Во время бури или смерча с домов иногда срывает крыши используя уравнение бернулли

Видео:Закон БернуллиСкачать

Закон Бернулли

Почему ветер срывает крыши домов — опыт

Данный урок помогает опытным путем дать ответ на вопрос: «почему сильные порыва ветра срывают крыши домов?»

Для этого на стенде был смоделирован макет дома, а рядом установлен воздуходув. При включенном воздуходуве крыша смоделированного дома начинает подниматься, готовая сорваться в любой момент. Это объясняется тем, что когда воздух обтекает сверху крышу, в соответствии с законом Бернулли над крышей в этот момент уменьшается давление. Атмосферное давление при этом, действующее на крышу с нижней ее части, поднимает крышу вверх с такой силой, что может ее сорвать.

Видео:Урок 133. Закон Бернулли. Уравнение БернуллиСкачать

Урок 133. Закон Бернулли. Уравнение Бернулли

Уравнение Бернулли и его применение

Разделы: Физика

Цели урока:

  • Образовательные: знакомство с принципом Бернулли и его применением в технике и быту;
  • Развивающие: развитие навыков проблемного подхода к решению поставленной задачи; развитие логического мышления учащихся; совершенствование умения наблюдать, сравнивать и сопоставлять изучаемые явления, выделять общие признаки и обобщать результаты экспериментов.
  • Воспитательные: формирование научного мировоззрения, воспитание интереса и любознательности.

Оборудование: мультимедийный проектор, компьютер, интерактивная доска.

Демонстрационное оборудование: цилиндр Магнуса, по два бумажных листка на каждой парте учащихся, шарики для тенниса, фен, свеча и воронка, компьютерная модель (диск «Открытая физика 1.1»), рисунки.

1. Постановка учебной проблемы (просмотр видеосюжета, слайд 3).

Осенью 1912 г океанский пароход «Олимпик» плыл в открытом море, а почти параллельно ему, на расстоянии сотни метров, проходил с большой скоростью другой корабль, гораздо меньший, броненосный крейсер «Гаук». Когда оба судна заняли положение, изображенное на рисунке , произошло нечто неожиданное: меньшее судно стремительно свернуло с пути, словно повинуясь неведомой силе, повернулось носом к большому кораблю и, не слушаясь руля, двинулось почти прямо на него. «Гаук» врезался носом в бок «Олимпика».Удар был так силен, что «Гаук» проделал в борту «Олимпика» большую пробоину. Случай столкновения двух кораблей рассматривался в морском суде. Капитана корабля «Олимпик» обвинили в том, что он не дал команду пропустить броненосец. Как вы думаете, что произошло? Почему меньший корабль, не слушаясь руля, пошел наперерез «Олимпику»? Смоделируем это явление с помощью двух полосок бумаги.

Во время бури или смерча с домов иногда срывает крыши используя уравнение бернулли

Во время бури или смерча с домов иногда срывает крыши используя уравнение бернулли

Опыт 1. Между двумя полосками бумаги продуваем воздух, они сближаются. Скорость воздуха внутри полосок больше, значит давление между листами меньше, чем снаружи.

Парадоксальность результатов такого поведения тел можно объяснить, используя закон Берннули (уравнение Бернулли). Швейцарский ученый Даниил Бернулли длительное время жил в России, именно к этому времени относится создание его главного научного труда — теории гидромеханики. Основная теорема гидродинамики связывает давление жидкости с её скоростью. До сих пор вы рассматривали движение твердых тел. Сегодня мы перенесем знания законов сохранения на движение жидкостей и газов. Будем рассматривать закон Бернулли на качественном уровне.

2. Изучение нового материала.

Пусть жидкость течет без трения по трубе переменного сечения . Иначе говоря, через все сечения трубы проходят одинаковые объемы жидкости, иначе жидкости пришлось бы либо разорваться где-нибудь, либо сжаться, что невозможно. За время t через сечение S1 пройдет объем

Во время бури или смерча с домов иногда срывает крыши используя уравнение бернулли

Делаем вывод: скорость течения жидкости в трубе переменного сечения обратно пропорциональна площади поперечного сечения.

Если площадь поперечного сечения увеличилась в 4 раза, то скорость уменьшилась во столько же раз и, наоборот, во сколько раз уменьшилось сечение трубы, во столько же раз увеличилась скорость течения жидкости или газа. Где наблюдается такое явление изменения скорости? Например, на реке, впадающей в море, наблюдается уменьшение скорости, вода из ванны — скорость увеличивается, мы наблюдаем турбулентное течение воды. Если скорость невелика, то жидкость течет как бы разделенная на слои («ламиниа» — слой). Течение называется ламинарным.

Итак, выяснили, что при течении жидкости из узкой части в широкую или наоборот, скорость изменяется, следовательно, жидкость движется с ускорением. А что является причиной возникновения ускорения? (Сила (второй закон Ньютона)). Какая же сила сообщает жидкости ускорение? Этой силой может быть только разность сил давления жидкости в широкой и узкой частях трубы.

К этому выводу впервые пришел академик Петербургской академии наук Даниил Бернулли в 1726 году, и закон теперь носит его имя. Принцип, впервые высказанный Д.Бернулли в 1726 г., гласит: в струе воды или воздуха давление велико, если скорость мала, и давление мало, если скорость велика. Существуют известные ограничения этого принципа, но здесь мы не будем на них останавливаться.

Опыт 2. Работа с интерактивной моделью [5].

Уравнение Бернулли показывает, что давление жидкости (или газа) больше там, где скорость её течения меньше и наоборот. Этот, казалось бы, парадоксальный вывод подтверждается опытами .

Во время бури или смерча с домов иногда срывает крыши используя уравнение бернулли

Даниил Бернулли (29.1.1700- 17.3.1782), сын Иоганна Бернулли (брат — Якоб Бернулли) . Занимался физиологией и медициной, но больше всего математикой и механикой. В 1725-33 он работал в Петербургской АН сначала на кафедре физиологии, а затем механики. Впоследствии он состоял почётным членом Петербургской АН, опубликовал (с 1728-78) в её изданиях 47 работ. В работах, завершенных написанным в Петербурге трудом «Гидродинамика» (1738), вывел основное уравнение стационарного движения идеальной жидкости, носящее его имя. Даниил Бернулли разрабатывал кинетические представления о газах.После рассмотрения принципа Бернулли можно объяснить причины столкновения двух кораблей .

Во время бури или смерча с домов иногда срывает крыши используя уравнение бернулли

Во время бури или смерча с домов иногда срывает крыши используя уравнение бернулли

Объяснение поведения двух листочков при продувании воздуха между ними . Давление воздуха в пространстве левее и правее листочков бумаги равно атмосферному давлению.Направив воздушный поток между листочками, мы тем самим в этом скоростном потоке воздуха создаем область пониженного давления в соответствии с законом Бернулли, в результате чего возникает разность давлений в пространстве между листками и с внешней стороны листков. Эта разность давлений является причиной «прилипания» листочков.

Во время бури или смерча с домов иногда срывает крыши используя уравнение бернулли

Опыт 3. Взять листок бумаги за короткую сторону и подуть вдоль листа. Лист поднимается вверх. Объяснение опыта: Скорость над листом больше, чем под листом, а давление меньше. Эта разность давлений и поднимает лист вверх .

Во время бури или смерча с домов иногда срывает крыши используя уравнение бернулли

Аэродинамический принцип создания подъемной силы был изложен Н. Е. Жуковским так: «. двигаясь под малым углом к горизонту с большой горизонтальной скоростью, наклонная плоскость сообщает громадному количеству последовательно прилегающего к ней воздуха малую скорость вниз и тем развивает большую подъемную силу вверх при незначительной затрате работы на горизонтальное перемещение». Следовательно, для создания подъемной силы по этому принципу необходимо перемещение тела относительно воздуха.
Аэродинамический принцип создания подъемной силы используется при подъеме аппарата тяжелее воздуха, к которым относятся планеры и дельтапланы, самолеты и сверхлегкие моторные летательные аппараты, вертолеты и автожиры, летательные аппараты с машущими крыльями (ортоптеры и орнитоптеры).

Подъемная сила у моторного сверхлегкого летательного аппарата создается неподвижно закрепленным крылом. При поступательном движении аппарата крыло обтекается потоком воздуха. Из-за особой формы сечения крыла (несимметричная форма) воздух, огибающий крыло сверху, движется быстрее, чем внизу, поэтому создается разность давлений под крылом и над ним, а в результате возникает подъемная сила. Для моторного аппарата перемещение в воздухе происходит под действием силы тяги, создаваемой силовой установкой.
Планеры, в том числе дельтапланы, создают подъемную силу так же, как моторные аппараты, неподвижно закрепленным крылом, но так как они не имеют силовой установки, то могут только планировать или летать на буксире. При планировании они снижаются за счет силы веса или набирают высоту за счет восходящих потоков воздуха. Подъемная сила появляется при обтекании не всех тел, а лишь тел с определенным профилем. Для крыльев дельтапланов должны применяться профили с хорошими летными характеристиками, создающими большую подъемную силу.

Жуковский Николай Егорович (5.I.1847-17.III.1921). Русский ученый в области механики, основоположник современной гидроаэродинамики. Жуковский является автором многочисленных оригинальных исследований в области механики твердого тела, астрономии, математики, гидродинамики и гидравлики, прикладной механики, теории регулирования машин и др.

Во время бури или смерча с домов иногда срывает крыши используя уравнение бернулли

Работы Жуковского в области аэродинамики явились источником основных идей, на которых строится авиационная наука. Он всесторонне исследовал динамику полёта птиц, теоретически предсказал ряд возможных траекторий полёта. В 1904 году Жуковский открыл закон, определяющий подъёмную силу крыла самолёта; определил основные профили крыльев и лопастей винта самолёта; разработал вихревую теорию воздушного винта. При его активном участии были созданы Центральный аэродинамический институт (ЦАГИ), Военно-воздушная инженерная академия (ныне носит имя Жуковского).

Проблема изучения подъемной силы имеет очень давнюю историю. Загадки полета птицы занимали умы ученых задолго до появления летательных аппаратов. Первая попытка исследования природы подъемной силы была сделана Леонардо да Винчи в 1505 году. Объясняя причину возникновения подъемной силы птицы, он считал, что из-за быстрых ударов крыльями воздух под ними уплотняется и поэтому поддерживает птицу. Эта гипотеза Леонардо да Винчи, основанная на сжимаемости воздуха, была ошибочной, так как применялась для полета с малыми скоростями, когда свойство сжимаемости воздуха практически не проявляется.

В 1852 году Магнус провел серию опытов для объяснения явления отклонения от вертикальной плоскости вращающихся артиллерийских снарядов. Он показал, что поперечная сила, вызывающая это отклонение, возникает из-за взаимодействия двух потоков воздуха: набегающего на снаряд и вращающегося вместе со снарядом. Это явление, получившее название эффекта Магнуса.

Опыт 4. Для опыта изготовим цилиндр из плотной, но не толстой бумаги диаметром 5 см, длиной 25-30 см. На цилиндр намотаем ленточку, один конец которой прикрепим к линейке. Резким движением вдоль горизонтальной поверхности стола сообщим цилиндру сложное движение (поступательное и вращательное) . При большой скорости цилиндр поднимается вверх и описывает небольшую вертикальную петлю. Объясните, почему это происходит.

Во время бури или смерча с домов иногда срывает крыши используя уравнение бернулли

Уравнение Бернулли объясняет такое поведение рулона (и закрученного мячика): вращение нарушает симметричность обтекания за счёт эффекта прилипания. С одной стороны бумажного цилиндра скорость потока больше (над цилиндром вектор скорости воздуха сонаправлен вектору скорости цилиндра), значит, давление там понижается, а под цилиндром вектор скорости воздуха антипараллелен вектору скорости цилиндра. В результате разности давлений возникает подъёмная сила, называемая силой Магнуса. Эта сила поднимает цилиндр вверх, а не по параболе.

Это явление носит название эффекта Магнуса, по имени ученого, открывшего и исследовавшего его экспериментально. Эффект Магнуса проявляется в таких природных явлениях, как образование смерчей над поверхностью океана. В месте встречи двух воздушных масс с разными температурами и скоростями возникает вращающийся вокруг вертикальной оси столб воздуха и несется вперед. В поперечнике такой столб может достигать сотен метров и несется со скоростью около 100м/с. Из-за быстрого вращения воздух отбрасывается к периферии вихря и давление внутри него понижается. Когда такой столб приближается к воде, то засасывает ее в себя, представляя огромную опасность для судов.

3. Закрепление нового материала.

По рисункам и демонстрациям объясните наблюдаемые явления (Слайд 12).

Опыт 5. «Демон» Бернулли.

Струя воздуха может поддерживать легкий шарик (например мяч для настольного тенниса). Воздушная струя ударяется о шарик и не дает ему падать. Когда шарик выскакивает из струи, окружающий воздух возвращает его обратно в струю, т.к. давление окружающего воздуха, имеющего малую скорость, велико, а давление воздуха в струе, имеющего большую скорость, мало. Дополнительная подъемная сила может возникать из-за вращения мяча вследствие эффекта Магнуса, который проявляется и при полете закрученного бейсбольного мяча. (Нередко подъемную силу, возникающую в рассматриваемом случае, ошибочно объясняют уменьшением давления в воздушной струе вследствие движения воздуха. Это неправильное истолкование смысла уравнения Бернулли. На самом деле давление в свободно движущейся воздушной струе равно атмосферному. Если насадка на шланг пылесоса сужается (как это обычно бывает), то скорость воздушного потока увеличивается, а давление уменьшается. Таким оно остается и в струе, пока в нее не будет «затянут» окружающий воздух. Тогда давление станет равным атмосферному. Поперечная устойчивость мяча объясняется уменьшением давления в струе, обтекающей мяч.)

Во время бури или смерча с домов иногда срывает крыши используя уравнение бернулли

Опыт 6. Воздух продувается между двумя воздушными шариками, подвешенными на нитях. Шарики сближаются и ударяются друг о друга.

Опыт 7. Напротив воронки зажигаем свечу. Через воронку продуваем воздух, пламя свечи отклоняется в сторону воронки.

Обсуждение рисунков (Слайд 14).

Ситуация 1. Ветер под зданием. В США был предложен проект жилого дома, в котором этажи, подобно мостам, «подвешиваются» между двумя мощными стенами, а пространство под домом остается открытым . Внешне такое здание выглядит весьма привлекательно, но оно абсолютно не пригодно для ветреных районов. Одно из таких зданий было выстроено на территории Массачусетского технологического института. И вот когда подули весенние ветры, скорость ветра под зданием достигла 160 км/ч. Чем вызвано столь сильное увеличение скорости ветра? (Ветер, попадающий на здание, частично прогоняется через нижний просвет. При этом скорость его возрастает).

Во время бури или смерча с домов иногда срывает крыши используя уравнение бернулли

Ситуация 2. Встречные поезда. Скоростные поезда . при встрече должны замедлить ход, иначе стекла в вагонах разобьются. Почему? В какую сторону при этом выпадают стекла: внутрь вагонов или наружу? Может ли случиться подобное, если поезда движутся в одном направлении? Будет ли вас притягивать к поезду или отталкивать от него, если вы окажетесь слишком близко от быстро идущего поезда?

(Впереди быстро идущего поезда создается фронт высокого давления, а за ним — область низкого давления. Когда встречные поезда разъезжаются, стекла в вагонах могут быть выдавлены наружу, поскольку между поездами возникает область пониженного давления).

Во время бури или смерча с домов иногда срывает крыши используя уравнение бернулли

Ситуация 3. Крылья и вентиляторы на гоночных автомобилях. Гоночные автомобили за время своего существования претерпели существенные изменения. К числу наиболее значительных усовершенствований можно отнести установку в задней части автомобиля горизонтального крыла. Когда автомобиль с таким крылом совершал поворот, водитель наклонял крыло вперед. При выходе из поворота, крыло снова принимало горизонтальное положение. Это устройство оказалось очень эффективным средством удержания машины на дороге во время поворотов и позволяло делать повороты с гораздо большей скоростью. Однако поломка таких крыльев на трассе делала машину неуправляемой, и поэтому пришлось установить неподвижные крылья. Каким образом крылья — подвижные или неподвижные — могут удерживать автомобиль на повороте?

Одна из самых странных гоночных машин «Чаппараль-2.1» была построена Джимом Холлом, который придумал и подвижное крыло. Почти 20 лет прошло с момента первых экспериментов легендарного Джима Холла с «машиной-крылом» Chapparal-Chevrolet до победы в Гран При «гоночного пылесоса», целиком и полностью обязанного своим преимуществом «граунд-эффекту». «Чаппараль» имел в задней части два больших вентилятора, которые засасывали воздух из-под днища и гнали его назад. Сбоку автомобиль был закрыт щитками почти до самой дороги, чтобы воздух проходил прямо под машиной. Благодаря этому Холлу удалось увеличить сцепление колес с дорогой и тем самым значительно повысить скорость автомобиля. Почему воздух, прогоняемый под машиной и выпускаемый позади, усиливает сцепление колес с дорогой? Можете ли вы оценить увеличение сцепления и скорости?

Во время бури или смерча с домов иногда срывает крыши используя уравнение бернулли

(Наклоненное вниз крыло создавало силу, направленную вниз; тем самым улучшалось сцепление колес с дорогой. Это позволяло машине быстрее проходить повороты. Аэродинамическая сила крыла здесь создавалась так же, как и на самолете, только в данном случае она была направлена вниз. Вентилятор в задней части автомобиля тоже создавал направленную вниз силу, увеличивающую сцепление колес с дорогой. Воздух, который засасывался под автомобиль, ускорялся, так как сечение воздушного потока уменьшалось. Согласно уравнению Бернулли, увеличение скорости потока сопровождается понижением давления. Таким образом, давление над автомобилем оказывалось выше, чем под ним, и автомобиль почти в полтора раза сильнее прижимался к дороге).

Ситуация 4. «Ветроход». Всегда находятся люди, способные увидеть то, чего не замечают другие, и обладающие неиссякаемой пытливостью — этим неотъемлемым качеством всех изобретателей. Таким человеком был немецкий инженер Антон Флеттнер (1885-1961). Однажды, наблюдая во время плавания на паруснике за усилиями матросов, работавших в шторм с парусами на высоте 40-50 м, он подумал: а нельзя ли чем-нибудь заменить классический парус, используя при этом все ту же силу ветра? Размышления заставили Флеттнера вспомнить о его соотечественнике физике Генрихе Густаве Магнусе. В качестве первого опытного судна для его испытания использовали видавшую виды трехмачтовую шхуну «Букау» водоизмещением 980 т. В 1924 году на ней вместо трех мачт поставили два ротора-цилиндра высотой 13,1 м и диаметром 1,5 м. Их приводили в движение два электромотора постоянного тока напряжением 220 В. Объясните принцип действия такого «ветрохода» . (Если на поверхность вращающегося ротора воздействует ветер, скорость последнего изменяется. Там, где поверхность движется навстречу ветру, его скорость уменьшается, а давление увеличивается. С противоположной же стороны ротора скорость воздушного потока, наоборот, увеличивается, а давление падает. Полученная разность давлений и создает движущую силу, которую можно использовать для перемещения судна).

Во время бури или смерча с домов иногда срывает крыши используя уравнение бернулли

Магнус в 1852 г доказал, возникающая поперечная сила, действующая на тело, вращающееся в обтекающем его потоке жидкости или газа, направлена в сторону, где скорость потока и вращение тела совпадают. Наличие такого эффекта Магнус подтвердил позже на опыте с весами. На одну из их чаш клали горизонтально цилиндр с подключенным к нему моторчиком, а на другую — уравновешивавшие гири. Цилиндр обдували воздухом, но, пока не включали моторчик, он оставался неподвижным, и равновесие весов не нарушалось. Однако стоило лишь запустить моторчик и тем самым заставить цилиндр вращаться, как чаша, где он находился, или поднималась, или опускалась — в зависимости от того, в каком направлении шло вращение. Этим опытом ученый установил: если на вращаемый цилиндр набегает поток воздуха, то скорости потока и вращения по одну сторону цилиндра складываются, по другую же — вычитаются. А поскольку большим скоростям соответствуют меньшие давления, на вращаемом цилиндре, помещенном в поток воздуха, возникает движущая сила, перпендикулярная потоку. Ее можно увеличивать или уменьшать, если крутить цилиндр быстрее или медленнее. Именно опыты Магнуса и навели Флеттнера на мысль заменить парус на судне вращающимся цилиндром. Но сразу же возникли сомнения. Ведь на большом судне такие роторы будут выглядеть огромными башнями высотой 20-25 м, которые в шторм создадут колоссальную опасность для судна. На эти вопросы требовалось ответить, и Флеттнер начал свои исследования, которые завершились созданием первого «ветрохода» — трехмачтовая шхуна «Букау».

Ситуация 5. В дождливую ветряную погоду, каждый из нас замечал, что раскрытые зонтики иногда «выворачиваются наизнанку» . Почему это происходит? Аналогичное действие производит на крыши домов сильный ураган. (Поток воздуха, набегающий на изогнутую поверхность зонта, движется по руслу своеобразной сужающейся трубы с большей скоростью, чем воздух в нижней части, следовательно, давление снизу больше, чем вверху, и зонт выворачивается)

Во время бури или смерча с домов иногда срывает крыши используя уравнение бернулли

Ситуация 6. В футболе одним из коварных ударов для вратаря считается так называемый «сухой лист» . Похожий подрезанный удар — «сплин» применяют в теннисе и других играх с мячом. Предвидеть, куда направится такой крученый мяч, неопытному спортсмену довольно трудно. Объясните, почему так происходит. («Виновата» во всем сила Магнуса, проявляющаяся при движении закрученного вдоль своей оси симметричного тела — мяча, цилиндра и т.п.).

Во время бури или смерча с домов иногда срывает крыши используя уравнение бернулли

Уравнение Бернулли просто объясняет множество явлений, происходящих в жидкости и газе. Это возникновение подъемной силы крыла, работа таких приборов как пульверизатор, карбюратор, газовой горелки и многое другое. Жизнь самого Даниила Бернулли похожа на его замечательное уравнение. Движение по разным городам и странам, взаимодействие со многими учеными, периодическое расширение и сжатие научных интересов в конечном итоге привели к результатам, которыми до сих пор пользуется человечество, находя все новые и новые применения.

Рефлексия. Конструирование бумажного самолетика. Чей самолет имеет большую дальность полета?

Домашнее задание. Применение закона Бернулли и эффекта Магнуса (рисунки, кроссворды, презентации, стихи)

Видео:Закон БернуллиСкачать

Закон Бернулли

Уравнение Бернулли и следствия из него

Законом сохранения механической энергии для установившегося (стационарного) течения несжимаемой жидкости является уравнение Бернулли.

Выделим в стационарно текущей идеальной жидкости (физическая модель, т.е. воображаемая жидкость, в которой отсутствуют силы внутреннего трения) трубку тока, ограниченную сечениями 5′1 и 52, по которой слева направо течет жидкость (рис. 116). Пусть в месте сечения скорость течения о1, давление р> и высота, на которой это сечение расположено, Аналогично, в месте сечения 52 скорость течения 62, давление р2 и высота сечения Ь2. За малый промежуток времени Д? жидкость перемещается от сечений 5] и 52 к сечениям ?’ и 5′ •

Согласно закону сохранения энергии изменение полной энергии Е2 — ?1 идеальной несжимаемой жидкости равно работе А внешних сил по перемещению массы т жидкости: Во время бури или смерча с домов иногда срывает крыши используя уравнение бернулли

Во время бури или смерча с домов иногда срывает крыши используя уравнение бернулли

где Е1и Е2 — полная энергия жидкости массой т в сечениях 51 и 52 соответственно.

С другой стороны, А — это работа, совершаемая при перемещении всей жидкости, заключенной между сечениями и 52, за рассматриваемый малый промежуток времени . Для перенесения массы т от до жидкость должна переместиться на расстояние ^ = v1At и от 52 до 5′ — на расстояние 12 = и2 At. Отметим, что и /2 настолько малы, что всем точкам объемов, закрашенных на рис. 116, приписывают постоянные значения скорости V, давления р и высоты к. Следовательно: Во время бури или смерча с домов иногда срывает крыши используя уравнение бернулли

Р2&2 ( от Р и Ц ател ьна, так как направлена в сторону, противоположную течению жидкости).

Полные энергии Е1 и Е2 будут складываться из кинетической и потенциальной энергий жидкости массой т:

Во время бури или смерча с домов иногда срывает крыши используя уравнение бернулли

Подставляя (3) и (4) в (1) и приравнивая (1) и (2), получаем:

Во время бури или смерча с домов иногда срывает крыши используя уравнение бернулли

При установившемся течении масса жидкости, проходящая сквозь любое поперечное сечение трубки тока за 1 с, остается постоянной. Это позволяет утверждать, что

Во время бури или смерча с домов иногда срывает крыши используя уравнение бернулли

где р — плотность жидкости, V — скорость жидкости в произвольном сечении трубки тока площадью 5. В случае несжимаемой жидкости ее плотность р во всех сечениях трубки тока постоянна. Тогда для несжимаемой жидкости уравнение неразрывности имеет вид:

Во время бури или смерча с домов иногда срывает крыши используя уравнение бернулли

Согласно уравнению неразрывности (6)

Во время бури или смерча с домов иногда срывает крыши используя уравнение бернулли

Разделив выражение (5) на АV, получим выражение, называемое уравнением Бернулли:

Во время бури или смерча с домов иногда срывает крыши используя уравнение бернулли

Так как сечения выбирались произвольно, то можно записать:

Во время бури или смерча с домов иногда срывает крыши используя уравнение бернулли

где р — статическое давление (давление жидкости на поверхность обтекаемого ею тела), ри 2 /2 — динамическое давление, рёк — гидростатическое давление.

Уравнение (7) выполняется и для реальных жидкостей, внутреннее трение которых не очень велико.

Для горизонтальной трубки тока (к- = к2) уравнение Бернулли принимает вид:

🌟 Видео

Галилео. Эксперимент. Закон БернуллиСкачать

Галилео. Эксперимент. Закон Бернулли

Теория вероятностей #8: формула Бернулли и примеры ее использования при решении задачСкачать

Теория вероятностей #8: формула Бернулли и примеры ее использования при решении задач

Уравнение БернуллиСкачать

Уравнение Бернулли

10. Уравнения БернуллиСкачать

10. Уравнения Бернулли

Уравнение Бернулли. Диаграмма Бернулли.Скачать

Уравнение Бернулли. Диаграмма Бернулли.

Закон БернуллиСкачать

Закон Бернулли

Парадокс вытекающей водыСкачать

Парадокс вытекающей воды

Уравнение Бернулли гидравликаСкачать

Уравнение Бернулли гидравлика

Клапан Тесла | Целая физикаСкачать

Клапан Тесла | Целая физика

Уравнение Бернулли. Практическая часть. 10 класс.Скачать

Уравнение Бернулли. Практическая часть. 10 класс.

Урок 134. Применения уравнения Бернулли (ч.1)Скачать

Урок 134. Применения уравнения Бернулли (ч.1)

Самый массовый протест с начала войны. Россия без отопления: куда ушли деньги. Как ВСУ сбили А-50Скачать

Самый массовый протест с начала войны. Россия без отопления: куда ушли деньги. Как ВСУ сбили А-50

Запрещенный Вечный Двигатель Раскрытие СекретаСкачать

Запрещенный Вечный Двигатель Раскрытие Секрета

Гидродинамика. Уравнение Бернулли. Физика 10 классСкачать

Гидродинамика. Уравнение Бернулли. Физика 10 класс

Эффект Магнуса и уравнение БернуллиСкачать

Эффект Магнуса и уравнение Бернулли

Парадокс сужающейся трубыСкачать

Парадокс сужающейся трубы

Закон БернуллиСкачать

Закон Бернулли
Поделиться или сохранить к себе: