Верхняя граница положительных корней уравнения

Верхняя и нижняя граница корней полинома
Коэффициенты многочлена разделенные пробелами
Заданный многочлен имеет вид
Нижняя граница действительных корней многочлена
Верхняя граница действительных корней многочлена

Рассмотрим еще одну задачу связаннуюс полиномами. Когда мы пытаемся решить такое уравнение численно, то нам необходимо знать, в каких пределах могут находится действительные корни этого полинома.

Эти знания позволят нам быстрее обеспечить сходимость при компьютерных вычислениях. Это позволит при прорисовке полинома в виде графика, выбрать такой масштаб, что бы мы увидели все пересечения функции с осью абсцисс.

Итак, как же формулы мы будем использовать для решения задачи?

Если нам известен полином вида

То разделив его на a0 мы получаем

Правило утверждает, что если среди коэффицентов есть отрицательные числа и -первое из них, и также есть отрицательный коэффицент A который является самым большим (в абсолютном значении), то действительные корни этого полинома не превышают число

Нижнюю границу можно определить по аналогичной формуле, вычислив значения функции коэффицентов при -x

Давайте рассмотрим пример

Разделим на 3 , что бы первый член полинома был равен единице.

Первый отрицательный коэффициент который мы встречаем это он стоит на второй позиции ( )

Значение А=9, так как 9 явлется максимальном в абсолютном выражении числом из всех отрицательных коэффициентов полинома.

Таким образом верхняя граница действительных корней

Теперь определяем нижнюю границу

Разделим полином на -3, что бы первый член полинома был равен единице.

Первый отрицательный коэффициент который мы встречаем это он стоит на первой позиции ( )

Таким образом нижняя граница действительных корней

Следовательно, все действительные корни заданного многочлена находятся в пределах

Бот позволяет выполнять эти вычисления автоматически и при заданных действительных коэффициентах давать правильные результаты.

Единственное замечание, не стоит вводить в качестве коэффициентов комплексные числа. Результат будет непредсказуем.

Видео:Найти корень уравнения на заданном интервале (MathCad)Скачать

Найти корень уравнения на заданном интервале (MathCad)

3.1. Отделение корней нелинейного уравнения

Отделение корней – это определение их наличия, количества и нахождение для каждого их них достаточно малого отрезка [a, b], которому он принадлежит.

На первом этапе определяется число корней, их тип. Определяется интервал, в котором находятся эти корни, или определяются приближенные значения корней.

В инженерных расчетах, как правило, необходимо определять только вещественные корни. Задача отделения вещественных корней решается Аналитическими и Графическими методами.

Аналитические методы основаны на функциональном анализе.

Для алгебраического многочлена n-ой степени (полинома) с действительными коэффициентами вида

Pn(x) = an x n + an-1xn-1 +. +a1x+ a0 = 0, (an >0) (3.2)

Верхняя граница положительных действительных корней Верхняя граница положительных корней уравненияопределяется по формуле Лагранжа (Маклорена):

Верхняя граница положительных корней уравнения, (3.3)

Где: k ³ 1 – номер первого из отрицательных коэффициентов полинома;

B – максимальный по модулю отрицательный коэффициент.

Нижнюю границу положительных действительных корней Верхняя граница положительных корней уравненияможно определить из вспомогательного уравнения

Верхняя граница положительных корней уравнения(3.4)

Если для этого уравнения по формуле Лагранжа верхняя граница равна R1, то

Верхняя граница положительных корней уравнения= Верхняя граница положительных корней уравнения(3.5)

Тогда все положительные корни многочлена лежат в интервале

Верхняя граница положительных корней уравнения≤x+≤Верхняя граница положительных корней уравнения.

Интервал отрицательных действительных корней многочлена определяется с использованием следующих вспомогательных функций.

Верхняя граница положительных корней уравненияи Верхняя граница положительных корней уравнения.

Верхняя граница положительных корней уравнения≤x–≤ Верхняя граница положительных корней уравненияВерхняя граница положительных корней уравнения= Верхняя граница положительных корней уравненияВерхняя граница положительных корней уравнения=Верхняя граница положительных корней уравнения.

Рассмотрим пример отделения корней с использованием этого аналитического метода.

Методом Лагранжа определим границы положительных и отрицательных корней многочлена.

3×8 – 5×7 – 6×3 – x – 9 = 0

K = 1 B = |– 9| an = 3

Верхняя граница положительных корней уравнения= 4

Верхняя граница положительных корней уравнения9×8 + x7 + 6×5 + 5x – 3 = 0

Верхняя граница положительных корней уравнения

k = 8 B = 3 an = 9

Отсюда границы положительных корней 0,5 ≤ x+ ≤ 4

Верхняя граница положительных корней уравнения3×8 + 5×7 + 6×3 + x – 9 = 0

Верхняя граница положительных корней уравнения= Верхняя граница положительных корней уравнения

Верхняя граница положительных корней уравнения9×8 – x7 – 6×5 – 5x – 3 = 0

K = 1 B = 6 an = 9

Верхняя граница положительных корней уравнения

Следовательно, границы отрицательных корней –2 ≤ x– ≤ –0,6

Формула Лагранжа позволяет оценить интервал, в котором находятся все действительные корни, положительные или отрицательные. Поэтому, для определения расположения каждого корня необходимо проводить дополнительные исследования.

Для трансцендентных уравнений не существует общего метода оценки интервала, в котором находятся корни. Для этих уравнений оцениваются значения функции в особых точках: разрыва, экстремума, перегиба и других.

На практике получил большее распространение Графический метод приближённой оценки вещественных корней. Для этих целей строится график функции по вычисленным её значениям.

Графически корни можно отделить 2-мя способами:

1. Построить график функции y = f(x) и определить координаты пересечений с осью абсцисс− это приближенные значения корней уравнения.На графике 3 корня.

Верхняя граница положительных корней уравнения

Рис. 3.1 Отделение корней на графике f(x).

2. Преобразовать f(x)=0 к виду j(x) = y(x), где j(x) и y(x) – элементарные функции, и определить абсциссу пересечений графиков этих функций.

На графике 2 корня.

Верхняя граница положительных корней уравненияВерхняя граница положительных корней уравнения

Рис. 3.2 Отделение корней по графикам функций j(x) и y(x).

Графический метод решения нелинейных уравнений широко применяется в технических расчётах, где не требуется высокая точность.

Для отделения вещественных корней можно использовать ЭВМ. Алгоритм отделения корней основан на факте Изменения знака функции в окрестности корня. Действительно, если корень вещественный, то график функции пересекает ось абсцисс, а знак функции изменяется на противоположный.

Рассмотрим Схему алгоритма отделения корней нелинейного уравнения на заданном отрезке в области определения функции.

Алгоритм позволяет определить приближённые значения всех действительных корней на отрезке [a, b]. Введя незначительные изменения в алгоритм, его можно использовать для определения приближённого значения максимального или минимального корня.

Приращение неизвестного Δx не следует выбирать слишком большим, чтобы не «проскочить» два корня.

Недостаток метода – использование большого количества машинного времени.

Видео:Отделение корней уравнений аналитическим методом. Уточнение корней методом половинного деленияСкачать

Отделение корней уравнений аналитическим методом. Уточнение корней методом половинного деления

Реферат: Отделение корней. Графический и аналитический методы отделения корней

Верхняя граница положительных корней уравнения Министерство образования и науки РФ

Государственное образовательное учреждение

высшего профессионального образования

Владимирский государственный университет

Кафедра автоматизации технологических процессов

по предмету: Моделирование систем

на тему: ”Отделение корней. Графический и аналитический методыотделения корней

Видео:3,5 способа отбора корней в тригонометрии | ЕГЭ по математике | Эйджей из ВебиумаСкачать

3,5 способа отбора корней в тригонометрии | ЕГЭ по математике | Эйджей из Вебиума

Содержание

Видео:Отбор корней по окружностиСкачать

Отбор корней по окружности

1. Отделение корней. 3

2. Графический метод. 4

3. Аналитический метод (табличный или шаговый). 5

4. Метод половинного деления (Дихотомии). 9

Видео:Алгоритмы. Нахождение корней уравнений методом деления отрезка пополам.Скачать

Алгоритмы. Нахождение корней уравнений методом деления отрезка пополам.

1. Отделение корней

В общем случае отделение корней уравнения f(x)=0 базируется на

известной теореме, утверждающей, что если непрерывная функция f(x) на

концах отрезка [a,b] имеет значения разных знаков, т.е. f(a)×f(b) 3 -6x+2=0 видим, что при Верхняя граница положительных корней уравненияпри Верхняя граница положительных корней уравнениячто уже свидетельствует о наличии хотя бы одного корня.

Для уравнения Верхняя граница положительных корней уравнениявидим, что Верхняя граница положительных корней уравненияОбнаружив, что Верхняя граница положительных корней уравненияустанавливаем факт наличия единственного корня, и остается лишь найти его (как говорится, за немногим стало дело).

Если предварительный анализ функции затруднителен, можно “пойти в лобовую атаку”. При уверенности в том, что все корни различны, выбираем некоторый диапазон возможного существования корней (никаких универсальных рецептов!) и производим “прогулку” по этому интервалу с некоторым шагом, вычисляя значения f(x) и фиксируя перемены знаков. При выборе шага приходится брать его по возможности большим для минимизации объема вычислений, но достаточно малым, чтобы не пропустить перемену знаков.

2. Графический метод

Этот метод основан на построении графика функции y=f(x). Если построить график данной функции, то искомым отрезком [a,b], содержащим корень уравнения (1), будет отрезок оси абсцисс, содержащий точку пересечения графика с этой осью. Иногда выгоднее функцию f(x) представить в виде разности двух более простых функций, т.е. Верхняя граница положительных корней уравненияи строить графики функций Верхняя граница положительных корней уравненияи Верхняя граница положительных корней уравнения. Абсцисса точки пересечения этих графиков и будет являться корнем уравнения (1), а отрезок на оси абсцисс которому принадлежит данный корень, будет являться интервалом изоляции. Этот метод отделения корней хорошо работает только в том случае, если исходное уравнение не имеет близких корней. Данный метод дает тем точнее результат, чем мельче берется сетка по оси Ох.

Пример. Графически решить уравнение Верхняя граница положительных корней уравнения.

Решение. Запишем исходное уравнение в виде: Верхняя граница положительных корней уравнения, т.е. Верхняя граница положительных корней уравненияи Верхняя граница положительных корней уравнения.

Таким образом, корни данного уравнения могут быть найдены как абсциссы точек пересечения кривых Верхняя граница положительных корней уравненияи Верхняя граница положительных корней уравнения.

Теперь построим графики функций и определим интервал изоляции корня.

Верхняя граница положительных корней уравнения

Название: Отделение корней. Графический и аналитический методы отделения корней
Раздел: Рефераты по информатике
Тип: реферат Добавлен 11:03:33 16 июня 2011 Похожие работы
Просмотров: 2994 Комментариев: 22 Оценило: 8 человек Средний балл: 4.5 Оценка: 5 Скачать
Из рис.1 видно, что корень находится на отрезке [1,2]. В качестве приближенного значения этого корня можно взять значение х=1.5. Если взять шаг по оси Ох меньше, то и значение корня можно получить более точное.

3. Аналитический метод (табличный или шаговый).

Для отделения корней полезно помнить следующие известные теоремы:

1) если непрерывная функция f(x) принимает значения разных знаков на концах отрезка [a,b], т.е. f(a)f(b) 0, значит корня на отрезке [0;0.5] нет.

f(0.5)f(1) 0, значит корня на отрезке [0.5;0.75] нет.

🌟 Видео

Метод половинного деления. ДихотомияСкачать

Метод половинного деления. Дихотомия

Как разобраться в корнях ? Квадратный корень 8 класс | Математика TutorOnlineСкачать

Как разобраться в корнях ? Квадратный корень 8 класс | Математика TutorOnline

Три способа отбора корней в задании 13 ЕГЭ профильСкачать

Три способа отбора корней в задании 13 ЕГЭ профиль

Решение тригонометрических уравнений. Подготовка к ЕГЭ | Математика TutorOnlineСкачать

Решение тригонометрических уравнений. Подготовка к ЕГЭ | Математика TutorOnline

Тригонометрия 8. Отбор корнейСкачать

Тригонометрия 8. Отбор корней

МЕРЗЛЯК-7. ЛИНЕЙНЫЕ УРАВНЕНИЯ. ПАРАГРАФ-2Скачать

МЕРЗЛЯК-7. ЛИНЕЙНЫЕ УРАВНЕНИЯ. ПАРАГРАФ-2

Как решают уравнения в России и СШАСкачать

Как решают уравнения в России и США

Курс по численным методам: Отделение действительных корней алгебраический уравнений | Занятие 1Скачать

Курс по численным методам: Отделение действительных корней алгебраический уравнений | Занятие 1

5 способов решения квадратного уравнения ➜ Как решать квадратные уравнения?Скачать

5 способов решения квадратного уравнения ➜ Как решать квадратные уравнения?

Численное решение уравнений, урок 3/5. Метод хордСкачать

Численное решение уравнений, урок 3/5. Метод хорд

Формула корней квадратного уравнения. Алгебра, 8 классСкачать

Формула корней квадратного уравнения. Алгебра, 8 класс

Решение квадратных уравнений. Дискриминант. 8 класс.Скачать

Решение квадратных уравнений. Дискриминант. 8 класс.

Решить квадратное уравнение. MS Excel. Поиск решенияСкачать

Решить квадратное уравнение. MS Excel. Поиск решения

[3] Параметры аналитика с нуля. Расположение корней. Решаем задачи по алгоритму.ЭкстраСкачать

[3] Параметры аналитика с нуля. Расположение корней. Решаем задачи по алгоритму.Экстра

ЕГЭ по математике. Профильный уровень. Задание 5. Найдите корень уравненияСкачать

ЕГЭ по математике. Профильный уровень. Задание 5. Найдите корень уравнения
Поделиться или сохранить к себе: