материал по алгебре
- Скачать:
- Предварительный просмотр:
- Учим алгебра 7 класс. Как решать уравнения алгебра 7 класс, примеры, дроби, функции, степени, модули
- Как решать уравнения алгебра 7 класс
- Как решать систему уравнений алгебра 7 класс
- метод подстановки
- метод сложения
- графический метод
- Как решать дроби 7 класс
- Примеры 7 класс как решать
- Как решать задачи алгебра 7 класс
- Как решать функции алгебра 7 клас с
- Как решать степени алгебра 7 класс
- Алгебра модули как решать
- Об Авторе
- Смотрите также
- Сочинение рассуждение на тему патриотизм, патриотизм сочинение ЕГЭ: ложный и истинный патриотизм, народный патриотизм роман Война и мир, примеры сочинений
- Урок патриотизма в школе. Тема урока патриотизм: урок литературы патриотизм, патриотическое воспитание на уроках истории, урок мужества патриотизм. Дети герои Великой Отечественной войны Валя Котик, Валерий Волков, Марат Казей, Надя Богданова, Люся Герасименко, Вашкевич Лида, Валя Зенкина, Костя Кравчук, Вася Коробко, Витя Хоменко, Саша Ковалёв: краткая биография
- Современный сценарий выпускного в школе: сценарий выпускного современный прикольный веселый, красивые платья на выпускной 11 класс, современные песни текст на выпускной
- 2 комментария
- Виды уравнений и способы их решения
- Презентация к уроку
- 🌟 Видео
Видео:ЛИНЕЙНЫЕ УРАВНЕНИЯ - Как решать линейные уравнения // Подготовка к ЕГЭ по МатематикеСкачать
Скачать:
Вложение | Размер |
---|---|
doklad_2.docx | 27.25 КБ |
Видео:Урок 6 УРАВНЕНИЕ И ЕГО КОРНИ 7 КЛАСССкачать
Предварительный просмотр:
Доклад по математике на тему:
«Виды уравнений и способы их решения»
Математическое образование, получаемое в общеобразовательной школе, является важнейшим компонентом общего образования и общей культуры современного человека. Практически все, что окружает современного человека – это все так или иначе связано с математикой. А последние достижения в физике, технике и информационных технологиях не оставляют никакого сомнения, что и в будущем положение вещей останется прежним. Поэтому решение многих практических задач сводится к решению различных видов уравнений, которые необходимо научиться решать.
Данная работа является попыткой обобщить и систематизировать изученный материал по выше указанной теме. Я расположила материал по степени его сложности, начиная с самого простого. В него вошли как известные нам виды уравнений из школьного курс алгебры, так и дополнительный материал. При этом я попыталась показать виды уравнений, которые не изучаются в школьном курсе, но знание которых может понадобиться при поступлении в высшее учебное заведение. В своей работе при решении уравнений я не стала ограничиваться только действительным решением, но и указала комплексное, так как считаю, что иначе уравнение просто не законченно. Ведь если в уравнении нет действительных корней, то это еще не значит, что оно не имеет решений.
Математика. выявляет порядок,
симметрию и определенность,
а это – важнейшие виды прекрасного.
В те далекие времена, когда мудрецы впервые стали задумываться о равенствах содержащих неизвестные величины, наверное, еще не было ни монет, ни кошельков. Но зато были кучи, а также горшки, корзины, которые прекрасно подходили на роль тайников-хранилищ, вмещающих неизвестное количество предметов. «Ищется куча, которая вместе с двумя третями ее, половиной и одной седьмой составляет 37. «, — поучал во II тысячелетии до новой эры египетский писец Ахмес. В древних математических задачах Междуречья, Индии, Китая, Греции неизвестные величины выражали число павлинов в саду, количество быков в стаде, совокупность вещей, учитываемых при разделе имущества. Хорошо обученные науке счета писцы, чиновники и посвященные в тайные знания жрецы довольно успешно справлялись с такими задачами.
Дошедшие до нас источники свидетельствуют, что древние ученые владели какими-то общими приемами решения задач с неизвестными величинами. Однако ни в одном папирусе, ни в одной глиняной табличке не дано описания этих приемов. Авторы лишь изредка снабжали свои числовые выкладки скупыми комментариями типа: «Смотри!», «Делай так!», «Ты правильно нашел». В этом смысле исключением является «Арифметика» греческого математика Диофанта Александрийского (III в.) – собрание задач на составление уравнений с систематическим изложением их решений.
Однако первым руководством по решению задач, получившим широкую известность, стал труд багдадского ученого IX в. Мухаммеда бен Мусы аль-Хорезми. Слово «аль-джебр» из арабского названия этого трактата – «Китаб аль-джебер валь-мукабала» («Книга о восстановлении и противопоставлении») – со временем превратилось в хорошо знакомое всем слово «алгебра», а само сочинение аль-Хорезми послужило отправной точкой в становлении науки о решении уравнений.
1. УРАВНЕНИЯ. АЛГЕБРАИЧЕСКИЕ УРАВНЕНИЯ
В алгебре рассматриваются два вида равенств – тождества и уравнения.
Тождество – это равенство, которое выполняется при всех (допустимых) значениях входящих в него букв). Для записи тождества наряду со знаком также используется знак .
Пример: 5 *7 – 6 = 20 + 9
Уравнение – это равенство, которое выполняется лишь при некоторых значениях входящих в него букв. Буквы, входящие в уравнение, по условию задачи могут быть неравноправны: одни могут принимать все свои допустимые значения (их называют параметрами или коэффициентами уравнения и обычно обозначают первыми буквами латинского алфавита: ,,c, . – или теми же буквами, снабженными индексами:, , . или , , . ); другие, значения которых требуется отыскать, называют неизвестными (их обычно обозначают последними буквами латинского алфавита:x, y, z. По числу неизвестных уравнения разделяются на уравнения с одним, двумя, тремя и т. д. неизвестными
Решением уравнения называют такой буквенный или числовой набор неизвестных, которые обращает его в тождество (соответственно числовое или буквенное). Часто решение уравнения называют его также его корнем.
1.1. Линейное уравнение
Линейным уравнением с одним неизвестным называют уравнение вида
ax + b = c, где a ≠ 0
Это уравнение имеет единственное решение:
1.2 Квадратное уравнение
Квадратным уравнением с одним неизвестным называют уравнение вида
a + bx + c = 0, где a ≠ 0
Дискриминантом квадратного уравнения называют число D =
Справедливы следующие утверждения
- Если D 0 , то уравнение решений не имеет
- Если D = 0 , то уравнение имеет единственное решение
- Если D 0, то уравнение имеет 2 решения
1.2.1 Неполное квадратное уравнение
Неполным квадратным уравнением называют квадратное уравнение, в котором хотя бы один из коэффициентов b или c равен нулю.
При c =0, уравнение принимает вид:
a+ bx = 0 или x (ax + b) = 0
т.е. либо х=0, либо ax + b = 0, откуда х=0,
При b =0, уравнение принимает вид: a+ c = 0
если выражение 0, то уравнение решений не имеет
если с=0, то уравнение имеет единственное решение: х=0
если выражение, 0,то решений два:
1.2.2 Приведённое квадратное уравнение. Теорема Виета
Приведённым квадратным уравнением называют уравнение вида
т.е. квадратное уравнение, в котором первый коэффициент равен единице.
Любое квадратное уравнение можно сделать приведённым. Для этого достаточно каждый коэффициент данного уравнения разделить на первый коэффициент, т.е. на а
Теорема Виета : Если приведённое квадратное уравнение имеет действительные корни, то их сумма равна второму коэффициенту, взятому со знаком минус, т.е. –p, а их произведение- свободному члену q.
Теорема, обратная теореме Виета : Если сумма двух чисел и равна числу –p, а их произведение равно числу q, то они являются корнями приведённого квадратного уравнения + px + q =0
Пример: Используя теорему, обратную теореме Виета, найти корни уравнения
Это уравнение имеет целые корни, Корни легко угадать: это действительно: (-1) * (-2) = 2 и (-1) +(-2) = -3. Значит, числа -1 и -2 являются корнями данного уравнения.
Уравнение вида a + b + c = 0 называют биквадратным
Такое уравнение решается методом замены переменной. Обозначим , тогда . Заметим что t ≥ 0, так как t = исходное уравнение имеет вид
Т.е. является обыкновенной квадратным уравнением, которое решается по приведенной выше схеме.
Пусть и – корни полученного квадратного уравнения. Если > 0 и , исходное биквадратное уравнение имеет четыре корня:
Если одно из чисел или отрицательно, а другое неотрицательно, то имеем два корня, либо один (x = 0).
Введение нового переменного – наиболее распространенный метод решения самых разных уравнений.
Решение. Обозначим и заметим, что t ≥ 0
Тогда исходное уравнение примет вид:
Так как D > 0, то полученное квадратное уравнение имеет два корня
Оба эти корня удовлетворяют условию (*) следовательно, уравнение имеет четыре действительных решения
- Разложение квадратного трёхчлена на множители
Из теоремы Виета следует очень важное утверждение:
теорема о разложении квадратного трёхчлена на множители.
Если квадратное уравнение a + bx + c = 0, где a ≠ 0 имеет действительные корни то квадратный трёхчлен
a + bx + c = 0 раскладывается на множители следующим образом: a + bx + c = а ( х- ) ( х — )
Пример: Разложить н множители выражение 3 + 5x
Решение: Найдём корни уравнения 3 + 5x = 0
По теореме о разложении квадратного трёхчлена на множители имеем:
- Уравнение, содержащие переменную под знаком модуля
Модулем числа называют само это число, если оно неотрицательно, либо число — | |.
Формальная запись этого определения такова:
При решении уравнений, содержащих переменную плд знаком модуля, используется определение модуля.
пример: решить уравнение: | |=
решение: по определению модуля:
Говорят, что выражение модулем меняет свой знак в точке x=1, поэтому все множество чисел разбивается на два числовых промежутка.
а) При x ≥ 1 исходное уравнение принимает вид:
- Иррациональные уравнения
- Уравнения, содержащие один знак радикала второй степени
Возведение обеих частей уравнения в степень
При возведении обеих частей уравнения в четную степень (в частности, в квадрат) получается уравнение, неравносильному исходному.
Кроме корней исходного уравнения могут появиться посторонние корни, т.е. числа, являющиеся решениями возведенного в четную степень уравнения, но не являющимися корнями исходного уравнения.
Избавиться от посторонних корней помогает непосредственная проверка полученных корней в исходном уравнении, т.е. корни поочередно подставляет в начальное уравнение и проверяют, верное ли получается числовое неравенство.
Пример. Решить уравнение
Решение возведем обе части уравнения в квадрат. Имеем:
Проверка. При но 1 ≠ -1 следовательно корень x=-1 посторонний
При x = 2; так как 2=2, то проверяемое число действительно является корнем исходного уравнения
1.7 Тригонометрические уравнения
Решение: так как то уравнение можно переписать следующим образом:
2 ( 1 — ) + 7 — 5 = 0, т.е. 27
Полагая, что = y, приходим к квадратному уравнению
2 – 7 y + 3 = 0, откуда = = 3, и получаем совокупность двух простейших уравнений
Первое из них имеет решение
, а второе решений не имеет
1.8 Системы уравнений
Система уравнений состоит из двух и более алгебраических уравнений.
Решением системы называют такой набор значений переменных, который при подстановке обращает каждое уравнение системы в числовое или буквенное тождество.
Решить систему – значит найти все её решения или доказать, что их нет.
2. СПОСОБЫ РЕШЕНИЯ СИСТЕМ УРАВНЕНИЙ
Рассмотрим несколько способов решения систем уравнений
2.1 Графический способ решения системы уравнений
Решение. Каждое уравнение системы задаёт линейную функцию. Построим графики этих уравнений в одной системе координат. Координаты пересечений графиков обращают оба уравнения системы в верные равенства. Решением системы является пара значений переменных: х=1,у=1. Ответ можно записать так: ( 1; 1 )
Графический способ решения систем уравнения состоит в следующем:
- Строятся графики каждого уравнения системы
- Определяются точки пересечения графиков
- Записывается ответ: координаты точек пересечения построенных графиков.
2.2 Метод подстановки
Решение: Из первого уравнения выразим x через y:
Подставив полученное выражение во второе уравнение системы, получим уравнение с одним неизвестным
Подставив это число в выражение
Получим ответ: x = 3
Алгоритм решения систем уравнений методом подстановки
- Из одного уравнения системы одна переменная выражается через другую.
- Полученное выражение подставляется во второе уравнение системы.
- Решается полученное после подстановки уравнение
- Полученное решение подставляется в выражение из п.1
- Если при решении последнего уравнения получается тождество 0=0, то это означает, что исходная система имеет бесконечное множество решений вида (х, у), каждое из которых удовлетворяет первому уравнению системы. Если же при тождественных преобразованиях последнего уравнения получится неверное числовое равенство, то система решений не имеет.
2.3 Метод сложения
Решение: Домножим первое уравнение системы на 2, а второе — на 3. Сложим получившиеся уравнения почленно и запишем результат вместо второго уравнения системы.
Числа, на которые домножают уравнения перед сложением, выбирают так, чтобы при суммировании коэффициент перед одной из переменных стал равен нулю.
В результате преобразований уравнений системы и замены одного из уравнений результатом суммирования других получены равносильные системы.
Две системы называют равносильными, если каждое решение одной системы является решением другой системы и наоборот.
2.4 Метод введения новой переменной
При решении систем нелинейных уравнений, как правило, применя-ются различные комбинации нескольких методов решения систем.
Решение. Преобразуем второе уравнение системы воспользовавшись формулой сокращенного умножения
Из первого уравнения системы x-y =1; подставим 1 во второе уравнение. Запишем получившуюся систему:
К этой системе уже вполне применим метод – выразить одно неизвестное из первого уравнения системы и подставить во второе:
Математика, как и любая другая наука не стоит на месте, вместе с развитием общества меняются и взгляды людей, возникают новые мысли и идеи. И XXI век не стал в этом смысле исключением. Появление компьютеров внесло свои корректировки в способы решения уравнений и значительно их облегчило. Но компьютер не всегда может быть под рукой (экзамен, контрольная), поэтому знание хотя бы самых главных способов решения уравнений необходимо знать. Использование уравнений в повседневной жизни – редкость. Они нашли свое применение во многих отраслях хозяйства и практически во всех новейших технологиях.
В данной работе были представлены далеко не все, способы решения уравнений и даже не все их виды, а только самые основные. Я надеюсь, что мой доклад может послужить неплохим справочным материалом при решении тех или иных уравнений. В заключении хотелось бы отметить, что при написании данного доклада я не ставила себе цели показать все виды уравнений, а излагал лишь имеющийся у меня материал.
На основании всего выше изложенного можно сделать вывод, что уравнения необходимы в современном мире не только для решения практических задач, но и в качестве научного инструмента. Поэтому так много ученых изучали этот вопрос и продолжают изучать.
1. Большой справочник для школьников, поступающие в вузы
П.И. Алтынов, И. И. Баврин, Е. М. Бойченко и др. – М. Дрофа, 2016-840 с.
2. Цыпкин А. Г. Под ред. С. А. Степанова. Справочник по математике для средней школы. – М.: Наука, 1980.- 400 с.
Видео:Как решать уравнения? уравнение 7 класс. Линейное уравнениеСкачать
Учим алгебра 7 класс. Как решать уравнения алгебра 7 класс, примеры, дроби, функции, степени, модули
В 7 классе ученикам предстоит научиться решать уравнения, дроби, строить функции, разбираться в модулях. Для этого следует познакомиться с основными понятиями в темах, рассмотреть алгоритм решения и пошагово учиться находить ответы. Главное правило — начать с простых примеров, постепенно переходя на более сложные. Большинство задач можно решать несколькими методами (это касается и примеров), следует выбрать самый простой и удобный для себя.
Видео:Алгебра 7 класс с нуля | Математика | УмскулСкачать
Как решать уравнения алгебра 7 класс
Начнем с решения линейных уравнений (на рисунке показано, по какому принципу они устроены). Чтобы найти ответ в таких уравнениях, нужно совершать действия: раскрытие скобок, поиск подобных слагаемых, умножение/деление частей на одно и тоже число, перенос слагаемых из одной части уравнения в другую. Всё зависит от конкретного примера.
Рассмотрим несколько примеров пошагового решения линейных уравнений.
Пример 1.
6x + 24 = 0
Поскольку части уравнения (левая и правая) равны, то можно отнять из каждой одинаковое число. Равенство не изменится, а пример станет значительно проще. В представленном уравнении отняли 24 и слева, и справа. В левой части 24 сократилось, а в правой (0 — 24) получилось -24 (не забываем ставить знак минуса).
Получилось: 6x = -24. Теперь можем сократить 6 и -24 на число 6 (или рассуждаем так: чтобы найти множитель, нужно произведение разделить на другой множитель). В ответе будет -4. Не забудьте в самом конце подставить полученное число вместо х. Совпал ответ — значит, все правильно.
Можно рассуждать проще: чтобы упростить уравнение, нужно из левой части отправить в правую число 24, поменяв его знак. Равенство сохранится (на рисунке ниже).
Пример 2.
9 + 16x = 41 + 14x
Это уравнение более сложное. Здесь важно запомнить несколько моментов:
- числа без х переносятся в левую часть, а с х — в правую;
- при переносе знаки меняют.
Пример 3.
7(10 — 4x) + 5x = 12 — 3(5x + 2)
- Раскрыть скобки, выполнив умножение: 7 умножаем на каждое число в скобках (в правой части -3 на каждое). При выполнении действия не забывайте сохранять знаки.
- Записываем уравнение, получившееся после раскрытия скобок. Ещё раз сверяем знаки.
- Числа с х отправляются в левую часть, без х — в правую. Знаки чисел, которые переходят в другую часть, меняем.
- Подсчитываем результат с обеих сторон.
- Делим -64 на -8 и получаем ответ. Не забываем, что минус на минус при делении и умножении дают плюс.
В рассмотренных уравнениях корень точно определён. Так получается не всегда.
Пример 4.
Обратите внимание, в ответе получилось 0x = 0. Это значит, что x может быть любым числом, потому что при умножение хоть какого числа на 0 получится 0.
В этом примере корней нет, так как любое число, которое умножают на 0, будет равно 0 (21 никак не получится).
Видео:Повторяем решение уравнений. Полезно всем! Вебинар | МатематикаСкачать
Как решать систему уравнений алгебра 7 класс
Системой называют несколько уравнений, в которых нужно найти такие значения неизвестных, чтобы равенство сохранилось. Разберемся на примерах, как выглядят системы и какие методы их решения существуют.
метод подстановки
Из самого названия следует, что алгоритм требует что-то подставлять. Ниже представлена система, где нужно найти значения x и y.
Суть метода подстановки: переменную в одном из уравнений выражают через другую переменную. Затем подставляют полученное выражение в другое уравнение.
Смотрим на систему. Видим, что удобнее будет выразить x во втором уравнении (так как он один). Выражаем путем переноса за знак «равно» 12y. Получилось: x = 11 — 12y (не забываем менять знак при переносе числа).
В первое уравнение вместо «x» записываем получившееся выражение. Меняем только x, остальное сохраняется в прежнем виде.
Далее преобразуем уравнение, в которое поместили выражение. Раскрываем скобки (перемножаем 5 на каждое значение). y оставляем в левой части, числа переносим в правую, знаки меняем. Таким образом нашли значение y (y = 1).
Теперь подставляем полученную единицу во второе уравнение (x = 11 — 12y).
Убедиться в правильном решение можно так: подставьте полученные значения в систему. Если равенства сохранятся, значит, решено верно.
метод сложения
Чтобы решить систему методом сложения, нужно из двух уравнений сделать одно. Просто складываем первое и второе. Здесь «y» просто сократились, и получилось простое уравнение. Как только нашли значение «х», нужно подставить его в любой пример (здесь поставили во второе уравнение). В ответе пишется так: (4; 3) — первым всегда пишется х, затем у.
графический метод
У нас есть система, где y = 5x и y = -2x + 7. Рассмотрим алгоритм решения системы уравнений:
- Подбираем 2 числа для х. Мы взяли 0 и 1, подставляем в первое уравнение: y = 5 * 0 = 0; у = 5 * 1 = 5. Значит первая прямая имеет координаты: (0; 0) и (1; 5).
- Для второго уравнения подбираем значения х. Взяли 3 и 2, подставляем и находим у: -2 * 3 + 7 = 1; -2 * 2 + 7 = 3. Значит прямая имеет координаты (3; 1) и (2; 3).
- Отмечаем на графике соответствующие прямые, подписываем их название.
- на месте пересечения получившихся прямых ставим точку — это будет решение.
- Точка имеет координаты (1; 5).
На заметку! Старайтесь подбирать такие значения х, чтобы у был небольшим. Так отмечать будет проще.
Выбирайте самый удобный способ решения. Третий метод — графический, считают самым неточным.
Видео:Алгебра 7 Линейное уравнение с одной переменнойСкачать
Как решать дроби 7 класс
Дроби можно разделить на 2 основных вида:
Они различаются в способе написания (смотрите рисунок ниже). В свою очередь и те, и другие делятся еще на несколько видов.
Для начала рассмотрим решение примеров с десятичными дробями.
Особое внимание при решении стоит уделить запятым. При сложении и вычитании запятые стоят строго друг под другом, при умножении это не имеет значения.
Примеры решения обыкновенных дробей.
- при сложении и вычитании нужно привести дроби к общему знаменателю, найти дополнительные множители. Так, для чисел 6 и 4 общим знаменателем стало число 24. Дополнительные множители считали так: 24 : 6 = 4 (для первой дроби) и 24 : 4 = 6 (для второй). Потом умножили доп. множители на числители и полученные числа сложили. Если в ответе получилась неправильная дробь, то выделяем целую часть, при необходимости сокращаем дроби.
- при умножении пишем дроби под одной чертой, сокращаем.
- при делении нужно вторую дробь перевернуть, поставить знак умножения и сократить дроби.
Если пример состоит из простой и десятичной дроби, то следует привести их к одному виду (к которому проще или удобнее считать).
Видео:Уравнения с дробями. Алгебра 7 класс.Скачать
Примеры 7 класс как решать
Теперь закрепим решение дробей на примерах.
Решение примера, представленного ниже:
- Видим, что присутствует как обыкновенная дробь, так и десятичные. Нужно привести к одному виду. Так как десятичных больше, и превратить 1/4 в этот вид проще, то делим 1 на 4, а целую часть сохраняем. Вышло 5,25.
- Далее умножаем — 3 на каждое число в скобках, внимательно следим за знаками.
- Остается от 10,4 отнять 9,3. В итоге вышло 1,1.
Но можно было решить проще. Первое действие всегда в скобках. Поэтому от 5,25 отнимаем 2,15. Получится 3,1. Умножаем ее на 3 — вышло 9,3. И отнимаем: 10,4 — 9,3 = 1,1. Этот способ даже проще, потому что не нужно следить за знаками при раскрытии скобок.
Чтобы верно решить следующий пример, нужно:
- точно проставить порядок действий (умножение и деление делаем в первую очередь, затем складываем);
- Умножить десятичные дроби столбиком, не забыть поставить запятую;
- деление здесь простое: переставили запятую на один знак вправо, поделили, получили -2.
- сложили числа.
Видео:Алгебра 7 класс. 11 сентября. Решение линейных уравнений #1Скачать
Как решать задачи алгебра 7 класс
Задачи решаются путем составления уравнений.
Другие примеры задач с подробными решениями в видео-материалах.
Видео:ПРОСТЕЙШИЙ способ решения Показательных УравненийСкачать
Как решать функции алгебра 7 клас с
Функцией принято считать зависимость y от x. При этом x является переменной (или аргументом), а у — это значение функции (зависимая переменная).
- y(x) = 8x
- y(x) = −3x — 62
- y(x) = x−1 + 18
Чтобы найти значение у, которое бы соответствовало определенному значению х, нужно просто это значение х подставить в функцию.
Видео:Линейное уравнение с двумя переменными. 7 класс.Скачать
Как решать степени алгебра 7 класс
Если требуется взять какое-либо число несколько раз, то проще записать его в степени. Например, нужно двойку взять три раза, т. е.: 2 * 2 * 2. Получается длинная запись. Поэтому придумали писать так: 2³ (читается: два в третьей степени).
Видео:Cистемы уравнений. Разбор задания 6 и 21 из ОГЭ. | МатематикаСкачать
Чтобы число возвести в степень (она указывается справа от числа вверху), нужно его умножать на самого себя столько раз, какая цифра указана. Рассмотрим подробнее на примерах.
Не всегда получается возвести число в степень «в уме». Иногда посчитать сложно. Например, возвести 6 в 5 степень, быстро получится не у каждого. Чтобы всякий раз не считать столбиком, лучше выучить основные степени. Они представлены в таблице.
При возведении любого числа в степень 1, получится это же число. Если возводить число в нулевую степень, в ответе будет 1.
Рассмотрим несколько примеров со степенями.
Отдельное внимание обращаем на возведение в степень отрицательного числа. Если такое число возводить в четную степень (2; 4; 6 и т.д.), то получится положительный ответ, если в нечетную, то ответ со знаком минус.
Видео:Задание 9 на ОГЭ по математике 2023 / Разбираем все типы уравнений за 5 минут!Скачать
Алгебра модули как решать
Модулем числа называют это же число, только без знака минус. Например: | − 9 | = 9. При этом если число изначально неотрицательное, то оно остается прежним.
Перейдем к простым примерам.
Логично предположить, что под модулем будет число 4. Также подойдет число -4, ведь из-под модуля все равно выйдет положительное. Так, корнями уравнения будут: x = 4 и x = − 4.
Из-под модуля не может выйти отрицательное число. Поэтому, если видим что-то похожее: Ι-8 + хΙ = -8, значит, корней не будет, так как уравнение заведомо нерешаемо.
Другие примеры описаны в видео.
Об Авторе
Смотрите также
Видео:Как решать линейные уравнения. План решения любого линейного уравнения. Алгебра 7 класс.Скачать
Сочинение рассуждение на тему патриотизм, патриотизм сочинение ЕГЭ: ложный и истинный патриотизм, народный патриотизм роман Война и мир, примеры сочинений
Видео:Что такое параметр? Уравнения и неравенства с параметром. 7-11 класс. Вебинар | МатематикаСкачать
Урок патриотизма в школе. Тема урока патриотизм: урок литературы патриотизм, патриотическое воспитание на уроках истории, урок мужества патриотизм. Дети герои Великой Отечественной войны Валя Котик, Валерий Волков, Марат Казей, Надя Богданова, Люся Герасименко, Вашкевич Лида, Валя Зенкина, Костя Кравчук, Вася Коробко, Витя Хоменко, Саша Ковалёв: краткая биография
Видео:Решение системы линейных уравнений графическим методом. 7 класс.Скачать
Современный сценарий выпускного в школе: сценарий выпускного современный прикольный веселый, красивые платья на выпускной 11 класс, современные песни текст на выпускной
2 комментария
Спасибо большое очень помогли.
Огромное спасибо!А то учитель неможет нормально тему объяснить
Видео:АЛГЕБРА 7 класс : Решение задач с помощью уравнений | ВидеоурокСкачать
Виды уравнений и способы их решения
Презентация к уроку
Цели урока:
Обучающие:
- Обобщить знания по всем видам уравнений, подчеркнуть значимость всех способов, применяемых при решении уравнений.
- Активизирование работы учащихся за счет, разнообразных приемов на уроке.
- Проверить теоретические и практические навыки при решении уравнений.
- Заострить внимание на том, что, одно уравнение можно решить несколькими способами
Развивающие:
- Повысить интерес учащихся к предмету, через использование ИКТ.
- Ознакомление учащихся с историческим материалом по теме.
- Развитие мыслительной деятельности при определении вида уравнения и способов его решения.
Воспитательные:
- Воспитать дисциплину на уроке.
- Развитие способности к восприятию прекрасного, в себе самом, в другом человеке и в окружающем мире.
Тип урока:
- Урок обобщения и систематизации знаний.
Вид урока:
- Комбинированный.
Материально-техническое оснащение:
- Компьютер
- Экран
- Проектор
- Диск с презентацией темы
Методы и приемы:
- Использование презентации
- Фронтальная беседа
- Устная работа
- Игровые моменты
- Работа в парах
- Работа у доски
- Работа в тетрадях
План урока:
- Организационный момент (1минуты)
- Расшифровка темы урока (3минуты)
- Сообщение темы и цели урока (1минута)
- Теоретическая разминка (3минут)
- Исторический экскурс (3минуты)
- Игра “Убери лишнее” (2минуты)
- Творческая работа (2минуты)
- Задание “Найди ошибку” (2минуты)
- Решение одного уравнения несколькими способами (на слайде) (3минуты)
- Решение одного уравнения несколькими способами (у доски) (24 минут)
- Самостоятельная работа в парах с последующим объяснением (5минут)
- Индивидуальное домашнее задание(1минуты)
- Итог урока рефлексия (1минута)
Эпиграф урока:
“Учиться можно только весело, чтобы переваривать знания, нужно поглощать их с аппетитом”.
А.Франс
Конспект урока
Организационная часть
Проверяю готовность учащихся к уроку, отмечаю отсутствующих на уроке. Ребята, Французский писатель 19 века А.Франс однажды заметил “ Учиться можно только весело, чтобы переваривать знания, нужно поглощать их с аппетитом”. Так давайте на нашем уроке следовать совету, писателя и переваривать знания с большим аппетитом, ведь они пригодятся в нашей жизни.
Расшифровка темы урока
Для того, чтобы перейти к более сложном заданием, давайте разомнем свои мозги простыми заданиями. Тема нашего урока зашифрована, решив устные задания и найдя к ним ответ, зная, что каждый ответ имеет свою букву, мы раскроем тему урока. Презентация слайд 3
Сообщение темы и цели урока
Вы, сегодня сами назвали тему урока
“Виды уравнений и способы их решения”. Презентация слайд 4
Цель: Вспомнить и обобщить все виды уравнений и способы их решения. Решить одно уравнение всеми способами. Презентация слайд 5 Прочитать высказывание Эйнштейна Презентация слайд 5
Теоретическая разминка
Вопросы Презентация слайд 7
Ответы
- Равенство, содержащее переменную величину, обозначенную какой-то буквой.
- Это значит найти все его корни, или доказать, что корней нет.
- Значение переменной, при котором уравнение обращается в верное равенство.
- После этого определения прочесть стихотворение об уравнении Презентация слайд 12,13,14
Ответы на 2 последних вопроса Презентация слайд 9,10,11
Исторический экскурс
Историческая справка, о том “Кто и когда придумал уравнение” Презентация слайд 15
Представим себе, что первобытная мама по имени. впрочем, у неё, наверно, и имени то не было, сорвала с дерева 12 яблок, чтобы дать каждому из своих 4 детей. Вероятно, она не умела считать не только до 12, но и до четырёх, и уж несомненно не умела делить 12 на 4.А яблоки она поделила, наверно, так: сначала дала каждому ребёнку по яблоку, потом ещё по яблоку, потом ещё по одному и тут увидела, что яблок больше нет и дети довольны. Если записать эти действия на современном математическом языке, то получается х4=12, то есть мама решила задачу на составление уравнение. По-видимому, ответить на поставленный выше вопрос невозможно. Задачи, приводящие к решению уравнений, люди решили на основе здравого смысла с того времени, как они стали людьми. Ещё за 3-4 тысячи лет до нашей эры египтяне и вавилоняне умели решать простейшие уравнения, вид которых и приёмы решения были не похожи на современные. Греки унаследовали знания египтян, и пошли дальше. Наибольших успехов в развитие учения об уравнениях достиг греческий учёный Диофант(III век), о котором писали:
Он уйму всяких разрешил проблем.
И запахи предсказывал, и ливни.
Поистине, его познанья дивны.
Большой вклад в решение уравнений внёс среднеазиатский математик Мухаммед ал Хорезми (IХ век). Его знаменитая книга ал-Хорезми посвящена решению уравнений. Она называется “Китаб ал-джебр вал-мукабала”, т. е. “Книга о восполнении и противопоставлении”. Эта книга стала известна европейцам, а от слова “ал-джебр” из ее заглавия произошло слово “алгебра” – название одной из главных частей математики. В дальнейшем многие математики занимались проблемами уравнений. Общее правило решений квадратных уравнений приведённых к виду х2+вх=0 было сформулировано немецким математиком Штифелем, проживавшим в ХV веке. После трудов нидерландского математика Жирара (ХVI век), а также Декарта и Ньютона, способ решения принял современный вид. Формулы, выражающие зависимости корней уравнения от его коэффициентов была введена Виетом. Франсуа Виет жил в ХVI веке. Он внёс большой вклад в изучение различных проблем в математике и астрономии; в частности, он ввёл буквенные обозначения коэффициентов уравнения. А сейчас познакомимся с интересным эпизодом из его жизни. Громкую славу Виет получил при короле Генрихе III, вовремя франко-испанской войны. Испанские инквизиторы изобрели очень сложную тайнопись, благодаря которой испанцы вели переписку с врагами Генриха III даже в самой Франции.
Напрасно французы пытались найти ключ к шифру, и тогда король обратился к Виету. Рассказывают, что Виет нашёл за две недели непрерывной работы ключ к шифру, после чего, неожиданно для Испании, Франция стала выигрывать одно сражение за другим. Будучи уверенным, что шифр разгадать не возможно, испанцы обвинили Виета в связи с дьяволом и приговорили к сожжению на костре. К счастью, он не был выдан инквизиции и вошёл в историю как великий математик.
Игра “Убери лишнее”
Цель игры ориентирование в видах уравнений.
У нас даны три столбика уравнений ,в каждом из них, уравнения определены по какому-то признаку ,но одно из них лишнее ваша задача его найти и охарактеризовать. Презентация слайд 16
Творческая работа
Цель этого задания: Восприятие на слух математической речи ориентировании детей в видах уравнений .
На экране вы видите 9 уравнений. Каждое уравнение имеет свой номер, я буду называть вид этого уравнения, а вы должны найти уравнение этого вида, и поставить только номер, под которым оно стоит, в результате вы получите 9-значное число Презентация слайд 17
- Приведенное квадратное уравнение.
- Дробно-рациональное уравнение
- Кубическое уравнение
- Логарифмическое уравнение
- Линейное уравнение
- Неполное квадратное уравнение
- Показательное уравнение
- Иррациональное уравнение
- Тригонометрическое уравнение
Задание “Найди ошибку”
Один ученик решал уравнения, но весь класс смеялся, в каждом уравнении он допустил ошибку, ваша задача найти ее и исправить. Презентация слайд 18
Решение одного уравнения несколькими способами
А теперь решим одно уравнение всеми возможными способами, для экономии времени на уроке одно уравнение на экране. Сейчас вы назовете вид этого уравнения, и объясните какой способ используется , при решении этого уравнения Презентация слайды 19-27
Решение одного уравнения несколькими способами (у доски)
Мы посмотрели пример, а теперь давайте решим уравнение у доски всевозможными способами.
=x-2 — иррациональное уравнение
Возведем в квадрат обе части уравнения.
Решаем это уравнение у доски 9 способами.
Самостоятельная работа в парах с последующим объяснением у доски
А сейчас вы поработаете в парах, на парту я даю уравнение, ваша задача определить вид уравнения, перечислить все способы решения этого уравнения, решить 1-2 наиболее рациональными для вас способами. (2 минуты)
Задания для работы в парах
Решите уравнение
- =x-2
- =6
- 3 6-x =3 3x-2
- 9 x -83 x -9=0
- 23 x+1 -3 x =15
- = 4
После самостоятельной работы в парах один представитель выходит к доске представляет свое уравнение, решает одним способом
Индивидуальное домашнее задание (дифференцируемо)
Решите уравнение
- =x-2
- =6
- 3 6-x =3 3x-2
- 9 x -83 x -9=0
- 23 x+1 -3 x =15
- =4
- 3x 5 =96
- |x+2|=
(определить вид уравнения, решить всеми способами на отдельном листе)
Итог урока рефлексия.
Подвожу итог урока, заостряю внимание на том, что одно уравнение можно решить многими способами, выставляю оценки, делаю вывод, кто был активным кому надо быть поактивнее. Зачитываю высказывание Калинина Презентация слайд 28
Посмотрите внимательно на те цели которые мы с вами поставили для сегодняшнего урока:
- Что на ваш взгляд нам удалось сделать?
- Что получилось не очень хорошо?
- Что вам особенно понравилось и запомнилось?
- Сегодня я узнал новое.
- На уроке мне пригодились знания.
- Для меня было сложно.
- На уроке мне понравилось.
Литература.
- Дорофеев Г.В. “Сборник заданий для проведения письменного экзамена по математике за курс средней школы” — М.: Дрофа, 2006.
- Гарнер Мартин. Математические головоломки и развлечения.
- Ивлев Б.М., Саакян С.М. Дидактические материалы по алгебре и началам анализа для 10 кл., 11 кл. М.: Просвещение. 2002.
🌟 Видео
Урок по теме СПОСОБ ПОДСТАНОВКИ 7 классСкачать
ОГЭ по математике. Решаем уравнения | МатематикаСкачать
Уравнения с модулем. Что такое модуль числа. Алгебра 7 класс.Скачать
5 способов решения квадратного уравнения ➜ Как решать квадратные уравнения?Скачать