- Метод возведения в степень
- Пример №220.
- Пример №221.
- Пример №222.
- Пример №223.
- Пример №224.
- Пример №225.
- Показательные уравнения и неравенства с примерами решения
- Решении показательных уравнений
- Показательные уравнения и их системы
- Пример №1
- Пример №2
- Пример №3
- Пример №4
- Пример №5
- Пример №6
- Системы простейших показательных уравнений
- Пример №7
- Пример №8
- Пример №9
- Приближенное решение уравнений
- Пример №10
- Нахождение приближенного корня с заданной точностью
- Пример №11
- Показательные неравенства
- Определение показательных неравенств
- Как решать показательные неравенства
- Показательные неравенства, сводящиеся к простейшим
- Пример 1
- Показательные неравенства, сводящиеся к квадратным
- Пример 1
- Показательные неравенства, сводящиеся к рациональным
- Пример 1
- Пример 2
- Однородные показательные неравенства
- Пример 1
- Неравенства, решаемые графическим методом
- Пример 1
- Пример 2
- 💡 Видео
Метод возведения в степень
Метод возведения в степень является одним из наиболее распространённых методов решения задач с иррациональностями. Как уже отмечалось выше, при его использовании следует помнить, что любое уравнение и неравенство всегда можно возвести в нечётную степень, это преобразование является равносильным. Другое дело, если уравнение необходимо возвести в чётную степень. В общем случае это переход к следствию, чреватый появлением посторонних корней. Это допустимо, если возможно сделать проверку корней. Если же проверка по какой-либо причине затруднена или невозможна (например, когда при решении неравенств и некоторых уравнений получается бесконечно много решений), то следует сохранять равносильность выполняемых преобразований. Для этого перед очередным возведением в чётную степень следует не забывать выписывать условие неотрицательности обеих частей уравнения.
Если уравнение содержит несколько радикалов, то для последовательного избавления от них уравнение приходится возводить в степень несколько раз. В этом случае перед очередным возведением в степень часто используют приём уединения корня.
Пример №220.
Решение:
ОДЗ :
Далее метод возведения в степень (в данном случае в квадрат, так как в уравнение входят квадратные корни) можно применить двумя способами.
1-й способ. Приведём уравнение к виду
Обе части уравнения неотрицательны, поэтому, возведя его в квадрат, получим равносильное (на ОДЗ) уравнение:
2-й способ. Сразу возведём уравнение в квадрат
(переход к следствию) и, упростив, запишем в виде
Разложим полученное уравнение на множители
и сведём к совокупности
Так как в процессе решения задачи был переход к следствию, то необходимо сделать проверку полученных значений x подстановкой в ОДЗ или исходное уравнение (или в любое уравнение, равносильное исходному). Число (посторонний корень, образовавшийся из-за возведения в квадрат без учёта совпадения знаков обеих частей уравнения). Получаем тот же ответ. Ответ:
Пример №221.
Решение:
1-й способ. Возведём неравенство в куб, используя формулу
Заменяя, в силу исходного уравнения, выражение единицей и упрощая, получаем, как следствие, уравнение
Проверка показывает, что оба значения удовлетворяют исходному уравнению.
2-й способ. Приведём уравнение к виду
и после этого возведём его в куб:
Решая это уравнение как квадратное относительно , находим:
откуда получаем те же значения x .
Следует отметить, что второй способ в данном случае предпочтительней, так как полученное в конце квадратное уравнение имеет более простые коэффициенты (и не надо делать проверку). Ответ:
Пример №222.
Решение:
Возведём обе части уравнения в куб (равносильное преобразование):
Заменяя выражение выражением
, получим уравнение, являющееся следствием исходного:
Это уравнение сводится к совокупности двух уравнений:
Решения первого уравнения есть . Второе уравнение имеет одно решение
. Проверка показывает, что все четыре значения являются корнями исходного уравнения. Ответ:
Пример №223.
Решение:
Выпишем ОДЗ: но не будем сразу решать эту систему. Приступим к решению неравенства, переписав его в виде
добившись того, чтобы обе части неравенства стали неотрицательны (иначе неравенство возводить в квадрат нельзя). Только после этого возведём в квадрат, перейдя к равносильному (на ОДЗ) неравенству
После упрощения получим
Пример №224.
Решение:
Проверка подстановкой в исходное уравнение показывает, что все три числа являются решениями уравнения.
Замечание. Иногда при решении этой задачи записывают ОДЗ так:
Хочется предостеречь читателя от таких попыток, поскольку первые два условия в системе неверны, что подтверждается наличием среди корней уравнения числа На самом деле ОДЗ выглядит следующим образом:
Пример №225.
Решение:
Заметим, что x = -2 и x = 0 являются решениями уравнения (а числа x = — 4 и x = -3 — не являются). Найдём корни этого уравнения, отличные от x = -2 и x = 0 . Для них, согласно ОДЗ,
Возведём уравнение в квадрат, получив равносильное (на ОДЗ) уравнение:
Обе части последнего равенства положительны при — 2
Сократив на x+ 2(> 0) и х(
обе части которого отрицательны при -2
корни которого
Ответ:
Эта лекция взята со страницы, где размещён подробный курс лекций по предмету математика:
Эти страницы возможно вам будут полезны:
Образовательный сайт для студентов и школьников
Копирование материалов сайта возможно только с указанием активной ссылки «www.lfirmal.com» в качестве источника.
© Фирмаль Людмила Анатольевна — официальный сайт преподавателя математического факультета Дальневосточного государственного физико-технического института
Видео:НЕРАВЕНСТВА возведение в степень 9 класс МакарычевСкачать
Показательные уравнения и неравенства с примерами решения
Содержание:
Рассмотрим уравнения, в которых переменная (неизвестное) находится в показателе степени. Например:
Уравнения такого вида принято называть показательными.
Видео:Как решать неравенства? Часть 1| МатематикаСкачать
Решении показательных уравнений
При решении показательных уравнений нам будет полезно следствие из теоремы о свойствах показательной функции.
Пусть
Каждому значению показательной функции соответствует единственный показатель s.
Пример:
Решение:
Согласно следствию из равенства двух степеней с одинаковым основанием 3 следует равенство их показателей. Таким образом, данное уравнение равносильно уравнению
Пример:
Решение:
а) Данное уравнение равносильно (поясните почему) уравнению
Если степени с основанием 3 равны, то равны и их показатели:
Решив это уравнение, получим
Ответ:
При решении каждого уравнения из примера 2 сначала обе части уравнения представили в виде степени с одним и тем же основанием, а затем записали равенство показателей этих степеней.
Пример:
Решение:
а) Данное уравнение равносильно уравнению
Решая его, получаем:
Так как две степени с одинаковым основанием 2 равны, то равны и их показатели, т. е. откуда находим
б) Разделив обе части уравнения на получим уравнение
равносильное данному. Решив его, получим
Ответ:
При решении примера 3 а) левую часть уравнения разложили на множители. Причем за скобку вынесли такой множитель, что в скобках осталось числовое выражение, не содержащее переменной.
Пример:
Решить уравнение
Решение:
Обозначим тогда
Таким образом, из данного уравнения получаем
откуда находим:
Итак, с учетом обозначения имеем:
При решении примера 4 был использован метод введения новой переменной, который позволил свести данное уравнение к квадратному относительно этой переменной.
Пример:
Решить уравнение
Решение:
Можно заметить, что 2 — корень данного уравнения. Других корней уравнение не имеет, так как функция, стоящая в левой части уравнения, возрастающая, а функция, стоящая в правой части уравнения, убывающая. Поэтому уравнение имеет не более одного корня (см. теорему из п. 1.14).
Пример:
Решить уравнение
Решение:
Пример:
При каком значении а корнем уравнения является число, равное 2?
Решение:
Поскольку х = 2 — корень, то верно равенство
Решив это уравнение, найдем
Ответ: при
Показательные уравнения и их системы
Показательным уравнением называется уравнение, в ко тором неизвестное входит в показатель степени. При решении показательных уравнений полезно использовать следующие тождества:
Приведем методы решения некоторых типов показательных уравнений.
1 Приведение к одному основанию.
Метод основан на следующем свойстве степеней: если две степени равны и равны их основания, то равны и их показатели, т.е. уравнения надо попытаться привести к виду . Отсюда
Пример №1
Решите уравнение
Решение:
Заметим, что и перепишем наше уравнение в виде
Применив тождество (1), получим Зх — 7 = -7х + 3, х = 1.
Пример №2
Решить уравнение
Решение:
Переходя к основанию степени 2, получим:
Согласно тождеству (2), имеем
Последнее уравнение равносильно уравнению 4х-19 = 2,5х.
2 Введение новой переменной.
Пример №3
Решить уравнение
Решение:
Применив тождество 2, перепишем уравнение как
Введем новую переменную: Получим уравнение
которое имеет корни Однако корень
не удовлетворяет условию
Значит,
Пример №4
Решить уравнение
Решение:
Разделив обе части уравнения на получим:
последнее уравнение запишется так:
Решая уравнение, найдем
Значение не удовлетворяет условию
Следовательно,
Пример №5
Решить уравнение
Решение:
Заметим что Значит
Перепишем уравнение в виде
Обозначим Получим
Получим
Корнями данного уравнения будут
Следовательно,
III Вынесение общего множителя за скобку.
Пример №6
Решить уравнение
Решение:
После вынесения за скобку в левой части , а в правой
, получим
Разделим обе части уравнения на
получим
Системы простейших показательных уравнений
Пример №7
Решите систему уравнений:
Решение:
По свойству степеней система уравнений равносильна следующей
системе :Отсюда получим систему
Очевидно, что последняя система имеет решение
Пример №8
Решите систему уравнений:
Решение:
По свойству степеней система уравнений равносильна следующей системе: Последняя система, в свою очередь, равносильна системе:
Умножив второе уравнение этой системы на (-2) и сложив с первым, получим уравнение —9х=-4. Отсюда, найдем Подставив полученное значение во второе уравнение, получим
Пример №9
Решите систему уравнений:
Решение:
Сделаем замену: Тогда наша система примет вид:
Очевидно, что эта система уравнений имеет решение
Тогда получим уравнения
Приближенное решение уравнений
Пусть многочлен f(х) на концах отрезка [a,b] принимает значения разных знаков, то есть . Тогда внутри этого отрезка существует хотя бы одно решение уравнения Дх)=0. Это означает, что существует такое
(читается как «кси»), что
Это утверждение проиллюстрировано на следующем чертеже.
Рассмотрим отрезок содержащий лишь один корень уравнения .
Метод последовательного деления отрезка пополам заключается в последовательном разделении отрезка [a, b] пополам до тех пор, пока длина полученного отрезка не будет меньше заданной точности
- вычисляется значение f(х) выражения
- отрезок делится пополам, то есть вычисляется значение
- вычисляется значение
выражения f(х) в точке
- проверяется условие
- если это условие выполняется, то в качестве левого конца нового отрезка выбирается середина предыдущего отрезка, то есть полагается, что
(левый конец отрезка переходит в середину);
- если это условие не выполняется, то правый конец нового отрезка переходит в середину, то есть полагается, что b=x;
- для нового отрезка проверяется условие
- если это условие выполняется , то вычисления заканчиваются. При этом в качестве приближенного решения выбирается последнее вычисленное значение х. Если это условие не выполняется, то, переходя к пункту 2 этого алгоритма, вычисления продолжаются.
Метод последовательного деления пополам проиллюстрирован на этом чертеже:
Для нахождения интервала, содержащего корень уравнения вычисляются значения
Оказывается, что для корня данного уравнения выполнено неравенство. Значит, данное уравнение имеет хотя бы один корень, принадлежащий интервалу (-1 -А; 1+А). Для приближенного вычисления данного корня найдем целые
и
удовлетворяющие неравенству
Пример №10
Найдите интервал, содержащий корень уравнения
Решение:
Поделив обе части уравнения на 2 , получим,
Так как, для нового уравнения
Значит, в интервале, уравнение имеет хотя бы один корень. В то же время уравнение при
не имеет ни одного корня, так как,
выполняется. Значит, корень уравнения лежит в (-2,5; 0). Для уточнения этого интервала положим
Для
проверим выполнение условия
Значит, уравнение имеет корень, принадлежащий интервалу (-1; 0).
Нахождение приближенного корня с заданной точностью
Исходя из вышесказанного, заключаем, что если выполнено неравенство корень уравнения принадлежит интервалу
Пусть
Если
приближенный
корень уравнения с точностью . Если
то корень лежит в интервале
если
то корень лежит в интервале
. Продолжим процесс до нахождения приближенного значения корня с заданной точностью.
Пример №11
Найдите приближенное значение корня уравнения с заданной точностью
Решение:
Из предыдущего примера нам известно, что корень лежит в интервале
(-1; 0). Из того, что заключаем, что корень лежит в интервале (-0,5; 0).
Так как, |(-0,25)41,5(-0,25)2+2,5(-0,25)+0,5| = |-0,046| 1. Если
Пусть
Изображения графиков показательной функции подсказывают это свойство. На рисунке 27 видно, что при а > 1 большему значению функции соответствует большее значение аргумента. А на рисунке 30 видно, что при 0
При копировании любых материалов с сайта evkova.org обязательна активная ссылка на сайт www.evkova.org
Сайт создан коллективом преподавателей на некоммерческой основе для дополнительного образования молодежи
Сайт пишется, поддерживается и управляется коллективом преподавателей
Whatsapp и логотип whatsapp являются товарными знаками корпорации WhatsApp LLC.
Cайт носит информационный характер и ни при каких условиях не является публичной офертой, которая определяется положениями статьи 437 Гражданского кодекса РФ. Анна Евкова не оказывает никаких услуг.
Видео:Как понять неравенства? Квадратные неравенства. Линейные и сложные неравенства | TutorOnlineСкачать
Показательные неравенства
О чем эта статья:
10 класс, 11 класс, ЕГЭ/ОГЭ
Статья находится на проверке у методистов Skysmart.
Если вы заметили ошибку, сообщите об этом в онлайн-чат
(в правом нижнем углу экрана).
Видео:Система уравнений VS Система неравенств. ОГЭ по математике №9, 13| Математика TutorOnlineСкачать
Определение показательных неравенств
Показательными считаются неравенства, которые включают в себя показательную функцию. Другими словами, это неравенства с переменной в показателе степени: a f(x) > a g(x) , a f(x) g(x) .
Из них показательно-степенными неравенствами являются те, в которых есть переменные и в показателе степени, и в основании.
Для изучения этой темы стоит повторить:
И, конечно, для решения тригонометрических и логарифмических показательных неравенств также придется вспомнить формулы соответствующих разделов алгебры.
Если все это еще свежо в памяти, давайте приступим. Как и к показательным уравнениям, к неравенствам стоит подходить, помня о свойствах показательной функции. Напомним, что она выглядит так: y = a x , где a > 0 и a ≠ 1. Два графика ниже дают представление о том, на что похожа такая функция, когда основание степени а больше и меньше единицы. Наверняка вы уже догадались, каково главное свойство этой функции. Да, она монотонна.
При этом заметьте — значения а всегда больше нуля. На практике в этом несложно убедиться, если возводить какое-либо число во всевозможные степени, включая отрицательные. Например: 2 -2 = 4, 2 -4 = 1/16 и т. д. Значение функции будет уменьшаться, но никогда не достигнет нуля.
Для любых а и х верно неравенство a x > 0, т. е. показательная функция не принимает отрицательных значений.
Запишем следствие монотонности показательной функции в виде формул:
- a f(x) > a g(x) f(x) > g (x), когда функция возрастает, т. е. а > 1;
- a f(x) > a g(x) f(x)
Видео:Возведение в степень произведения и степени. Алгебра, 7 классСкачать
Как решать показательные неравенства
Как мы уже говорили, для успешного освоения этой темы нужно хорошенько повторить все, что касается показательных уравнений. Способы решения показательных неравенств выглядят примерно так же — мы будем пытаться упростить выражение, получить одинаковые степени или одинаковые основания, по возможности свести все к квадратному или рациональному уравнению. Но есть и свои тонкости.
Допустим, у нас есть простейшее показательное неравенство:
Если вы помните, как решались показательные уравнения, не придется долго думать, что делать с таким неравенством — приведем его к одинаковому основанию:
Казалось бы, все логично, но всегда ли можно смело вычеркивать одинаковые основания степеней? А что, если вместо 3 у нас основание степени будет 0,5? Посмотрим:
Проверим, верно ли в таком случае х > 2.
0,5 3 = 0, 125 и т. д.
Как видите, на самом деле в этом случае х