы изучали ранее.

Предположим, что скорость поезда равна 50 км/ч

А расстояние равно 100 км

Тогда буквенное уравнение Введение новых неизвестных в уравнениипримет следующий вид

Введение новых неизвестных в уравнении

Из этого уравнения можно найти время. Для этого нужно суметь выразить переменную t . Можно воспользоваться правилом нахождения неизвестного делителя, разделив делимое на частное и таким образом определить значение переменной t

Введение новых неизвестных в уравнении

либо можно воспользоваться тождественными преобразованиями. Сначала умножить обе части уравнения на t

Введение новых неизвестных в уравнении

Затем разделить обе части на 50

Введение новых неизвестных в уравнении

Пример 2. Дано буквенное уравнение Введение новых неизвестных в уравнении. Выразите из данного уравнения x

Вычтем из обеих частей уравнения a

Введение новых неизвестных в уравнении

Разделим обе части уравнения на b

Введение новых неизвестных в уравнении

Теперь, если нам попадется уравнение вида a + bx = c , то у нас будет готовое решение. Достаточно будет подставить в него нужные значения. Те значения, которые будут подставляться вместо букв a, b, c принято называть параметрами. А уравнения вида a + bx = c называют уравнением с параметрами. В зависимости от параметров, корень будет меняться.

Решим уравнение 2 + 4x = 10 . Оно похоже на буквенное уравнение a + bx = c . Вместо того, чтобы выполнять тождественные преобразования, мы можем воспользоваться готовым решением. Сравним оба решения:

Введение новых неизвестных в уравнении

Видим, что второе решение намного проще и короче.

Для готового решения необходимо сделать небольшое замечание. Параметр b не должен быть равным нулю (b ≠ 0) , поскольку деление на ноль на допускается.

Пример 3. Дано буквенное уравнение Введение новых неизвестных в уравнении. Выразите из данного уравнения x

Раскроем скобки в обеих частях уравнения

Введение новых неизвестных в уравнении

Воспользуемся переносом слагаемых. Параметры, содержащие переменную x , сгруппируем в левой части уравнения, а параметры свободные от этой переменной — в правой.

Введение новых неизвестных в уравнении

В левой части вынесем за скобки множитель x

Введение новых неизвестных в уравнении

Разделим обе части на выражение a − b

Введение новых неизвестных в уравнении

В левой части числитель и знаменатель можно сократить на a − b . Так окончательно выразится переменная x

Введение новых неизвестных в уравнении

Теперь, если нам попадется уравнение вида a(x − c) = b(x + d) , то у нас будет готовое решение. Достаточно будет подставить в него нужные значения.

Допустим нам дано уравнение 4(x − 3) = 2(x + 4) . Оно похоже на уравнение a(x − c) = b(x + d) . Решим его двумя способами: при помощи тождественных преобразований и при помощи готового решения:

Для удобства вытащим из уравнения 4(x − 3) = 2(x + 4) значения параметров a, b, c, d . Это позволит нам не ошибиться при подстановке:

Введение новых неизвестных в уравнении

Введение новых неизвестных в уравнении

Как и в прошлом примере знаменатель здесь не должен быть равным нулю (a − b ≠ 0) . Если нам встретится уравнение вида a(x − c) = b(x + d) в котором параметры a и b будут одинаковыми, мы сможем не решая его сказать, что у данного уравнения корней нет, поскольку разность одинаковых чисел равна нулю.

Например, уравнение 2(x − 3) = 2(x + 4) является уравнением вида a(x − c) = b(x + d) . В уравнении 2(x − 3) = 2(x + 4) параметры a и b одинаковые. Если мы начнём его решать, то придем к тому, что левая часть не будет равна правой части:

Введение новых неизвестных в уравнении

Пример 4. Дано буквенное уравнение Введение новых неизвестных в уравнении. Выразите из данного уравнения x

Приведем левую часть уравнения к общему знаменателю:

Введение новых неизвестных в уравнении

Умнóжим обе части на a

Введение новых неизвестных в уравнении

В левой части x вынесем за скобки

Введение новых неизвестных в уравнении

Разделим обе части на выражение (1 − a)

Введение новых неизвестных в уравнении

Видео:Способы решения систем нелинейных уравнений. Практическая часть. 9 класс.Скачать

Способы решения систем нелинейных уравнений. Практическая часть. 9 класс.

Линейные уравнения с одним неизвестным

Рассмотренные в данном уроке уравнения называют линейными уравнениями первой степени с одним неизвестным.

Если уравнение дано в первой степени, не содержит деления на неизвестное, а также не содержит корней из неизвестного, то его можно назвать линейным. Мы еще не изучали степени и корни, поэтому чтобы не усложнять себе жизнь, слово «линейный» будем понимать как «простой».

Большинство уравнений, решенных в данном уроке, в конечном итоге сводились к простейшему уравнению, в котором нужно было произведение разделить на известный сомножитель. Таковым к примеру является уравнение 2 (x + 3) = 16 . Давайте решим его.

Раскроем скобки в левой части уравнения, получим 2 x + 6 = 16. Перенесем слагаемое 6 в правую часть, изменив знак. Тогда получим 2 x = 16 − 6. Вычислим правую часть, получим 2x = 10. Чтобы найти x , разделим произведение 10 на известный сомножитель 2. Отсюда x = 5.

Уравнение 2 (x + 3) = 16 является линейным. Оно свелось к уравнению 2x = 10 , для нахождения корня которого потребовалось разделить произведение на известный сомножитель. Такое простейшее уравнение называют линейным уравнением первой степени с одним неизвестным в каноническом виде. Слово «канонический» является синонимом слов «простейший» или «нормальный».

Линейное уравнение первой степени с одним неизвестным в каноническом виде называют уравнение вида ax = b.

Полученное нами уравнение 2x = 10 является линейным уравнением первой степени с одним неизвестным в каноническом виде. У этого уравнения первая степень, одно неизвестное, оно не содержит деления на неизвестное и не содержит корней из неизвестного, и представлено оно в каноническом виде, то есть в простейшем виде при котором легко можно определить значение x . Вместо параметров a и b в нашем уравнении содержатся числа 2 и 10. Но подобное уравнение может содержать и другие числа: положительные, отрицательные или равные нулю.

Если в линейном уравнении a = 0 и b = 0 , то уравнение имеет бесконечно много корней. Действительно, если a равно нулю и b равно нулю, то линейное уравнение ax = b примет вид 0x = 0 . При любом значении x левая часть будет равна правой части.

Если в линейном уравнении a = 0 и b ≠ 0 , то уравнение корней не имеет. Действительно, если a равно нулю и b равно какому-нибудь числу, не равному нулю, скажем числу 5, то уравнение ax = b примет вид 0x = 5 . Левая часть будет равна нулю, а правая часть пяти. А ноль не равен пяти.

Если в линейном уравнении a ≠ 0 , и b равно любому числу, то уравнение имеет один корень. Он определяется делением параметра b на параметр a

Введение новых неизвестных в уравнении

Действительно, если a равно какому-нибудь числу, не равному нулю, скажем числу 3 , и b равно какому-нибудь числу, скажем числу 6 , то уравнение Введение новых неизвестных в уравнениипримет вид Введение новых неизвестных в уравнении.
Отсюда Введение новых неизвестных в уравнении.

Существует и другая форма записи линейного уравнения первой степени с одним неизвестным. Выглядит она следующим образом: ax − b = 0 . Это то же самое уравнение, что и ax = b , но параметр b перенесен в левую часть с противоположным знаком. Такие уравнение мы тоже решали в данном уроке. Например, уравнение 7x − 77 = 0 . Уравнение вида ax − b = 0 называют линейным уравнением первой степени с одним неизвестным в общем виде.

В будущем после изучения рациональных выражений, мы рассмотрим такие понятия, как посторонние корни и потеря корней. А пока рассмотренного в данном уроке будет достаточным.

Поделиться или сохранить к себе: