Виды уравнений методы их решения

Видео:Задание 9 на ОГЭ по математике 2023 / Разбираем все типы уравнений за 5 минут!Скачать

Задание 9 на ОГЭ по математике 2023 / Разбираем все типы уравнений за 5 минут!

Решение простых линейных уравнений

Виды уравнений методы их решения

О чем эта статья:

Статья находится на проверке у методистов Skysmart.
Если вы заметили ошибку, сообщите об этом в онлайн-чат
(в правом нижнем углу экрана).

Видео:Повторяем решение уравнений. Полезно всем! Вебинар | МатематикаСкачать

Повторяем решение уравнений. Полезно всем! Вебинар | Математика

Понятие уравнения

Уравнение — это математическое равенство, в котором неизвестна одна или несколько величин. Значение неизвестных нужно найти так, чтобы при их подстановке в пример получилось верное числовое равенство.

Например, возьмем выражение 2 + 4 = 6. При вычислении левой части получается верное числовое равенство, то есть 6 = 6.

Уравнением можно назвать выражение 2 + x = 6, с неизвестной переменной x, значение которой нужно найти. Результат должен быть таким, чтобы знак равенства был оправдан, и левая часть равнялась правой.

Корень уравнения — то самое число, которое при подстановке на место неизвестной уравнивает выражения справа и слева.

Решить уравнение значит найти все возможные корни или убедиться, что их нет.

Решить уравнение с двумя, тремя и более переменными — это два, три и более значения переменных, которые обращают данное выражение в верное числовое равенство.

Равносильные уравнения — это те, в которых совпадают множества решений. Другими словами, у них одни и те же корни.

Видео:Cистемы уравнений. Разбор задания 6 и 21 из ОГЭ. | МатематикаСкачать

Cистемы уравнений. Разбор задания 6 и 21 из ОГЭ.  | Математика

Какие бывают виды уравнений

Уравнения могут быть разными, самые часто встречающиеся — линейные и квадратные.

Особенность преобразований алгебраических уравнений в том, что в левой части должен остаться многочлен от неизвестных, а в правой — нуль.

Линейное уравнение выглядит таках + b = 0, где a и b — действительные числа.

Что поможет в решении:

  • если а не равно нулю, то у уравнения единственный корень: х = -b : а;
  • если а равно нулю — у уравнения нет корней;
  • если а и b равны нулю, то корень уравнения — любое число.
Квадратное уравнение выглядит так:ax 2 + bx + c = 0, где коэффициенты a, b и c — произвольные числа, a ≠ 0.

Числовой коэффициент — число, которое стоит при неизвестной переменной.

Кроме линейных и квадратных есть и другие виды уравнений, с которыми мы познакомимся в следующий раз:

Онлайн-курсы по математике за 7 класс помогут закрепить новые знания на практике с талантливым преподавателем.

Видео:ЛИНЕЙНЫЕ УРАВНЕНИЯ - Как решать линейные уравнения // Подготовка к ЕГЭ по МатематикеСкачать

ЛИНЕЙНЫЕ УРАВНЕНИЯ - Как решать линейные уравнения // Подготовка к ЕГЭ по Математике

Как решать простые уравнения

Чтобы научиться решать простые линейные уравнения, нужно запомнить формулу и два основных правила.

1. Правило переноса. При переносе из одной части в другую, член уравнения меняет свой знак на противоположный.

Для примера рассмотрим простейшее уравнение: x+3=5

Начнем с того, что в каждом уравнении есть левая и правая часть.

Перенесем 3 из левой части в правую и меняем знак на противоположный.

Можно проверить: 2 + 3 = 5. Все верно. Корень равен 2.

Решим еще один пример: 6x = 5x + 10.

Перенесем 5x из правой части в левую. Знак меняем на противоположный, то есть на минус.

Приведем подобные и завершим решение.

2. Правило деления. В любом уравнении можно разделить левую и правую часть на одно и то же число. Это может ускорить процесс решения. Главное — быть внимательным, чтобы не допустить глупых ошибок.

Применим правило при решении примера: 4x=8.

При неизвестной х стоит числовой коэффициент — 4. Их объединяет действие — умножение.

Чтобы решить уравнение, нужно сделать так, чтобы при неизвестной x стояла единица.

Разделим каждую часть на 4. Как это выглядит:

Виды уравнений методы их решения

Теперь сократим дроби, которые у нас получились и завершим решение линейного уравнения:

Рассмотрим пример, когда неизвестная переменная стоит со знаком минус: −4x = 12

    Разделим обе части на −4, чтобы коэффициент при неизвестной стал равен единице.

−4x = 12 | : (−4)
x = −3

Если знак минус стоит перед скобками, и по ходу вычислений его убрали — важно не забыть поменять знаки внутри скобок на противоположные. Этот простой факт позволит не допустить обидные ошибки, особенно в старших классах.

Напомним, что не у каждого линейного уравнения есть решение — иногда корней просто нет. Изредка среди корней может оказаться ноль — ничего страшного, это не значит, что ход решения оказался неправильным. Ноль — такое же число, как и остальные.

Способов решения линейных уравнений немного, нужно запомнить только один алгоритм, который будет эффективен для любой задачки.

Алгоритм решения простого линейного уравнения
  1. Раскрываем скобки, если они есть.
  2. Группируем члены, которые содержат неизвестную переменную в одну часть уравнения, остальные члены — в другую.
  3. Приводим подобные члены в каждой части уравнения.
  4. Решаем уравнение, которое получилось: aх = b. Делим обе части на коэффициент при неизвестном.

Чтобы быстрее запомнить ход решения и формулу линейного уравнения, скачайте или распечатайте алгоритм — храните его в телефоне, учебнике или на рабочем столе.

Виды уравнений методы их решения

Видео:Как НАУЧИТЬСЯ решать всевозможные уравненияСкачать

Как НАУЧИТЬСЯ решать всевозможные уравнения

Примеры линейных уравнений

Теперь мы знаем, как решать линейные уравнения. Осталось попрактиковаться на задачках, чтобы чувствовать себя увереннее на контрольных. Давайте решать вместе!

Пример 1. Как правильно решить уравнение: 6х + 1 = 19.

    Перенести 1 из левой части в правую со знаком минус.

Разделить обе части на множитель, стоящий перед переменной х, то есть на 6.

Пример 2. Как решить уравнение: 5(х − 3) + 2 = 3 (х − 4) + 2х − 1.

5х − 15 + 2 = 3х − 12 + 2х − 1

Сгруппировать в левой части члены с неизвестными, а в правой — свободные члены. Не забываем при переносе из одной части уравнения в другую поменять знаки на противоположные у переносимых членов.

5х − 3х − 2х = −12 − 1 + 15 − 2

Приведем подобные члены.

Ответ: х — любое число.

Пример 3. Решить: 4х = 1/8.

    Разделим обе части уравнения на множитель стоящий перед переменной х, то есть на 4.

Пример 4. Решить: 4(х + 2) = 6 − 7х.

  1. 4х + 8 = 6 − 7х
  2. 4х + 7х = 6 − 8
  3. 11х = −2
  4. х = −2 : 11
  5. х = −2/11

Ответ: −2/11 или −(0,18). О десятичных дробях можно почитать в другой нашей статье.

Пример 5. Решить: Виды уравнений методы их решения

  1. Виды уравнений методы их решения
  2. 3(3х — 4) = 4 · 7х + 24
  3. 9х — 12 = 28х + 24
  4. 9х — 28х = 24 + 12
  5. -19х = 36
  6. х = 36 : (-19)
  7. х = — 36/19

Пример 6. Как решить линейное уравнение: х + 7 = х + 4.

5х — 15 + 2 = 3х — 2 + 2х — 1

Сгруппировать в левой части неизвестные члены, в правой — свободные члены:

Приведем подобные члены.

Ответ: нет решений.

Пример 7. Решить: 2(х + 3) = 5 − 7х.

Видео:ОГЭ по математике. Решаем уравнения | МатематикаСкачать

ОГЭ по математике. Решаем уравнения | Математика

«Виды уравнений и способы их решения»

Обращаем Ваше внимание, что в соответствии с Федеральным законом N 273-ФЗ «Об образовании в Российской Федерации» в организациях, осуществляющих образовательную деятельность, организовывается обучение и воспитание обучающихся с ОВЗ как совместно с другими обучающимися, так и в отдельных классах или группах.

«Актуальность создания школьных служб примирения/медиации в образовательных организациях»

Свидетельство и скидка на обучение каждому участнику

Доклад по математике на тему:

«Виды уравнений и способы их решения»

Математическое образование, получаемое в общеобразовательной школе, является важнейшим компонентом общего образования и общей культуры современного человека. Практически все, что окружает современного человека – это все так или иначе связано с математикой. А последние достижения в физике, технике и информационных технологиях не оставляют никакого сомнения, что и в будущем положение вещей останется прежним. Поэтому решение многих практических задач сводится к решению различных видов уравнений, которые необходимо научиться решать.

Данная работа является попыткой обобщить и систематизировать изученный материал по выше указанной теме. Я расположила материал по степени его сложности, начиная с самого простого. В него вошли как известные нам виды уравнений из школьного курс алгебры, так и дополнительный материал. При этом я попыталась показать виды уравнений, которые не изучаются в школьном курсе, но знание которых может понадобиться при поступлении в высшее учебное заведение. В своей работе при решении уравнений я не стала ограничиваться только действительным решением, но и указала комплексное, так как считаю, что иначе уравнение просто не законченно. Ведь если в уравнении нет действительных корней, то это еще не значит, что оно не имеет решений.

Математика. выявляет порядок,

симметрию и определенность,

а это – важнейшие виды прекрасного.

В те далекие времена, когда мудрецы впервые стали задумываться о равенствах содержащих неизвестные величины, наверное, еще не было ни монет, ни кошельков. Но зато были кучи, а также горшки, корзины, которые прекрасно подходили на роль тайников-хранилищ, вмещающих неизвестное количество предметов. «Ищется куча, которая вместе с двумя третями ее, половиной и одной седьмой составляет 37. «, — поучал во II тысячелетии до новой эры египетский писец Ахмес. В древних математических задачах Междуречья, Индии, Китая, Греции неизвестные величины выражали число павлинов в саду, количество быков в стаде, совокупность вещей, учитываемых при разделе имущества. Хорошо обученные науке счета писцы, чиновники и посвященные в тайные знания жрецы довольно успешно справлялись с такими задачами.

Дошедшие до нас источники свидетельствуют, что древние ученые владели какими-то общими приемами решения задач с неизвестными величинами. Однако ни в одном папирусе, ни в одной глиняной табличке не дано описания этих приемов. Авторы лишь изредка снабжали свои числовые выкладки скупыми комментариями типа: «Смотри!», «Делай так!», «Ты правильно нашел». В этом смысле исключением является «Арифметика» греческого математика Диофанта Александрийского (III в.) – собрание задач на составление уравнений с систематическим изложением их решений.

Однако первым руководством по решению задач, получившим широкую известность, стал труд багдадского ученого IX в. Мухаммеда бен Мусы аль-Хорезми. Слово «аль-джебр» из арабского названия этого трактата – «Китаб аль-джебер валь-мукабала» («Книга о восстановлении и противопоставлении») – со временем превратилось в хорошо знакомое всем слово «алгебра», а само сочинение аль-Хорезми послужило отправной точкой в становлении науки о решении уравнений.

1. УРАВНЕНИЯ. АЛГЕБРАИЧЕСКИЕ УРАВНЕНИЯ

В алгебре рассматриваются два вида равенств – тождества и уравнения.

Тождество – это равенство, которое выполняется при всех (допустимых) значениях входящих в него букв). Для записи тождества наряду со знаком также используется знак .

Пример: 5 *7 – 6 = 20 + 9

Уравнение – это равенство, которое выполняется лишь при некоторых значениях входящих в него букв. Буквы, входящие в уравнение, по условию задачи могут быть неравноправны: одни могут принимать все свои допустимые значения (их называют параметрами или коэффициентами уравнения и обычно обозначают первыми буквами латинского алфавита: ,,c, . – или теми же буквами, снабженными индексами:, , . или , , . ); другие, значения которых требуется отыскать, называют неизвестными (их обычно обозначают последними буквами латинского алфавита:x, y, z. По числу неизвестных уравнения разделяются на уравнения с одним, двумя, тремя и т. д. неизвестными

Решением уравнения называют такой буквенный или числовой набор неизвестных, которые обращает его в тождество (соответственно числовое или буквенное). Часто решение уравнения называют его также его корнем.

1.1. Линейное уравнение

Линейным уравнением с одним неизвестным называют уравнение вида

ax + b = c, где a ≠ 0

Это уравнение имеет единственное решение:

1.2 Квадратное уравнение

Квадратным уравнением с одним неизвестным называют уравнение вида

a + bx + c = 0, где a ≠ 0

Дискриминантом квадратного уравнения называют число D =

Справедливы следующие утверждения

1. Если D 0 , то уравнение решений не имеет

2. Если D = 0 , то уравнение имеет единственное решение

3. Если D 0, то уравнение имеет 2 решения

1.2.1 Неполное квадратное уравнение

Неполным квадратным уравнением называют квадратное уравнение, в котором хотя бы один из коэффициентов b или c равен нулю.

При c =0, уравнение принимает вид:

a+ bx = 0 или x (ax + b) = 0

т.е. либо х=0, либо ax + b = 0, откуда х=0,

При b =0, уравнение принимает вид: a+ c = 0

если выражение 0, то уравнение решений не имеет

если с=0, то уравнение имеет единственное решение: х=0

если выражение, 0,то решений два:

1.2.2 Приведённое квадратное уравнение. Теорема Виета

Приведённым квадратным уравнением называют уравнение вида

т.е. квадратное уравнение, в котором первый коэффициент равен единице.

Любое квадратное уравнение можно сделать приведённым. Для этого достаточно каждый коэффициент данного уравнения разделить на первый коэффициент, т.е. на а

Теорема Виета : Если приведённое квадратное уравнение имеет действительные корни, то их сумма равна второму коэффициенту, взятому со знаком минус, т.е. –p, а их произведение- свободному члену q.

Теорема, обратная теореме Виета : Если сумма двух чисел и равна числу –p, а их произведение равно числу q, то они являются корнями приведённого квадратного уравнения + px + q =0

Пример: Используя теорему, обратную теореме Виета, найти корни уравнения

Это уравнение имеет целые корни, Корни легко угадать: это действительно: (-1) * (-2) = 2 и (-1) +(-2) = -3. Значит, числа -1 и -2 являются корнями данного уравнения.

3. Биквадратное уравнение

Уравнение вида a + b + c = 0 называют биквадратным

Такое уравнение решается методом замены переменной. Обозначим , тогда . Заметим что t ≥ 0, так как t = исходное уравнение имеет вид

Т.е. является обыкновенной квадратным уравнением, которое решается по приведенной выше схеме.

Пусть и – корни полученного квадратного уравнения. Если > 0 и , исходное биквадратное уравнение имеет четыре корня:

Если одно из чисел или отрицательно, а другое неотрицательно, то имеем два корня, либо один (x = 0).

Введение нового переменного – наиболее распространенный метод решения самых разных уравнений.

Решение. Обозначим и заметим, что t ≥ 0

Тогда исходное уравнение примет вид:

Так как D > 0, то полученное квадратное уравнение имеет два корня

Оба эти корня удовлетворяют условию (*) следовательно, уравнение имеет четыре действительных решения

3. Разложение квадратного трёхчлена на множители

Из теоремы Виета следует очень важное утверждение:

теорема о разложении квадратного трёхчлена на множители.

Если квадратное уравнение a + bx + c = 0, где a ≠ 0 имеет действительные корни то квадратный трёхчлен

a + bx + c = 0 раскладывается на множители следующим образом: a + bx + c = а ( х- ) ( х — )

Пример: Разложить н множители выражение 3 + 5x

Решение: Найдём корни уравнения 3 + 5x = 0

По теореме о разложении квадратного трёхчлена на множители имеем:

3. Уравнение, содержащие переменную под знаком модуля

Модулем числа называют само это число, если оно неотрицательно, либо число — | |.

Формальная запись этого определения такова:

При решении уравнений, содержащих переменную плд знаком модуля, используется определение модуля.

пример: решить уравнение: | |=

решение: по определению модуля:

Говорят, что выражение модулем меняет свой знак в точке x=1, поэтому все множество чисел разбивается на два числовых промежутка.

а) При x ≥ 1 исходное уравнение принимает вид:

3. Иррациональные уравнения

1. Уравнения, содержащие один знак радикала второй степени

Возведение обеих частей уравнения в степень

При возведении обеих частей уравнения в четную степень (в частности, в квадрат) получается уравнение, неравносильному исходному.

Кроме корней исходного уравнения могут появиться посторонние корни, т.е. числа, являющиеся решениями возведенного в четную степень уравнения, но не являющимися корнями исходного уравнения.

Избавиться от посторонних корней помогает непосредственная проверка полученных корней в исходном уравнении, т.е. корни поочередно подставляет в начальное уравнение и проверяют, верное ли получается числовое неравенство.

Пример. Решить уравнение

Решение возведем обе части уравнения в квадрат. Имеем:

Проверка. При но 1 ≠ -1 следовательно корень x=-1 посторонний

При x = 2; так как 2=2, то проверяемое число действительно является корнем исходного уравнения

1.7 Тригонометрические уравнения

Решение: так как то уравнение можно переписать следующим образом:

2 ( 1 — ) + 7 — 5 = 0, т.е. 27

Полагая, что = y, приходим к квадратному уравнению

2 – 7 y + 3 = 0, откуда = = 3, и получаем совокупность двух простейших уравнений

Первое из них имеет решение

, а второе решений не имеет

1.8 Системы уравнений

Система уравнений состоит из двух и более алгебраических уравнений.

Решением системы называют такой набор значений переменных, который при подстановке обращает каждое уравнение системы в числовое или буквенное тождество.

Решить систему – значит найти все её решения или доказать, что их нет.

2. СПОСОБЫ РЕШЕНИЯ СИСТЕМ УРАВНЕНИЙ

Рассмотрим несколько способов решения систем уравнений

2.1 Графический способ решения системы уравнений

Решение. Каждое уравнение системы задаёт линейную функцию. Построим графики этих уравнений в одной системе координат. Координаты пересечений графиков обращают оба уравнения системы в верные равенства. Решением системы является пара значений переменных: х=1,у=1. Ответ можно записать так: ( 1; 1 )

Графический способ решения систем уравнения состоит в следующем:

1. Строятся графики каждого уравнения системы

2. Определяются точки пересечения графиков

3. Записывается ответ: координаты точек пересечения построенных графиков.

2.2 Метод подстановки

Решение: Из первого уравнения выразим x через y:

Подставив полученное выражение во второе уравнение системы, получим уравнение с одним неизвестным

Подставив это число в выражение

Получим ответ: x = 3

Алгоритм решения систем уравнений методом подстановки

1. Из одного уравнения системы одна переменная выражается через другую.

2. Полученное выражение подставляется во второе уравнение системы.

3. Решается полученное после подстановки уравнение

4. Полученное решение подставляется в выражение из п.1

5. Если при решении последнего уравнения получается тождество 0=0, то это означает, что исходная система имеет бесконечное множество решений вида (х, у), каждое из которых удовлетворяет первому уравнению системы. Если же при тождественных преобразованиях последнего уравнения получится неверное числовое равенство, то система решений не имеет.

2.3 Метод сложения

Решение: Домножим первое уравнение системы на 2, а второе — на 3. Сложим получившиеся уравнения почленно и запишем результат вместо второго уравнения системы.

Числа, на которые домножают уравнения перед сложением, выбирают так, чтобы при суммировании коэффициент перед одной из переменных стал равен нулю.

В результате преобразований уравнений системы и замены одного из уравнений результатом суммирования других получены равносильные системы.

Две системы называют равносильными, если каждое решение одной системы является решением другой системы и наоборот.

2.4 Метод введения новой переменной

При решении систем нелинейных уравнений, как правило, применя-ются различные комбинации нескольких методов решения систем.

Решение. Преобразуем второе уравнение системы воспользовавшись формулой сокращенного умножения

Из первого уравнения системы x-y =1; подставим 1 во второе уравнение. Запишем получившуюся систему:

К этой системе уже вполне применим метод – выразить одно неизвестное из первого уравнения системы и подставить во второе:

Математика, как и любая другая наука не стоит на месте, вместе с развитием общества меняются и взгляды людей, возникают новые мысли и идеи. И XXI век не стал в этом смысле исключением. Появление компьютеров внесло свои корректировки в способы решения уравнений и значительно их облегчило. Но компьютер не всегда может быть под рукой (экзамен, контрольная), поэтому знание хотя бы самых главных способов решения уравнений необходимо знать. Использование уравнений в повседневной жизни – редкость. Они нашли свое применение во многих отраслях хозяйства и практически во всех новейших технологиях.

В данной работе были представлены далеко не все, способы решения уравнений и даже не все их виды, а только самые основные. Я надеюсь, что мой доклад может послужить неплохим справочным материалом при решении тех или иных уравнений. В заключении хотелось бы отметить, что при написании данного доклада я не ставила себе цели показать все виды уравнений, а излагал лишь имеющийся у меня материал.

На основании всего выше изложенного можно сделать вывод, что уравнения необходимы в современном мире не только для решения практических задач, но и в качестве научного инструмента. Поэтому так много ученых изучали этот вопрос и продолжают изучать.

1. Большой справочник для школьников, поступающие в вузы

П.И. Алтынов, И. И. Баврин, Е. М. Бойченко и др. – М. Дрофа, 2016-840 с.

2. Цыпкин А. Г. Под ред. С. А. Степанова. Справочник по математике для средней школы. – М.: Наука, 1980.- 400 с.

Видео:5 способов решения квадратного уравнения ➜ Как решать квадратные уравнения?Скачать

5 способов решения квадратного уравнения ➜ Как решать квадратные уравнения?

Виды уравнений и методы их решения

Виды уравнений методы их решения

В разработке рассматриваются виды алгебраических уравнений и методы их решения.

Просмотр содержимого документа
«Виды уравнений и методы их решения»

Виды уравнений и методы их решения

Уравнения подразделяются на две большие группы: алгебраические и трансцендентные. Алгебраическим называется такое уравнение, в котором для нахождения корня уравнения используются только алгебраические действия, а именно четыре арифметических – сложение, вычитание, умножение и деление, а также возведение в степень и извлечение натурального корня. Трансцендентным называется уравнение, в котором для нахождения корня используются не алгебраические функции: например, тригонометрические, логарифмические и иные.

В курсе математики основной школы рассматриваются только алгебраические уравнения. Рассмотрим более подробно их виды и алгоритм решения.

Группу алгебраических уравнений можно условно разделить на такие виды уравнений как:

целые — с обеими частями, состоящими из целых алгебраических выражений по отношению к неизвестным;

дробные — содержащие целые алгебраические выражения в числителе и знаменателе;

иррациональные — алгебраические выражения здесь находятся под знаком корня.

Дробные и иррациональные уравнения можно свести к решению целых уравнений.

Существует также и ещё одна классификация, которая основывается на степени, которая имеется в левой части многочлена. Исходя из этого различают линейные, квадратные и кубические уравнения. Линейные уравнения также могут называться уравнениями первой степени, квадратные — второй, а кубические, соответственно, третьей.

Рассмотрим особенности решения алгебраических уравнений

В алгебре рассматриваются два вида равенств – тождества и уравнения.

Остановимся на основных понятиях.

Тождество — это равенство, которое выполняется при всех (допустимых) значениях входящих в него букв. Для записи тождества наряду со знаком Виды уравнений методы их решения(равно) также используется знак Виды уравнений методы их решения(равносильности).

Уравнение — это равенство, которое выполняется лишь при некоторых значениях входящих в него букв. Буквы, входящие в уравнение, по условию задачи могут быть неравноправны: одни могут принимать все свои допустимые значения (их называют параметрами или коэффициентами уравнения и обычно обозначают первыми буквами латинского алфавита:a, b, c. – или теми же буквами, снабженными индексами:Виды уравнений методы их решения, Виды уравнений методы их решения. или Виды уравнений методы их решения, Виды уравнений методы их решения. ); другие, значения которых требуется отыскать, называют неизвестными (их обычно обозначают последними буквами латинского алфавита: Виды уравнений методы их решенияили теми же буквами, снабженными индексами, например Виды уравнений методы их решения….

В общем виде уравнение может быть записано так:

F (Виды уравнений методы их решения)=0.

В зависимости от числа неизвестных уравнение называют уравнением с одним, двумя и т. д. неизвестными.

Значение неизвестных, обращающие уравнение в тождество (верное равенство), называют решениями уравнения.

Решить уравнение – это значит найти множество его решений или доказать, что решений нет. В зависимости от вида уравнения множество решений уравнения может быть бесконечным, конечным и пустым.

Если все решения одного уравнения являются решениями другого уравнения, то такие уравнения называют эквивалентными.

Рассмотрим некоторые эквивалентные уравнения:

Уравнение Виды уравнений методы их решенияэквивалентно уравнению Виды уравнений методы их решения, рассматриваемому на множестве допустимых значений исходного уравнения.

Уравнение Виды уравнений методы их решения=0 эквивалентно уравнению Виды уравнений методы их решения, рассматриваемому на множестве допустимых значений исходного уравнения.

Виды уравнений методы их решенияэквивалентно двум уравнениям Виды уравнений методы их решенияиВиды уравнений методы их решения.

Уравнение Виды уравнений методы их решенияэквивалентно уравнению Виды уравнений методы их решения.

Уравнение Виды уравнений методы их решенияпри нечетном n эквивалентно уравнению Виды уравнений методы их решения, а при четном n эквивалентно двум уравнениям Виды уравнений методы их решенияи Виды уравнений методы их решения.

Алгебраическим уравнением называется уравнение вида Виды уравнений методы их решения, где Виды уравнений методы их решения– многочлен n-й степени от одной или нескольких переменных.

Алгебраическим уравнением с одним неизвестным называется уравнение, сводящееся к уравнению вида:

Виды уравнений методы их решения,

где n – неотрицательное целое число; коэффициенты многочлена называются , ……коэффициентами (или параметрами), называется неизвестным и является искомым. Число n называется степенью уравнения.

Значения неизвестного , обращающие алгебраическое уравнение в тождество, называются корнями (решениями) алгебраического уравнения.

Есть несколько видов уравнений, которые решаются по готовым формулам. Это линейное и квадратное уравнения, а также уравнения вида , где F – одна из стандартных функций (степенная или показательная функция, логарифм, синус, косинус, тангенс или котангенс). Такие уравнения считаются простейшими. Так же существуют формулы и для кубического уравнения, но его к простейшим не относят.

Главная задача при решении любого уравнения – свести его к простейшим.

Все ниже перечисленные уравнения имеют так же и свое графическое решение, которое заключается в том, чтобы представить левую и правую части уравнения как две одинаковые функции от неизвестного. Затем строится график сначала одной функции, а затем другой и точка (и) пересечения двух графиков даст решение (я) исходного уравнения. Примеры графического решения всех уравнений даны в приложении.

Рассмотрим методы решения уравнений.

Линейным уравнением называется уравнение первой степени.

где a и b – некоторые действительные числа.

Линейное уравнение всегда имеет единственный корень , который находится следующим образом.

Прибавляя к обеим частям уравнения (1) число -b, получаем уравнение

, (2) эквивалентное уравнению (1). Разделив обе части уравнения (2) на величину , получаем корень уравнения (1):

Алгебраическое уравнение второй степени (3),

где a, b, с– некоторые действительные числа, называется квадратным уравнением.

Если , то квадратное уравнение (3) называется приведенным.

Корни квадратного уравнения вычисляются по формуле

Выражение называется дискриминантом квадратного уравнения.

если , то уравнение имеет два различных действительных корня;

если , то уравнение имеет один действительный корень кратности 2;

если , то уравнение действительных корней не имеет, а имеет два комплексно сопряженных корня:

Частными видами квадратного уравнения (3) являются:

1) Приведенное квадратное уравнение (в случае, если ), которое обычно записывается в виде

Корни приведенного квадратного уравнения вычисляются по формуле

Эту формулу называют формулой Виета – по имени французского математика конца XVI в., внесшего значительный вклад в становление алгебраической символики.

2) Квадратное уравнение с четным вторым коэффициентом, которое обычно записывается в виде

Корни этого квадратного уравнения удобно вычислять по формуле

Формулы (4) и (5) являются частными видами формулы для вычисления корней полного квадратного уравнения.

Корни приведенного квадратного уравнения

связаны с его коэффициентами Формулами Виета

В случае, если приведенное квадратное уравнение имеет действительные корни, формулы Виета позволяют судить как о знаках, так и об относительной величине корней квадратного уравнения, а именно:

если , , то оба корня отрицательны;

если , , то оба корня положительны;

если , , то уравнение имеет корни разных знаков, причем отрицательный корень по абсолютной величине больше положительного;

если , , уравнение имеет корни разных знаков, причем отрицательный корень по абсолютной величине меньше положительного корня.

Перепишем еще раз квадратное уравнение

и покажем еще один способ как можно вывести корни квадратного уравнения (6) через его коэффициенты и свободный член. Если

то корни квадратного уравнения вычисляются по формуле

которая может быть получена в результате следующих преобразований исходного уравнения, а так же с учетом формулы (7).

Заметим, что , поэтому

но , из формулы (7) поэтому окончательно

Если положить, что + , то

Заметим, что , поэтому

но , поэтому окончательно

Уравнения n-й степени вида

называется двучленным уравнением. При и заменой (2))

где — арифметическое значение корня, уравнение (8) приводится к уравнению

которое и будет далее рассматриваться.

Двучленное уравнение при нечетном n имеет один действительный корень . В множестве комплексных чисел это уравнение имеет n корней (из которых один действительный и комплексных):

Двучленное уравнение при четном n в множестве действительных чисел имеет два корня , а в множестве комплексных чисел n корней, вычисляемых по формуле (9).

Двучленное уравнение при четном n имеет один действительный корней , а в множестве комплексных чисел корней, вычисляемых по формуле

Двучленное уравнение при четном n имеет действительный корней не имеет. В множестве комплексных чисел уравнение имеет корней, вычисляемых по формуле (10).

Приведем краткую сводку множеств корней двучленного уравнения для некоторых конкретных значений n.

Уравнение имеет два действительных корня .

Уравнение имеет один дествительный корень и два комплексных корня

Уравнение имеет два действительных корния и два комплексных корня .

Уравнение действительных корней не имеет. Комплексные корни: .

Уравнение имеет один дествительный корень и два комплексных корня

Уравнение действительных корней не имеет. Комплексные корни:

Если квадратные уравнения умели решать еще математики Вавилонии и Древней Индии, то кубические, т.е. уравнения вида

оказались «крепким орешком». В конце XV в. профессор математики в университетах Рима и Милана Лука Пачоли в своем знаменитом учебнике «Сумма знаний по арифметике, геометрии, отношениям и пропорциональности» задачу о нахождении общего метода для решения кубических уравнений ставил в один ряд с задачей о квадратуре круга. И все же усилиями итальянских алгебраистов такой метод вскоре был найден.

Начнем с упрощения

Если кубическое уравнение общего вида

разделить на , то коэффициент при станет равен 1. Поэтому в дальнейшем будем исходить из уравнения

Так же как в основе решения квадратного уравнения лежит формула квадрата суммы, решение кубического уравнения опирается на формулу куба суммы:

Чтобы не путаться в коэффициентах, заменим здесь на и перегруппируем слагаемые:

Мы видим, что надлежащим выбором , а именно взяв , можно добиться того, что правая часть этой формулы будет отличаться от левой части уравнения (11) только коэффициентом при и свободным членом. Сложим уравнения (11) и (12) и приведем подобные:

Если здесь сделать замену , получим кубическое уравнение относительно без члена с :

Итак, мы показали, что в кубическом уравнении (11) с помощью подходящей подстановки можно избавиться от члена, содержащего квадрат неизвестного. Поэтому теперь будем решать уравнение вида

Давайте еще раз обратимся к формуле куба суммы, но запишем ее иначе:

Сравните эту запись с уравнением (13) и попробуйте установить связь между ними. Даже с подсказкой это непросто. Надо отдать должное математикам эпохи Возрождения, решившим кубическое уравнение, не владея буквенной символикой. Подставим в нашу формулу :

Теперь уже ясно: для того, чтобы найти корень уравнения (13), достаточно решить систему уравнений

и взять в качестве сумму и . Заменой , эта система приводится к совсем простому виду:

Дальше можно действовать по-разному, но все «дороги» приведут к одному и тому же квадратному уравнению. Например, согласно теореме Виета, сумма корней приведенного квадратного уравнения равна коэффициенту при со знаком минус, а произведение – свободному члену. Отсюда следует, что и — корни уравнения

Выпишем эти корни:

Переменные и равны кубическим корням из и , а искомое решение кубического уравнения (13) – сумма этих корней:

Эта формула известная как формула Кардано.

подстановкой приводится к «неполному» виду

Корни , , «неполного» кубичного уравнения (14) равны

Пусть «неполное» кубичное уравнение (14) действительно.

а) Если («неприводимый» случай), то и

Во всех случаях берется действительное значение кубичного корня.

Алгебраическое уравнение четвертой степени.

где a, b, c – некоторые действительные числа, называется биквадратным уравнением. Заменой уравнение сводится к квадратному уравнению с последующим решением двух двучленных уравнений и ( и — корни соответствующего квадратного уравнения).

Если и , то биквадратное уравнение имеет четыре действительных корня:

Если , (3)), то биквадратное уравнение имеет два действительных корня и мнимых сопряженных корня:

Если и , то биквадратное уравнение имеет четыре чисто мнимых попарно сопряженных корня:

Уравнения четвертой степени

Метод решения уравнений четвертой степени нашел в XVI в. Лудовико Феррари, ученик Джероламо Кардано. Он так и называется – метод Феррари.

Как и при решении кубического и квадратного уравнений, в уравнении четвертой степени

можно избавиться от члена подстановкой . Поэтому будем считать, что коэффициент при кубе неизвестного равен нулю:

Идея Феррари состояла в том, чтобы представить уравнение в виде , где левая часть – квадрат выражения , а правая часть – квадрат линейного уравнения от , коэффициенты которого зависят от . После этого останется решить два квадратных уравнения: и . Конечно, такое представление возможно только при специальном выборе параметра . Удобно взять в виде , тогда уравнение перепишется так:

Правая часть этого уравнения – квадратный трехчлен от . Полным квадратом он будет тогда, когда его дискриминант равен нулю, т.е.

Это уравнение называется резольвентным (т.е. «разрешающим»). Относительно оно кубическое, и формула Кардано позволяет найти какой-нибудь его корень . При правая часть уравнения (15) принимает вид

а само уравнение сводится к двум квадратным:

Их корни и дают все решения исходного уравнения.

Решим для примера уравнение

Здесь удобнее будет воспользоваться не готовыми формулами, а самой идеей решения. Перепишем уравнение в виде

и добавим к обеим частям выражение , чтобы в левой части образовался полный квадрат:

Теперь приравняем к нулю дискриминант правой части уравнения:

или, после упрощения,

Один из корней полученного уравнения можно угадать, перебрав делители свободного члена: . После подстановки этого значения получим уравнение

откуда . Корни образовавшихся квадратных уравнений — и . Разумеется, в общем случае могут получиться и комплексные корни.

подстановкой приводится к «неполному» виду

Корни , , , «неполного» уравнения четвертой степени (16) равны одному из выражений

в которых сочетания знаков выбираются так, чтобы удовлетворялось условие

причем , и — корни кубичного уравнения

Уравнения высоких степеней

Разрешимость в радикалах

Формула корней квадратного уравнения известна с незапамятных времен, а в XVI в. итальянские алгебраисты решили в радикалах уравнения третьей и четвертой степеней. Таким образом, было установлено, что корни любого уравнения не выше четвертой степени выражаются через коэффициенты уравнения формулой, в которой используются только четыре арифметические операции (сложение, вычитание, умножение, деление) и извлечение корней степени, не превышающей степень уравнения. Более того, все уравнения данной степени ( ) можно «обслужить» одной общей формулой. При подстановке в нее коэффициентов уравнения получим все корни – и действительные, и комплексные.

После этого естественно возник вопрос: а есть ли похожие общие формулы для решения уравнений пятой степени и выше? Ответ на него смог найти норвежский математик Нильс Хенрик Абель в начале XIX в. Чуть раньше этот результат был указан, но недостаточно обоснован итальянцем Паоло Руффини. Теорема Абеля-Руффини звучит так:

Общее уравнение степени при неразрешимо в радикалах.

Таким образом, общей формулы, применимой ко всем уравнениям данной степени , не существует. Однако это не значит, что невозможно решить в радикалах те или иные частные виды уравнений высоких степеней. Сам Абель нашел такое решение для широкого класса уравнений произвольно высокой степени – так называемых абелевых уравнений. Теорема Абеля-Руффини не исключает даже и того, что корни каждого конкретного алгебраического уравнения можно записать через его коэффициенты с помощью знаков арифметических операций и радикалов, в частности, что любое алгебраическое число, т.е. корень уравнения вида

с целыми коэффициентами, можно выразить в радикалах через рациональные числа. На самом деле такое выражение существует далеко не всегда. Это следует из теоремы разрешимости алгебраических уравнений, построенной выдающимся французским математиком Эваристом Галуа в его «Мемуаре об условиях разрешимости уравнений в радикалах» (1832 г.; опубликован в 1846 г.).

Подчеркнем, что в прикладных задачах нас интересует только приближенные значения корней уравнения. Поэтому его разрешимость в радикалах здесь обычно роли не играет. Имеются специальные вычислительные методы, позволяющие найти корни любого уравнения с любой наперед заданной точностью, ничуть не меньшей, чем дают вычисления по готовым формулам.

Уравнения, которые решаются

Хотят уравнения высоких степеней в общем случае неразрешимы в радикалах, да и формулы Кардано и Феррари для уравнений третьей и четвертой степеней в школе не проходят, в учебниках по алгебре, на вступительных экзаменах в институты иногда встречаются задачи, где требуется решить уравнения выше второй степени. Обычно их специально подбирают так, чтобы корни уравнений можно было найти с помощью некоторых элементарных приемов.

В основе одного из таких приемов лежит теорема о рациональных корнях многочлена:

Если несократимая дробь является корнем многочлена с целыми коэффициентами, то ее числитель является делителем свободного члена , а знаменатель — делителем старшего коэффициента .

Для доказательства достаточно подставить в уравнение и умножить уравнение на . Получим

Все слагаемые в левой части, кроме последнего, делятся на , поэтому и делится на , а поскольку и — взаимно простые числа, является делителем . Доказательство для аналогично.

С помощью этой теоремы можно найти все рациональные корни уравнения с целыми коэффициентами испытанием конечного числа «кандидатов». Например, для уравнения

старший коэффициент которого равен 1, «кандидатами» будут делители числа –2. Их всего четыре: 1, -1, 2 и –2. Проверка показывает, что корнем является только одно из этих чисел: .

Если один корень найден, можно понизить степень уравнения. Согласно теореме Безу,

остаток от деления многочлена на двучлен равен , т. е. .

Из теоремы непосредственно следует, что

Если — корень многочлена , то многочлен делится на , т. е. , где — многочлен степени, на 1 меньшей, чем .

Продолжая наш пример, вынесем из многочлена

множитель . Чтобы найти частное , можно выполнить деление «уголком»:

🌟 Видео

ПРОСТЕЙШИЙ способ решения Показательных УравненийСкачать

ПРОСТЕЙШИЙ способ решения Показательных Уравнений

Алгебра 8. Урок 9 - Квадратные уравнения. Полные и неполныеСкачать

Алгебра 8. Урок 9 - Квадратные уравнения. Полные и неполные

Как решать уравнения с модулем или Математический торт с кремом (часть 1) | МатематикаСкачать

Как решать уравнения с модулем или Математический торт с кремом (часть 1) | Математика

Решение квадратных уравнений. Дискриминант. 8 класс.Скачать

Решение квадратных уравнений. Дискриминант. 8 класс.

Лекция 23. Виды уравнений прямой на плоскости.Скачать

Лекция 23. Виды уравнений прямой на плоскости.

Дробно-рациональные уравнения. 8 класс.Скачать

Дробно-рациональные уравнения. 8 класс.

Решение матричных уравненийСкачать

Решение матричных уравнений

СУПЕР ЛАЙФХАК — Как решать Иррациональные УравненияСкачать

СУПЕР ЛАЙФХАК — Как решать Иррациональные Уравнения

Решение систем уравнений методом подстановкиСкачать

Решение систем уравнений методом подстановки

10 класс, 23 урок, Методы решения тригонометрических уравненийСкачать

10 класс, 23 урок, Методы решения тригонометрических уравнений

ВСЕ виды уравнений. Задание 5Скачать

ВСЕ виды уравнений. Задание 5

Неполные квадратные уравнения. Алгебра, 8 классСкачать

Неполные квадратные уравнения. Алгебра, 8 класс

9 класс, 11 урок, Методы решения систем уравненийСкачать

9 класс, 11 урок, Методы решения систем уравнений
Поделиться или сохранить к себе: