- 6.1. Распространение колебаний в упругой среде
- 6.2. Уравнение плоской волны
- 6.3. Волновое уравнение
- 6.4. Скорость распространения волн в различных средах
- Продольные и поперечные волны
- Продольные волны
- Поперечные волны
- Уравнение продольной и поперечной волны
- Примеры задач с решением
- Волновое уравнение упругой волны и его решение
- 📽️ Видео
6.1. Распространение колебаний в упругой среде
Механические колебания, распространяющиеся в упругой среде (твердой, жидкой или газообразной), называются механическими или упругими волнами .
Процесс распространения колебаний в сплошной среде называется волновым процессом или волной. Частицы среды, в которой распространяется волна, не вовлекаются волной в поступательное движение. Они лишь совершают колебания около своих положений равновесия. Вместе с волной от частицы к частице среды передаются лишь состояние колебательного движения и его энергия. Поэтому основным свойством всех волн, независимо от их природы, является перенос энергии без переноса вещества .
В зависимости от направления колебаний частиц по отношению к направлению, в котором распространяется волна, различают продольные и поперечные волны.
Упругая волна называется продольной , если колебания частиц среды происходят в направлении распространения волны. Продольные волны связаны с объемной деформацией растяжения − сжатия среды, поэтому они могут распространяться как в твердых телах, так и в жидкостях и газообразных средах.
Упругая волна называется поперечной , если колебания частиц среды происходят в плоскостях, перпендикулярных к направлению распространения волны Поперечные волны могут возникать только в такой среде, которая обладает упругостью формы, т. е. способна сопротивляться деформации сдвига. Этим свойством обладают только твердые тела.
На рис. 6.1.1 представлена гармоническая поперечная волна, распространяющаяся вдоль оси 0х . График волны дает зависимость смещения всех частиц среды от расстояния до источника колебаний в данный момент времени. Расстояние между ближайшими частицами, колеблющимися в одинаковой фазе, называется длиной волны . Длина волны также равна тому расстоянию, на которое распространяется определенная фаза колебания за период колебаний
Колеблются не только частицы, расположенные вдоль оси 0х , а совокупность частиц, заключенных в некотором объеме. Геометрическое место точек, до которых доходят колебания к моменту времени t , называется фронтом волны . Фронт волны представляет собой ту поверхность, которая отделяет часть пространства, уже вовлеченную в волновой процесс, от области, в которой колебания еще не возникли. Геометрическое место точек, колеблющихся в одинаковой фазе, называется волновой поверхностью . Волновую поверхность можно провести через любую точку пространства, охваченного волновым процессом. Волновые поверхности могут быть любой формы. В простейших случаях они имеют форму плоскости или сферы. Соответственно волна в этих случаях называется плоской или сферической. В плоской волне волновые поверхности представляют собой множество параллельных друг другу плоскостей, а в сферической − множество концентрических сфер.
6.2. Уравнение плоской волны
Уравнением плоской волны называется выражение, которое дает смещение колеблющейся частицы как функцию ее координат x , y , z и времени t
Эта функция должна быть периодической как относительно времени t , так и относительно координат x , y , z . Периодичность по времени вытекает из того, что смещение S описывает колебания частицы с координатами x , y , z , а периодичность по координатам следует из того, что точки, отстоящие друг от друга на расстоянии, равном длине волны, колеблются одинаковым образом.
Предположим, что колебания носят гармонический характер, а ось 0х совпадает с направлением распространения волны. Тогда волновые поверхности будут перпендикулярны оси 0х и, поскольку все точки волновой поверхности колеблются одинаково, смещение S будет зависеть только от координаты х и времени t
Рассмотрим некоторую частицу среды, находящуюся от источника колебаний О на расстоянии х . Пусть колебания точек, лежащих в плоскости х = 0 имеют вид
Найдем вид колебания точек в плоскости, соответствующей произвольному значению х . Для того, чтобы пройти путь от плоскости х = 0 до плоскости х , волне требуется время τ = x/υ . Следовательно, колебания частиц, лежащих в плоскости х , будут отставать по времени на τ от колебаний частиц в плоскости х = 0 и описываться уравнением
где А − амплитуда волны; ϕ0 − начальная фаза волны (определяется выбором начал отсчета х и t ).
Зафиксируем какое-либо значение фазы ω(t-x/υ)+ϕ0=const. Это выражение определяет связь между временем t и тем местом х , в котором фаза имеет фиксированное значение. Продифференцировав данное выражение, получим
Таким образом, скорость распространения волны есть скорость перемещения фазы, и называется фазовой скоростью .
При υ > 0 волна распространяется в сторону возрастания х . Волна, распространяющаяся в противоположном направлении, описывается уравнением
Придадим уравнению плоской волны симметричный относительно х и t вид. Для этого введем величину $$k = $$ , которая называется волновым числом , которое можно представить в виде
Тогда уравнение плоской волны будет иметь вид
Мы предполагали, что амплитуда колебаний не зависит от х . Для плоской волны это наблюдается в том случае, когда энергия волны не поглощается средой. При распространении в поглощающей энергию среде интенсивность волны с удалением от источника колебаний постепенно уменьшается, т. е. наблюдается затухание волны. В однородной среде такое затухание происходит по экспоненциальному закону A=A0e −βx . Тогда уравнение плоской волны для поглощающей среды имеет вид
6.3. Волновое уравнение
Уравнение плоской волны, распространяющейся в произвольном направлении, будет иметь вид
где r − радиус-вектор, точки волны; r =k× n − волновой вектор ; n − единичный вектор нормали к волновой поверхности
Волновой вектор − это вектор, равный по модулю волновому числу k и имеющий направление нормали к волновой поверхности называется.
Перейдем от радиус-вектора точки к ее координатам x , y , z Тогда уравнение (6.3.2) примет вид
Установим вид волнового уравнения. Для этого найдем вторые частные производные по координатам и времени выражение (6.3.3)
Сложив производные по координатам, и с учетом производной по времени, получим
6.4. Скорость распространения волн в различных средах
Для определения скорости упругих волн в упругой среде рассмотрим продольную плоскую волну, распространяющуюся в направлении оси 0х . Выделим в среде цилиндрический объем с площадью основания S0 и высотой dx . Смещения S частиц с разными х в каждый момент времени оказываются различными. Если основание цилиндра с координатой х имеет в некоторый момент времени смещение S , то смещение основания с координатой x+dx будет S+dS . Тогда, рассматриваемый объем деформируется и получает удлинение dS или относительную деформацию ε=∂S/∂x (деформации растяжения). Наличие деформации свидетельствует о существовании нормального напряжения σ , которое при малых деформациях пропорционального величине деформации. По закону Гука для деформации растяжения − сжатия
где Е − модуль Юнга среды.
Из зависимости смещения от координаты x видно, что относительная деформация ∂S/∂x , а также, и напряжение σ в фиксированный момент времени зависят от х . В соответствии с этим, продольная волна состоит из чередующихся разрежений и сжатий среды.
Теперь для цилиндрического объема запишем уравнение движения. Масса этого объема
где ρ − плотность недеформированной среды.
Ввиду малости dx можно считать ускорение всех точек цилиндра одинаковым и равным
Тогда этот участок объема будет растянут под влиянием сил F1 и F2 , приложенных к основаниям цилиндра в данный момент времени. Силы, действующие на левое и правое основание цилиндра равны, соответственно
После разложения силы F2 в ряд, получим
и результирующая F1 , F2 сил, действующая на элемент объема равна
Используя основное уравнение динамики поступательного движения (2.1.2) и, подставив значения массы, ускорения и силы, получим
Из сравнения этого уравнения с волновым уравнением для плоской волны (6.3.6) $$=$$ , получим
где Е − модуль Юнга.
Полученное уравнение определяет фазовую скорость продольных упругих волн.
Если проделать аналогичные преобразования для поперечных упругих волн, то фазовая скорость поперечных упругих волн будет иметь следующий вид
Видео:🌊 Продольные и поперечные волны ⚛ ФизикаСкачать
Продольные и поперечные волны
Отвлечемся от внутреннего строения вещества для того, чтобы исследовать законы распространения механических волн. Вещество будем рассматривать как сплошную среду, непрерывно изменяющуюся в пространстве.
Частицей, изучая колебания, будем называть малый элемент объема среды, размеры которого много больше, чем расстояния между молекулами, при этом частицу среды принимаем за материальную точку.
Рассматривая механические волны, будем считать вещества, в которых они распространяются, упругими, внутренние силы, возникающие в них при малых деформациях, пропорциональными величине деформации.
При возбуждении колебания, в каком- либо месте упругой среды, в результате взаимодействия частиц среды, оно распространяется в веществе от точки к точке с некоторой конечной скоростью. Процесс распространения колебаний называют волной. Важным свойством волнового процесса является то, что в нем не происходит переноса массы, каждая частица выполняет колебания около положения равновесия. В волне от частицы к частице передается состояние колебательного движения и энергия колебаний. Волна переносит энергию.
В зависимости от направления колебаний частицы вещества по отношению к направлению распространения волны, волны делят на продольные и поперечные.
Видео:Волновое движение. Механические волны. 9 класс.Скачать
Продольные волны
Если частицы совершают колебания в направлении распространения волны, то такую волну называют продольной.
Продольные волны распространяются в веществе, в котором возникают силы упругости, при деформации растяжения и сжатия в веществе в любом агрегатном состоянии.
Так, например, волны звука, распространяющиеся в воздухе, относят к продольным волнам. Продольные волны, имеющие частоты от 17 до 20
000 Гц называют звуковыми. Скорость распространения акустических волн зависит от свойств среды и ее температуры.
При распространении продольной волны в среде возникают чередования сгущений и разрежений частиц, перемещающихся в направлении распространения волны со скоростью $v$. Все время существования волны, элементы среды выполняют колебания у своих положений равновесия, при этом разные частицы совершают колебания со сдвигом по фазе. В твердых телах скорость распространения продольных волн больше, чем скорость поперечных волн.
Скорость распространения продольных упругих волн в однородных в газах или жидкостях равна:
где $K$ — модуль объемной упругости вещества; $rho =const$ — плотность среды. В газах формула (1) справедлива, если избыточное давление много меньше, чем равновесное давление невозмущенного газа.
Скорость распространения продольных волн в тонком стержне, вызванных его продольным растяжением и сжатием равна:
где $E$ — модуль Юнга вещества стержня.
Видео:Механические модели волн. 1.Скачать
Поперечные волны
Поперечной волной называют такую волну, в которой колебания частиц среды происходят в направлениях перпендикулярных к направлению распространения волны.
Механические волны могут быть поперечными только в среде, в которой возможны деформации сдвига (среда обладает упругостью формы). Следовательно, в жидкостях и газах механических поперечных волн не наблюдают. Поперечные механические волны возникают в твердых телах. Примером таких волн являются волны, которые распространяются в натянутых струнах.
Скорость ($v$) распространения поперечных волн в бесконечной изотропной среде можно вычислить как:
где $G$ — модуль сдвига среды; $rho $ — плотность вещества.
Упругие свойства и плотность твердого тела зависит от химического состава вещества, и она несущественно изменяется при изменении давления и температуры. Поэтому в большинстве случаев скорость распространения волны можно считать постоянной.
Приведенная здесь скорость распространения упругих волн называется фазовой скоростью.
Видео:Физика 11 класс (Урок№2 - Механические волны.)Скачать
Уравнение продольной и поперечной волны
Основной задачей при изучении волн является установление закона изменения во времени и пространстве физических величин, которые однозначно характеризуют движение волны. При рассмотрении упругих волн такой величиной служит, например, смещение ($s$) частиц среды от их положений равновесия. Функция $s$ в зависимости от координат пространства и времени называется уравнением волны.
Самым простым видом волн являются гармонические волны. В таких волнах параметры $s$ для всех частиц среды, которые охвачены волной, совершают гармонические колебания с одинаковыми частотами. Для реализации данного волнового процесса необходимо, чтобы источник гармонических волн совершал незатухающие гармонические колебания.
Уравнение одномерной волны записывают как:
$k$ — волновое число; $lambda $ — длина волны; $A$ — амплитуда волны в точке (если среда не поглощает энергию, то амплитуда колебаний совпадает с амплитудой колебаний источника волн); $left[omega t-kx+varphi right]$ — фазой волны; $omega $- циклическая частота колебаний; $varphi $ — начальная фаза.
Видео:Распространение колебаний в среде. Волны | Физика 9 класс #28 | ИнфоурокСкачать
Примеры задач с решением
Задание: Поперечная волна распространяется по натянутой струне со скоростью $v=2frac$, период колебаний точек струны равен T= 1 с, амплитуда колебаний составляет 0,05 м. Какими будут смещение и скорость малого элемента струны, который находится на расстоянии $x_1=1 $м от источника колебаний в момент времени $t_1$=2 c?
Решение: Основой для решения задачи служит уравнение одномерной волны:
где $s$ — смещение точки струны, совершающей колебания; $x$ — расстояние от источника волны до рассматриваемой точки; $k=frac$ — волновое число; $v$ — скорость распространения волны.
Циклическую частоту $omega $ найдем (при T=1 c) как:
Тогда волновое число при $v=2frac$ равно:
Уравнение для нашей волны в учетом данных задачи приобретет вид:
Смещение точки струны, находящейся на расстоянии $x_1=1 $м от источника колебаний в момент времени $t_1$=2 c будет равно:
Скорость рассматриваемой точки струны найдем как:
Ответ: $s_1=-0,05$ м; $frac
Задание: Плоская одномерная волна распространяется в упругой среде. Изобразите на графике направление скорости частиц среды в точках $s=0, $при t=0 для продольной и поперечной волн.
Решение: Уравнением одномерной плоской волны служит выражение:
При $t=0 c$ из выражения (2.1) получаем:
В продольной волне частицы смещаются вдоль направления скорости движения волны (рис.1).
В продольной волне частицы совершают колебания поперек направления скорости движения волны рис.2.
Видео:Волны. Основные понятия. Решение задач.Задача 1Скачать
Волновое уравнение упругой волны и его решение
Выведем дифференциальное волновое уравнение, решением которого является уравнение плоской упругой волны. Прежде всего запишем закон Гука (3.15) для деформированного тела. Ранее мы формул провали этот закон для пружинки, к которой приложена сила. Деформированное тело можно представить как набор пружинок, каждая из которых в каждый момент времени взаимодействует с соседними.
Выделим элемент упругого стержня длиной Ах. Закрепив левую часть элемента, правую сместим на величину As вдоль оси х (рис. 7.1). По закону
Гука сила упругости Fyiip пропорциональна деформации: Fyiip = -kAs. Коэффициент упругости k зависит от материала стержня, его длины и площади сечения.
Введем понятия нормального напряжения а = — (S — площадь сечения
элемента) и относительной деформации г = —
(для элемента малой
длины). Запишем закон Гука для упругого тела через эти понятия: aS = kzAx, или
где Е = -у- — модуль Юнга. Модуль Юнга зависит только от свойств материала и не зависит от размеров и формы тела. Это несложно показать, рассматривая упругое тело как набор последовательно и параллельно соединенных пружинок. Модуль Юнга меняется в широких пределах. Так, для стали этот коэффициент равен 2-10 11 Н/м 2 , а для резины в сто тысяч раз меньше.
Рассмотрим теперь волну, распространяющуюся вдоль упругого стержня. По-прежнему будем рассматривать элемент стержня площадью сечения S и длиной Ах в невозмущенном состоянии. Применим второй закон Ньютона для описания колебаний этого элемента как целого (рис. 7.2):
Здесь в левой части имеем произведение массы элемента р5Ах на вторую производную смещения центра масс элемента; р — плотность стержня. В правой части — алгебраическая сумма внешних сил, действующих на элемент с торцов.
Разделим обе части уравнения на SAx и, устремив Ах том определения производной
0, получим с уче-
Наконец, воспользовавшись определением относительной деформации е, получим волновое уравнение
Убедимся, что уравнение плоской волны (7.7) с произвольной начальной фазой s(x, t) = Acos(u)t — kx + а) является его решением:
Подставив эти выражения в уравнение (7.13), получим для фазовой скорости упругой продольной волны соотношение
В результате волновое уравнение (7.13) можно записать в виде
Можно геометрически показать, что для плоской волны, распространяющейся в произвольном направлении в трехмерном пространстве, волновое уравнение имеет вид
или в сокращенном виде с помощью скалярного оператора Лапласа
Волны вида s(x, t) = Acos(oj( — kx + a), все точки которых перемещаются с одной и той же скоростью, принято называть бегущими. Временной график такой волны представляет синусоиду, равномерно перемещающуюся со временем вдоль оси х.
📽️ Видео
74. Упругие волныСкачать
Продольные и поперечные волныСкачать
Распространение волн в упругих средах. Звуковые волны | Физика 11 класс #18 | ИнфоурокСкачать
Урок 370. Механические волны. Математическое описание бегущей волныСкачать
Урок 95 (осн). Механические волны. ЗвукСкачать
Распространение колебаний в упругих средах Продольные и поперечные волны convertedСкачать
Упругие механические волны. 1 часть. 11 класс.Скачать
5.6 Механические волны. Виды волнСкачать
Волновое движениеСкачать
Общая физика | Л23: Элементы теории волн. Волновое уравнение. Поперечные и продольные колебанияСкачать
Колебания и волны. Лекция 13. ВОЛНЫ В УПРУГОМ ИЗОТРОПНОМ ТВЕРДОМ ТЕЛЕСкачать
Вывод волнового уравненияСкачать
Лекция №14 "Волны в упругих средах" (Попов П.В.)Скачать