В уравнении полуреакции восстановления n2 nh3 число принятых электронов равно

РЕАГЕНТЫ СТЕПЕНЬ ОКИСЛЕНИЯ

В) KClO3 + HCl = 3) 0

АБВГ

В2. Установите соответствие между формулой и процессом, протекающим на аноде, при электролизе расплава соли:

ФОРМУЛА АНОДНЫЙ ПРОЦЕСС

Б) CuSO4 2) 2Cl — __ 2e = Cl2

АБВГ

Часть 3

С1. Составьте уравнение реакции электролиза водного раствора гидроксида кальция. Вычислите объемы каждого из газов, образовавшихся в реакции (н.у.), если масса воды в растворе составляет 108г

Вариант 2

Часть 1

А1. В окислительно-восстановительной реакции

Cu + 4HNO3 = Cu(NO3)2 + 2NO2 + 2H2O азот изменяет степень окисления — (от ___ до):

А2. Какая из перечисленных ниже реакций не является окислительно-восстановительной: а) Al + V2O5 = Al2O3 + V;

А3. Укажите, какой элемент окисляется и какой восстанавливается в следующей химической реакции N -3 H3 + + O2 0 = N2 0 + H2 + O -2 :

а) окисляется азот, восстанавливается водород;

б) окисляется кислород, восстанавливается водород;

в) окисляется азот, восстанавливается кислород;

г) окисляется водород, восстанавливается азот

А4. Какую высшую степень окисления способен проявлять в соединениях селен:

А5. При составлении химической формулы какого соединения допущена ошибка: а) Fe +3 I3 — б)H2 + S +4 O3 -2 в)Si +4 H4 — г)Ba +2 H4

А6. В какой роли выступает углерод в реакции

MgO + CO = Mg + CO2

в) наиболее электроотрицательного элемента;

г) наименее электроотрицательного элемента?

А7. Какая из перечисленных ниже реакций является окислительно-восстановительной:

а) почернение серебряных предметов;2

б) образование озона в воздухе при грозе;

в) выделение газа при прокаливании мрамора;

г) растворение кусочка мела в соляной кислоте

А8. Коэффициент перед формулой окислителя в уравнении реакции между алюминием и бромом равен:

А9. В уравнении полуреакции восстановления N2 _____ NH3

число принятых электронов равно:

А10. В уравнении полуреакции окисления NaCl ______ Cl2

число отданных электронов равно:

Часть 2

В1. Установите соответствие между формулой вещества и схемой процесса, в котором он участвует в роли окислителя:

ФОРМУЛА ВЕЩЕСТВА СХЕМА ПРОЦЕССА

АБВГ

В2. Установите соответствие между формулой вещества и продуктами электролиза его водного раствора:

В уравнении полуреакции восстановления n2 nh3 число принятых электронов равно

ФОРМУЛА ВЕЩЕСТВА ПРОДУКТЫ ЭЛЕКТРОЛИЗА

АБВГ

Часть 3

С1. Составьте уравнение реакции электролиза расплава AgNO3

Вычислите объем кислорода (н.у.), который образуется в результате электролиза 3,4г нитрата серебра.

Вариант 3

Часть 1

А1. Какой из процессов не является окислительно-восстановительным:

а) выделение газа при прокаливании гидрокарбоната калия; б) горение серы на воздухе; в) растворение магния в соляной кислоте; г) восстановление магния из оксида раскалённым углём

А2. Во время превращения SO3 2- ______ SO4 2-

степень окисления одного из элементов повышается (от _____ до):

А3. В уравнении полуреакции восстановления MnO4 — _____ Mn +2

число принятых электронов равно: а) 1; б) 2; в) 3; г) 5

А4. В уравнении реакции P + KClO3 = KCl + P2O5

сумма всех коэффициентов равна:

А5. Степень окисления азота в соединении (NH4)2CO3 равна:

А6. К окислительно-восстановительным относится реакция:

а) гидролиза крахмала;

б) полимеризации метилметакрилата;

в) гидрирования ацетилена;

г) нейтрализации уксусной кислоты гидроксидом кальция

А7. В уравнении реакции горения аммиака на воздухе коэффициент перед формулой восстановителя равен:

А8. Укажите соединение, в котором сера проявляет низшую степень окисления:

А9. Продуктами электролиза расплава гидроксида калия являются:

А10. В уравнении полуреакции окисления Ca(NO2)2 _______ Ca (NO3)2 число отданных электронов равно:

Часть 2

В1. Установите соответствие между схемой окислительно-восстановительной реакции и веществом, которое является в нем восстановителем:

СХЕМА ВОССТАНОВИТЕЛЬ

АБВГ

В2. Установите соответствие между формулой и процессом, протекающим на аноде, при электролизе водного раствора соли:

ФОРМУЛА АНОДНЫЙ ПРОЦЕСС

Б) CuSO4 2) 2Cl — __ 2e = Cl2

АБВГ

Часть 3

С1. Составьте уравнение окислительно-восстановительной реакции методом электронного баланса, укажите окислитель и восстановитель:

Вариант 4

Часть 1

А1. Какой из процессов не является окислительно-восстановительным:

а) образование зелёного налёта на медных предметах;

б) выделение кислорода при нагревании перманганата калия;

в) обжиг известняка;

г) коррозия цинковой пластинки под воздействием атмосферной влаги

А2. В кратком ионном уравнении реакции

сумма всех коэффициентов равна:

А3. В уравнении полуреакции окисления P ______ PO4 3-

число отданных электронов равно:

А4. В уравнении реакции внутримолекулярного окисления-восстановления

сумма всех коэффициентов равна:

А5. Продуктами электролиза расплава соли сульфата калия являются:

б) калий, оксид серы (VI), кислород;

в) калий, оксид серы (IV), кислород;

г) водород и кислород

А6. Во время превращения KClO3 ______ KCl степень окисления одного из элементов понижается (от ______ до):

А7. Элемент кремний расположен в третьем периоде и четвертой группе главной подгруппе ПС. Какую наивысшую положительную степень окисления он может проявлять в соединениях:

А8. Окислителем в окислительно-восстановительных реакциях называется атом или ион, который: а) принимает электроны;

б) отдает электроны;

в) изменяет степень окисления;

г) не изменяет степень окисления

А9. При составлении химической формулы какого соединения допущена ошибка:

А10. В уравнении полуреакции восстановления Fe2O3 _____ Fe

число принятых электронов равно:

Часть 2

В1. Установите соответствие между химической формулой вещества и степенью окисления, которую проявляет бром в данном веществе:

Видео:ОВР и Метод Электронного Баланса — Быстрая Подготовка к ЕГЭ по ХимииСкачать

ОВР и Метод Электронного Баланса — Быстрая Подготовка к ЕГЭ по Химии

Метод полуреакций — составление уравнений ОВР

Любая окислительно-восстановительная реакция состоит из двух «половинок» — в ходе ОВР идут два процесса — процесс окисления вещества-восстановителя и процесс восстановления вещества-окислителя. Оба эти процесса могут быть описаны соответственными ионными уравнениями, которые потом можно суммировать и получить итоговое общее ионное уравнение реакции, а потом записать молекулярное уравнение.

В качестве примера составим уравнение реакции сероводорода с раствором калия перманганата в кислой среде методом полуреакций. Ранее это уравнение было составлено методом электронного баланса.

В ходе реакции происходит разложение молекул сероводорода на серу и водород, о чем свидетельствует постепенное помутнение раствора перманганата калия (сера выпадает в осадок). Процесс окисления сероводорода запишем в виде уравнения полуреакции окисления:

Поскольку в левой и правой частях схемы кол-во атомов серы и водорода равно, то стрелку можно заменить на знак равенства, уравняв предварительно число зарядов в исходном веществе и продуктах реакции:

Параллельно с помутнение раствора идет и смена его окраски — из малинового раствор становится бесцветным,что объясняется переходом ионов MnO4 — , имеющих малиновую окраску, в практически бесцветный катион марганца Mn 2+ . Эта полуреакция восстановления выражается схемой:

А куда же делся атом кислорода? — обязательно спросит внимательный читатель. В кислой среде атом кислорода, входящий в состав иона, соединяется с атомами водорода, выделяющимися в ходе полуреакции окисления, образуя молекулу воды, при этом, поскольку из одного иона освобождается аж 4 атома кислорода, то для их связывания требуется 8 атомов водорода:

Чтобы уравнять заряды в левой и правой части схемы, в левую часть надо добавить 5 электронов (в левой части сумма зарядов +7, а в левой +2):

Для получения суммарного уравнения реакции, необходимо почленно сложить две полуреакции, предварительно уравняв кол-во отданных и полученных электронов, по аналогии с методом электронного баланса:

Проверяем кол-во атомов и заряды в левой и правой частях суммарного уравнения, они равны, значит уравнение составлено правильно (водорода — по 16 атомов; серы — по 5; марганца — по 2; кислорода — по 8; заряды — по +4).

Чтобы перейти от ионного уравнения к молекулярному, надо в левой части подобрать к катионам и анионам их «пары» — анионы и катионы соответственно, после чего подобранные ионы записать и в правую часть уравнения, после этого ионы объединяются в молекулы, и получается молекулярное уравнение.

Результат аналогичен уравнению, полученному методом электронного баланса.

Видео:8 класс. ОВР. Окислительно-восстановительные реакции.Скачать

8 класс. ОВР. Окислительно-восстановительные реакции.

Правила составления уравнений ОВР методом полуреакций

  • На первом этапе в ионном виде записывают полуреакцию окисления и полуреакцию восстановления, в которых указывают вещество-восстановитель и вещество-окислитель, с продуктами их реакции.
  • Сильные электролиты записываются в виде ионов.
  • Слабые электролиты, газы и твердые вещества, выпадающие в осадок — в виде молекул.
  • Продукты реакции между восстановителем и окислителем устанавливаются по справочникам или по «шпаргалке», приведенной на странице «Определение продуктов ОВР» (это самый сложный этап для начинающих).
  • Записывают схему реакции, в которой многоточием обозначают неизвестные продукты реакции.
  • Что делать с кислородом:
    • Если в исходном веществе кислорода содержится больше, чем в продуктах реакции, то «лишний» кислород в растворах с кислой средой связывается с катионами водорода, образуя молекулы воды (O -2 +2H + =H2O); в нейтральных растворах — в гидроксид-ионы: O -2 +H2O=2OH — ;
    • Если в исходном веществе кислорода содержится меньше, чем в продуктах реакции, то «недостающий» кислород «забирается» из молекул воды (в растворах с кислой и нейтральной средой): H2O=O -2 +2H + ; в щелочных растворах — за счет гидроксид-ионов: 2OH — =O -2 +H2O.
  • В левой и правой частях уравнения должны быть равны суммарное число и знак электрических зарядов.

Достоинства метода полуреакций:

  • Работают с реально существующими ионами (MnO4 — ), а не виртуальными (Mn +7 ).
  • Нет необходимости знать степени окисления атомов.
  • Прослеживается роль среды, в которой происходит взаимодействие веществ.
  • Не нужно знать все продукты реакции, они выводятся «сами собой» в процессе составления уравнения.

Пример составления уравнения ОВР для кислотной среды

Составление уравнения реакции серы с азотной кислотой:

  • S+HNO3
  • S 0 → SO4 2- — процесс окисления восстановителя.
  • NO3 — → NO — процесс восстановления окислителя.
  • Приводим в «порядок» первую полуреакцию окисления:
    • S 0 → SO4 2- — отличник должен здесь спросить, откуда справа взялся кислород? Немного терпения, сейчас все станет ясно.
    • в правую часть схемы, где присутствует избыток кислорода, добавляется катион водорода:
      S 0 → SO4 2- +H +
    • у внимательного читателя тут же должен возникнуть вопрос — а откуда взялся катион водорода? Отвечаем: из молекулы воды, которая добавляется в левую часть схемы:
      S 0 +H2O → SO4 2- +H +
    • Вот теперь настало время уравнять в обеих частях схемы кислород, который, теперь понятно, откуда взялся:
      S 0 +4H2O → SO4 2- +H +
    • Теперь надо уравнять водород:
      S 0 +4H2O → SO4 2- +8H +
    • С атомами элементов в обеих частях схемы полный порядок, осталось разобраться с зарядами — в левой части заряд нулевой; в правой: (-2)+8(+1)=+6:
      S 0 +4H2O-6e — → SO4 2- +8H +
  • Делаем аналогичную работу со второй полуреакцией восстановления:
    • NO3 — → NO
    • Добавляем водород, в левую часть, где присутствует «лишний» кислород:
      NO3 — +H + → NO
    • В правую часть добавляем воду:
      NO3 — +H + → NO+H2O
    • Уравниваем кислород:
      NO3 — +H + → NO+2H2O
    • Уравниваем водород:
      NO3 — +4H + → NO+2H2O
    • Уравниваем заряды:
      NO3 — +4H + +3e — → NO+2H2O
  • Уравниваем кол-во электронов, которые были отданы и приняты в двух полуреакциях:
  • Суммируем левые и правые части, предварительно умножив на коэффициент (2) члены второй полуреакции:
  • Проводим сокращение одинаковых членов в левой и правой частях схемы и добавляем в пару к анионам «нужные» катионы, чтобы образовались молекулы, в нашем случае это будут молекулы азотной и серной кислоты, для этого мы добавим катион водорода (2H + ):
  • Суммарное молекулярное уравнение:
    S+2HNO3 = H2SO4+2NO — в результате взаимодействия серы с азотной кислотой получается серная кислота и оксид азота (II).

Пример составления уравнения ОВР для кислотной среды

«Фокус» уравнивания кол-ва атомов кислорода и водорода для уравнений ОВР в щелочной среде заключается в следующем:

  • Вода (H2O) добавляется в ту часть полуреакции, в которой присутствует избыток кислорода.
  • Соответственно, в противоположную часть уравнения-схемы добавляется удвоенное число гидроксид-ионов (OH — ).
  • Перед формулой молекулы воды ставится коэффициент, уравнивающий разницу кол-ва атомов кислорода в левой и правой частях полуреакции.
  • Перед формулой гидроксид-иона ставится удвоенный коэффициент.
  • Восстановитель присоединяет атомы кислорода из гидроксид-ионов.
  • MnO2+KClO3+KOH → ?
  • MnO2 → MnO4 2- оксид марганца является восстановителем, он будет связывать гидроксид-ионы.
  • Поскольку в правой части схемы килорода больше (на 2 атома), то вода добавляется сюда же, перед ее формулой ставится коэффициент 2, соответственно, в левую часть схемы полуреакции добавляют 4 гидроксид-иона:
    MnO2+4OH — → MnO4 2- +2H2O
  • Уравниваем заряды:
    MnO2+4OH — -2e — → MnO4 2- +2H2O
  • ClO3 — → Cl — — полуреакция восстановления.
  • Избыток кислорода (3 «лишних» атома) находится в левой части схемы полуреакции, сюда же добавляем и 3 молекулы воды, а в правую часть 6 гидроксид-ионов:
    ClO3 — +3H2O → Cl — +6OH —
  • Уравниваем заряды:
    ClO3 — +3H2O+6e — → Cl — +6OH —
  • Уравниваем в полуреакциях кол-во отданных и принятых электронов (6 и 2 сокращаем на 2), и получаем суммарное уравнение, путем сложения двух уравнений полуреакций:
  • Проводим сокращение подобных слагаемых и добавляем катионы калия, чтобы перейти к молекулярной форме уравнения реакции:
  • Молекулярное уравнение реакции:
    3MnO2+6KOH+KClO3 = 3K2MnO4+3H2O+KCl

Пример составления уравнения ОВР для нейтральной среды

Среду нейтральной можно счситать лишь условно, в любом случае, среда будет либо слабощелочной, либо слабокислотной.

Составляя уравнение ОВР методом полуреакций для нейтральной среды, одну полуреакцию составляют, как для кислотной среды — в левую часть схемы добавляют молекулу воды, в правую — катион водорода), вторую — как для щелочной (в левую часть добавляют молекулу воды, в правую — гидроксид-ион).

  • Na2SO3+KMnO4+H2O
  • SO3 2- → SO4 2- — процесс окисления восстановителя;
  • MnO4 — → MnO2 — процесс восстановления окислителя;
  • Схема реакции:
    SO3 2- +MnO4 — → SO4 2- +MnO2+.
  • Составляем уравнения полуреакций:
  • Молекулярное уравнение:

Еще один пример:

  • S+KMnO4 → ?
  • S → SO4 2-
  • MnO4 — → MnO2
  • Первую полуреакцию оформляем, как для кислотной среды; вторую — как для щелочной:
  • Сокращаем обе части равенства на 8 молекул воды, и добавляем катионы калия:
  • Молекулярное уравнение:
    S+2KMnO4 = K2SO4+2MnO2

Более подробно составление уравнений окислительно-восстановительных реакций методом полуреакций в различных средах рассмотрено на странице Влияние среды на протекание ОВР.

Если вам понравился сайт, будем благодарны за его популяризацию 🙂 Расскажите о нас друзьям на форуме, в блоге, сообществе. Это наша кнопочка:

В уравнении полуреакции восстановления n2 nh3 число принятых электронов равно

Код кнопки: В уравнении полуреакции восстановления n2 nh3 число принятых электронов равно
Политика конфиденциальности Об авторе

Видео:Составление ур-й окислительно-восст. реакций методом ионно-электронного баланса. 1ч. 10 класс.Скачать

Составление ур-й окислительно-восст. реакций методом ионно-электронного баланса. 1ч. 10 класс.

Метод полуреакций — составление уравнений ОВР

Любая окислительно-восстановительная реакция состоит из двух «половинок» — в ходе ОВР идут два процесса — процесс окисления вещества-восстановителя и процесс восстановления вещества-окислителя. Оба эти процесса могут быть описаны соответственными ионными уравнениями, которые потом можно суммировать и получить итоговое общее ионное уравнение реакции, а потом записать молекулярное уравнение.

В качестве примера составим уравнение реакции сероводорода с раствором калия перманганата в кислой среде методом полуреакций. Ранее это уравнение было составлено методом электронного баланса.

В ходе реакции происходит разложение молекул сероводорода на серу и водород, о чем свидетельствует постепенное помутнение раствора перманганата калия (сера выпадает в осадок). Процесс окисления сероводорода запишем в виде уравнения полуреакции окисления:

Поскольку в левой и правой частях схемы кол-во атомов серы и водорода равно, то стрелку можно заменить на знак равенства, уравняв предварительно число зарядов в исходном веществе и продуктах реакции:

Параллельно с помутнение раствора идет и смена его окраски — из малинового раствор становится бесцветным,что объясняется переходом ионов MnO4 — , имеющих малиновую окраску, в практически бесцветный катион марганца Mn 2+ . Эта полуреакция восстановления выражается схемой:

А куда же делся атом кислорода? — обязательно спросит внимательный читатель. В кислой среде атом кислорода, входящий в состав иона, соединяется с атомами водорода, выделяющимися в ходе полуреакции окисления, образуя молекулу воды, при этом, поскольку из одного иона освобождается аж 4 атома кислорода, то для их связывания требуется 8 атомов водорода:

Чтобы уравнять заряды в левой и правой части схемы, в левую часть надо добавить 5 электронов (в левой части сумма зарядов +7, а в левой +2):

Для получения суммарного уравнения реакции, необходимо почленно сложить две полуреакции, предварительно уравняв кол-во отданных и полученных электронов, по аналогии с методом электронного баланса:

Проверяем кол-во атомов и заряды в левой и правой частях суммарного уравнения, они равны, значит уравнение составлено правильно (водорода — по 16 атомов; серы — по 5; марганца — по 2; кислорода — по 8; заряды — по +4).

Чтобы перейти от ионного уравнения к молекулярному, надо в левой части подобрать к катионам и анионам их «пары» — анионы и катионы соответственно, после чего подобранные ионы записать и в правую часть уравнения, после этого ионы объединяются в молекулы, и получается молекулярное уравнение.

Результат аналогичен уравнению, полученному методом электронного баланса.

Видео:КАК УРАВНЯТЬ NH3 + O2 = N2 + H2O ЭЛЕКТРОННЫМ БАЛАНСОМ / Реакция аммиака и кислородаСкачать

КАК УРАВНЯТЬ NH3 + O2 = N2 + H2O ЭЛЕКТРОННЫМ БАЛАНСОМ / Реакция аммиака и кислорода

Правила составления уравнений ОВР методом полуреакций

  • На первом этапе в ионном виде записывают полуреакцию окисления и полуреакцию восстановления, в которых указывают вещество-восстановитель и вещество-окислитель, с продуктами их реакции.
  • Сильные электролиты записываются в виде ионов.
  • Слабые электролиты, газы и твердые вещества, выпадающие в осадок — в виде молекул.
  • Продукты реакции между восстановителем и окислителем устанавливаются по справочникам или по «шпаргалке», приведенной на странице «Определение продуктов ОВР» (это самый сложный этап для начинающих).
  • Записывают схему реакции, в которой многоточием обозначают неизвестные продукты реакции.
  • Что делать с кислородом:
    • Если в исходном веществе кислорода содержится больше, чем в продуктах реакции, то «лишний» кислород в растворах с кислой средой связывается с катионами водорода, образуя молекулы воды (O -2 +2H + =H2O); в нейтральных растворах — в гидроксид-ионы: O -2 +H2O=2OH — ;
    • Если в исходном веществе кислорода содержится меньше, чем в продуктах реакции, то «недостающий» кислород «забирается» из молекул воды (в растворах с кислой и нейтральной средой): H2O=O -2 +2H + ; в щелочных растворах — за счет гидроксид-ионов: 2OH — =O -2 +H2O.
  • В левой и правой частях уравнения должны быть равны суммарное число и знак электрических зарядов.

Достоинства метода полуреакций:

  • Работают с реально существующими ионами (MnO4 — ), а не виртуальными (Mn +7 ).
  • Нет необходимости знать степени окисления атомов.
  • Прослеживается роль среды, в которой происходит взаимодействие веществ.
  • Не нужно знать все продукты реакции, они выводятся «сами собой» в процессе составления уравнения.

Пример составления уравнения ОВР для кислотной среды

Составление уравнения реакции серы с азотной кислотой:

  • S+HNO3
  • S 0 → SO4 2- — процесс окисления восстановителя.
  • NO3 — → NO — процесс восстановления окислителя.
  • Приводим в «порядок» первую полуреакцию окисления:
    • S 0 → SO4 2- — отличник должен здесь спросить, откуда справа взялся кислород? Немного терпения, сейчас все станет ясно.
    • в правую часть схемы, где присутствует избыток кислорода, добавляется катион водорода:
      S 0 → SO4 2- +H +
    • у внимательного читателя тут же должен возникнуть вопрос — а откуда взялся катион водорода? Отвечаем: из молекулы воды, которая добавляется в левую часть схемы:
      S 0 +H2O → SO4 2- +H +
    • Вот теперь настало время уравнять в обеих частях схемы кислород, который, теперь понятно, откуда взялся:
      S 0 +4H2O → SO4 2- +H +
    • Теперь надо уравнять водород:
      S 0 +4H2O → SO4 2- +8H +
    • С атомами элементов в обеих частях схемы полный порядок, осталось разобраться с зарядами — в левой части заряд нулевой; в правой: (-2)+8(+1)=+6:
      S 0 +4H2O-6e — → SO4 2- +8H +
  • Делаем аналогичную работу со второй полуреакцией восстановления:
    • NO3 — → NO
    • Добавляем водород, в левую часть, где присутствует «лишний» кислород:
      NO3 — +H + → NO
    • В правую часть добавляем воду:
      NO3 — +H + → NO+H2O
    • Уравниваем кислород:
      NO3 — +H + → NO+2H2O
    • Уравниваем водород:
      NO3 — +4H + → NO+2H2O
    • Уравниваем заряды:
      NO3 — +4H + +3e — → NO+2H2O
  • Уравниваем кол-во электронов, которые были отданы и приняты в двух полуреакциях:
  • Суммируем левые и правые части, предварительно умножив на коэффициент (2) члены второй полуреакции:
  • Проводим сокращение одинаковых членов в левой и правой частях схемы и добавляем в пару к анионам «нужные» катионы, чтобы образовались молекулы, в нашем случае это будут молекулы азотной и серной кислоты, для этого мы добавим катион водорода (2H + ):
  • Суммарное молекулярное уравнение:
    S+2HNO3 = H2SO4+2NO — в результате взаимодействия серы с азотной кислотой получается серная кислота и оксид азота (II).

Пример составления уравнения ОВР для кислотной среды

«Фокус» уравнивания кол-ва атомов кислорода и водорода для уравнений ОВР в щелочной среде заключается в следующем:

  • Вода (H2O) добавляется в ту часть полуреакции, в которой присутствует избыток кислорода.
  • Соответственно, в противоположную часть уравнения-схемы добавляется удвоенное число гидроксид-ионов (OH — ).
  • Перед формулой молекулы воды ставится коэффициент, уравнивающий разницу кол-ва атомов кислорода в левой и правой частях полуреакции.
  • Перед формулой гидроксид-иона ставится удвоенный коэффициент.
  • Восстановитель присоединяет атомы кислорода из гидроксид-ионов.
  • MnO2+KClO3+KOH → ?
  • MnO2 → MnO4 2- оксид марганца является восстановителем, он будет связывать гидроксид-ионы.
  • Поскольку в правой части схемы килорода больше (на 2 атома), то вода добавляется сюда же, перед ее формулой ставится коэффициент 2, соответственно, в левую часть схемы полуреакции добавляют 4 гидроксид-иона:
    MnO2+4OH — → MnO4 2- +2H2O
  • Уравниваем заряды:
    MnO2+4OH — -2e — → MnO4 2- +2H2O
  • ClO3 — → Cl — — полуреакция восстановления.
  • Избыток кислорода (3 «лишних» атома) находится в левой части схемы полуреакции, сюда же добавляем и 3 молекулы воды, а в правую часть 6 гидроксид-ионов:
    ClO3 — +3H2O → Cl — +6OH —
  • Уравниваем заряды:
    ClO3 — +3H2O+6e — → Cl — +6OH —
  • Уравниваем в полуреакциях кол-во отданных и принятых электронов (6 и 2 сокращаем на 2), и получаем суммарное уравнение, путем сложения двух уравнений полуреакций:
  • Проводим сокращение подобных слагаемых и добавляем катионы калия, чтобы перейти к молекулярной форме уравнения реакции:
  • Молекулярное уравнение реакции:
    3MnO2+6KOH+KClO3 = 3K2MnO4+3H2O+KCl

Пример составления уравнения ОВР для нейтральной среды

Среду нейтральной можно счситать лишь условно, в любом случае, среда будет либо слабощелочной, либо слабокислотной.

Составляя уравнение ОВР методом полуреакций для нейтральной среды, одну полуреакцию составляют, как для кислотной среды — в левую часть схемы добавляют молекулу воды, в правую — катион водорода), вторую — как для щелочной (в левую часть добавляют молекулу воды, в правую — гидроксид-ион).

  • Na2SO3+KMnO4+H2O
  • SO3 2- → SO4 2- — процесс окисления восстановителя;
  • MnO4 — → MnO2 — процесс восстановления окислителя;
  • Схема реакции:
    SO3 2- +MnO4 — → SO4 2- +MnO2+.
  • Составляем уравнения полуреакций:
  • Молекулярное уравнение:

Еще один пример:

  • S+KMnO4 → ?
  • S → SO4 2-
  • MnO4 — → MnO2
  • Первую полуреакцию оформляем, как для кислотной среды; вторую — как для щелочной:
  • Сокращаем обе части равенства на 8 молекул воды, и добавляем катионы калия:
  • Молекулярное уравнение:
    S+2KMnO4 = K2SO4+2MnO2

Более подробно составление уравнений окислительно-восстановительных реакций методом полуреакций в различных средах рассмотрено на странице Влияние среды на протекание ОВР.

Если вам понравился сайт, будем благодарны за его популяризацию 🙂 Расскажите о нас друзьям на форуме, в блоге, сообществе. Это наша кнопочка:

В уравнении полуреакции восстановления n2 nh3 число принятых электронов равно

Код кнопки: В уравнении полуреакции восстановления n2 nh3 число принятых электронов равно
Политика конфиденциальности Об авторе

🔥 Видео

Mole Ratio for N2 + H2 = NH3Скачать

Mole Ratio for N2 + H2 = NH3

Is N2 + H2 = NH3 a Redox Reaction?Скачать

Is N2 + H2 = NH3 a Redox Reaction?

ЭТОТ метод поможет на уроках ХИМИИ / Химия 9 классСкачать

ЭТОТ метод поможет на уроках ХИМИИ / Химия 9 класс

Окислительно-восстановительные реакции. 3 часть. 9 класс.Скачать

Окислительно-восстановительные реакции. 3 часть. 9 класс.

Окислительно-восстановительные реакции в кислой среде. Упрощенный подход.Скачать

Окислительно-восстановительные реакции в кислой среде. Упрощенный подход.

Учимся составлять электронный баланс/овр/8классСкачать

Учимся составлять электронный баланс/овр/8класс

Окислительно-восстановительные реакции (ОВР). Что надо знать и как их решатьСкачать

Окислительно-восстановительные реакции (ОВР). Что надо знать и как их решать

ОВР часть 2Скачать

ОВР часть 2

Окислительно-восстановительные реакции. 1 часть. 9 класс.Скачать

Окислительно-восстановительные реакции. 1 часть. 9 класс.

Решение ОВР методом полуреакцийСкачать

Решение ОВР методом полуреакций

5. Окислительно-восстановительные реакцииСкачать

5. Окислительно-восстановительные реакции

Химические уравнения // Как Составлять Уравнения Реакций // Химия 9 классСкачать

Химические уравнения // Как Составлять Уравнения Реакций // Химия 9 класс

Химия 9 класс — Как определять Степень Окисления?Скачать

Химия 9 класс — Как определять Степень Окисления?

89. Как расставить коэффициенты реакции методом электронного баланса (закрепление)Скачать

89. Как расставить коэффициенты реакции методом электронного баланса (закрепление)

How to Balance N2 + H2 = NH3 (Synthesis of Ammonia)Скачать

How to Balance N2 + H2 = NH3 (Synthesis of Ammonia)

Химия, 9 класс, тема "Окислительно-восстановительные реакции" (учитель Швецова Елена Евгеньевна)Скачать

Химия, 9 класс, тема "Окислительно-восстановительные реакции" (учитель Швецова Елена Евгеньевна)
Поделиться или сохранить к себе: