В уравнении полуреакции восстановления n2 nh3 число принятых электронов равно

РЕАГЕНТЫ СТЕПЕНЬ ОКИСЛЕНИЯ

В) KClO3 + HCl = 3) 0

АБВГ

В2. Установите соответствие между формулой и процессом, протекающим на аноде, при электролизе расплава соли:

ФОРМУЛА АНОДНЫЙ ПРОЦЕСС

Б) CuSO4 2) 2Cl — __ 2e = Cl2

АБВГ

Часть 3

С1. Составьте уравнение реакции электролиза водного раствора гидроксида кальция. Вычислите объемы каждого из газов, образовавшихся в реакции (н.у.), если масса воды в растворе составляет 108г

Вариант 2

Часть 1

А1. В окислительно-восстановительной реакции

Cu + 4HNO3 = Cu(NO3)2 + 2NO2 + 2H2O азот изменяет степень окисления — (от ___ до):

А2. Какая из перечисленных ниже реакций не является окислительно-восстановительной: а) Al + V2O5 = Al2O3 + V;

А3. Укажите, какой элемент окисляется и какой восстанавливается в следующей химической реакции N -3 H3 + + O2 0 = N2 0 + H2 + O -2 :

а) окисляется азот, восстанавливается водород;

б) окисляется кислород, восстанавливается водород;

в) окисляется азот, восстанавливается кислород;

г) окисляется водород, восстанавливается азот

А4. Какую высшую степень окисления способен проявлять в соединениях селен:

А5. При составлении химической формулы какого соединения допущена ошибка: а) Fe +3 I3 — б)H2 + S +4 O3 -2 в)Si +4 H4 — г)Ba +2 H4

А6. В какой роли выступает углерод в реакции

MgO + CO = Mg + CO2

в) наиболее электроотрицательного элемента;

г) наименее электроотрицательного элемента?

А7. Какая из перечисленных ниже реакций является окислительно-восстановительной:

а) почернение серебряных предметов;2

б) образование озона в воздухе при грозе;

в) выделение газа при прокаливании мрамора;

г) растворение кусочка мела в соляной кислоте

А8. Коэффициент перед формулой окислителя в уравнении реакции между алюминием и бромом равен:

А9. В уравнении полуреакции восстановления N2 _____ NH3

число принятых электронов равно:

А10. В уравнении полуреакции окисления NaCl ______ Cl2

число отданных электронов равно:

Часть 2

В1. Установите соответствие между формулой вещества и схемой процесса, в котором он участвует в роли окислителя:

ФОРМУЛА ВЕЩЕСТВА СХЕМА ПРОЦЕССА

АБВГ

В2. Установите соответствие между формулой вещества и продуктами электролиза его водного раствора:

В уравнении полуреакции восстановления n2 nh3 число принятых электронов равно

ФОРМУЛА ВЕЩЕСТВА ПРОДУКТЫ ЭЛЕКТРОЛИЗА

АБВГ

Часть 3

С1. Составьте уравнение реакции электролиза расплава AgNO3

Вычислите объем кислорода (н.у.), который образуется в результате электролиза 3,4г нитрата серебра.

Вариант 3

Часть 1

А1. Какой из процессов не является окислительно-восстановительным:

а) выделение газа при прокаливании гидрокарбоната калия; б) горение серы на воздухе; в) растворение магния в соляной кислоте; г) восстановление магния из оксида раскалённым углём

А2. Во время превращения SO3 2- ______ SO4 2-

степень окисления одного из элементов повышается (от _____ до):

А3. В уравнении полуреакции восстановления MnO4 — _____ Mn +2

число принятых электронов равно: а) 1; б) 2; в) 3; г) 5

А4. В уравнении реакции P + KClO3 = KCl + P2O5

сумма всех коэффициентов равна:

А5. Степень окисления азота в соединении (NH4)2CO3 равна:

А6. К окислительно-восстановительным относится реакция:

а) гидролиза крахмала;

б) полимеризации метилметакрилата;

в) гидрирования ацетилена;

г) нейтрализации уксусной кислоты гидроксидом кальция

А7. В уравнении реакции горения аммиака на воздухе коэффициент перед формулой восстановителя равен:

А8. Укажите соединение, в котором сера проявляет низшую степень окисления:

А9. Продуктами электролиза расплава гидроксида калия являются:

А10. В уравнении полуреакции окисления Ca(NO2)2 _______ Ca (NO3)2 число отданных электронов равно:

Часть 2

В1. Установите соответствие между схемой окислительно-восстановительной реакции и веществом, которое является в нем восстановителем:

СХЕМА ВОССТАНОВИТЕЛЬ

АБВГ

В2. Установите соответствие между формулой и процессом, протекающим на аноде, при электролизе водного раствора соли:

ФОРМУЛА АНОДНЫЙ ПРОЦЕСС

Б) CuSO4 2) 2Cl — __ 2e = Cl2

АБВГ

Часть 3

С1. Составьте уравнение окислительно-восстановительной реакции методом электронного баланса, укажите окислитель и восстановитель:

Вариант 4

Часть 1

А1. Какой из процессов не является окислительно-восстановительным:

а) образование зелёного налёта на медных предметах;

б) выделение кислорода при нагревании перманганата калия;

в) обжиг известняка;

г) коррозия цинковой пластинки под воздействием атмосферной влаги

А2. В кратком ионном уравнении реакции

сумма всех коэффициентов равна:

А3. В уравнении полуреакции окисления P ______ PO4 3-

число отданных электронов равно:

А4. В уравнении реакции внутримолекулярного окисления-восстановления

сумма всех коэффициентов равна:

А5. Продуктами электролиза расплава соли сульфата калия являются:

б) калий, оксид серы (VI), кислород;

в) калий, оксид серы (IV), кислород;

г) водород и кислород

А6. Во время превращения KClO3 ______ KCl степень окисления одного из элементов понижается (от ______ до):

А7. Элемент кремний расположен в третьем периоде и четвертой группе главной подгруппе ПС. Какую наивысшую положительную степень окисления он может проявлять в соединениях:

А8. Окислителем в окислительно-восстановительных реакциях называется атом или ион, который: а) принимает электроны;

б) отдает электроны;

в) изменяет степень окисления;

г) не изменяет степень окисления

А9. При составлении химической формулы какого соединения допущена ошибка:

А10. В уравнении полуреакции восстановления Fe2O3 _____ Fe

число принятых электронов равно:

Часть 2

В1. Установите соответствие между химической формулой вещества и степенью окисления, которую проявляет бром в данном веществе:

Видео:ОВР и Метод Электронного Баланса — Быстрая Подготовка к ЕГЭ по ХимииСкачать

ОВР и Метод Электронного Баланса — Быстрая Подготовка к ЕГЭ по Химии

Метод полуреакций — составление уравнений ОВР

Любая окислительно-восстановительная реакция состоит из двух «половинок» — в ходе ОВР идут два процесса — процесс окисления вещества-восстановителя и процесс восстановления вещества-окислителя. Оба эти процесса могут быть описаны соответственными ионными уравнениями, которые потом можно суммировать и получить итоговое общее ионное уравнение реакции, а потом записать молекулярное уравнение.

В качестве примера составим уравнение реакции сероводорода с раствором калия перманганата в кислой среде методом полуреакций. Ранее это уравнение было составлено методом электронного баланса.

В ходе реакции происходит разложение молекул сероводорода на серу и водород, о чем свидетельствует постепенное помутнение раствора перманганата калия (сера выпадает в осадок). Процесс окисления сероводорода запишем в виде уравнения полуреакции окисления:

Поскольку в левой и правой частях схемы кол-во атомов серы и водорода равно, то стрелку можно заменить на знак равенства, уравняв предварительно число зарядов в исходном веществе и продуктах реакции:

Параллельно с помутнение раствора идет и смена его окраски — из малинового раствор становится бесцветным,что объясняется переходом ионов MnO4 — , имеющих малиновую окраску, в практически бесцветный катион марганца Mn 2+ . Эта полуреакция восстановления выражается схемой:

А куда же делся атом кислорода? — обязательно спросит внимательный читатель. В кислой среде атом кислорода, входящий в состав иона, соединяется с атомами водорода, выделяющимися в ходе полуреакции окисления, образуя молекулу воды, при этом, поскольку из одного иона освобождается аж 4 атома кислорода, то для их связывания требуется 8 атомов водорода:

Чтобы уравнять заряды в левой и правой части схемы, в левую часть надо добавить 5 электронов (в левой части сумма зарядов +7, а в левой +2):

Для получения суммарного уравнения реакции, необходимо почленно сложить две полуреакции, предварительно уравняв кол-во отданных и полученных электронов, по аналогии с методом электронного баланса:

Проверяем кол-во атомов и заряды в левой и правой частях суммарного уравнения, они равны, значит уравнение составлено правильно (водорода — по 16 атомов; серы — по 5; марганца — по 2; кислорода — по 8; заряды — по +4).

Чтобы перейти от ионного уравнения к молекулярному, надо в левой части подобрать к катионам и анионам их «пары» — анионы и катионы соответственно, после чего подобранные ионы записать и в правую часть уравнения, после этого ионы объединяются в молекулы, и получается молекулярное уравнение.

Результат аналогичен уравнению, полученному методом электронного баланса.

Видео:8 класс. ОВР. Окислительно-восстановительные реакции.Скачать

8 класс. ОВР. Окислительно-восстановительные реакции.

Правила составления уравнений ОВР методом полуреакций

  • На первом этапе в ионном виде записывают полуреакцию окисления и полуреакцию восстановления, в которых указывают вещество-восстановитель и вещество-окислитель, с продуктами их реакции.
  • Сильные электролиты записываются в виде ионов.
  • Слабые электролиты, газы и твердые вещества, выпадающие в осадок — в виде молекул.
  • Продукты реакции между восстановителем и окислителем устанавливаются по справочникам или по «шпаргалке», приведенной на странице «Определение продуктов ОВР» (это самый сложный этап для начинающих).
  • Записывают схему реакции, в которой многоточием обозначают неизвестные продукты реакции.
  • Что делать с кислородом:
    • Если в исходном веществе кислорода содержится больше, чем в продуктах реакции, то «лишний» кислород в растворах с кислой средой связывается с катионами водорода, образуя молекулы воды (O -2 +2H + =H2O); в нейтральных растворах — в гидроксид-ионы: O -2 +H2O=2OH — ;
    • Если в исходном веществе кислорода содержится меньше, чем в продуктах реакции, то «недостающий» кислород «забирается» из молекул воды (в растворах с кислой и нейтральной средой): H2O=O -2 +2H + ; в щелочных растворах — за счет гидроксид-ионов: 2OH — =O -2 +H2O.
  • В левой и правой частях уравнения должны быть равны суммарное число и знак электрических зарядов.

Достоинства метода полуреакций:

  • Работают с реально существующими ионами (MnO4 — ), а не виртуальными (Mn +7 ).
  • Нет необходимости знать степени окисления атомов.
  • Прослеживается роль среды, в которой происходит взаимодействие веществ.
  • Не нужно знать все продукты реакции, они выводятся «сами собой» в процессе составления уравнения.

Пример составления уравнения ОВР для кислотной среды

Составление уравнения реакции серы с азотной кислотой:

  • S+HNO3
  • S 0 → SO4 2- — процесс окисления восстановителя.
  • NO3 — → NO — процесс восстановления окислителя.
  • Приводим в «порядок» первую полуреакцию окисления:
    • S 0 → SO4 2- — отличник должен здесь спросить, откуда справа взялся кислород? Немного терпения, сейчас все станет ясно.
    • в правую часть схемы, где присутствует избыток кислорода, добавляется катион водорода:
      S 0 → SO4 2- +H +
    • у внимательного читателя тут же должен возникнуть вопрос — а откуда взялся катион водорода? Отвечаем: из молекулы воды, которая добавляется в левую часть схемы:
      S 0 +H2O → SO4 2- +H +
    • Вот теперь настало время уравнять в обеих частях схемы кислород, который, теперь понятно, откуда взялся:
      S 0 +4H2O → SO4 2- +H +
    • Теперь надо уравнять водород:
      S 0 +4H2O → SO4 2- +8H +
    • С атомами элементов в обеих частях схемы полный порядок, осталось разобраться с зарядами — в левой части заряд нулевой; в правой: (-2)+8(+1)=+6:
      S 0 +4H2O-6e — → SO4 2- +8H +
  • Делаем аналогичную работу со второй полуреакцией восстановления:
    • NO3 — → NO
    • Добавляем водород, в левую часть, где присутствует «лишний» кислород:
      NO3 — +H + → NO
    • В правую часть добавляем воду:
      NO3 — +H + → NO+H2O
    • Уравниваем кислород:
      NO3 — +H + → NO+2H2O
    • Уравниваем водород:
      NO3 — +4H + → NO+2H2O
    • Уравниваем заряды:
      NO3 — +4H + +3e — → NO+2H2O
  • Уравниваем кол-во электронов, которые были отданы и приняты в двух полуреакциях:
  • Суммируем левые и правые части, предварительно умножив на коэффициент (2) члены второй полуреакции:
  • Проводим сокращение одинаковых членов в левой и правой частях схемы и добавляем в пару к анионам «нужные» катионы, чтобы образовались молекулы, в нашем случае это будут молекулы азотной и серной кислоты, для этого мы добавим катион водорода (2H + ):
  • Суммарное молекулярное уравнение:
    S+2HNO3 = H2SO4+2NO — в результате взаимодействия серы с азотной кислотой получается серная кислота и оксид азота (II).

Пример составления уравнения ОВР для кислотной среды

«Фокус» уравнивания кол-ва атомов кислорода и водорода для уравнений ОВР в щелочной среде заключается в следующем:

  • Вода (H2O) добавляется в ту часть полуреакции, в которой присутствует избыток кислорода.
  • Соответственно, в противоположную часть уравнения-схемы добавляется удвоенное число гидроксид-ионов (OH — ).
  • Перед формулой молекулы воды ставится коэффициент, уравнивающий разницу кол-ва атомов кислорода в левой и правой частях полуреакции.
  • Перед формулой гидроксид-иона ставится удвоенный коэффициент.
  • Восстановитель присоединяет атомы кислорода из гидроксид-ионов.
  • MnO2+KClO3+KOH → ?
  • MnO2 → MnO4 2- оксид марганца является восстановителем, он будет связывать гидроксид-ионы.
  • Поскольку в правой части схемы килорода больше (на 2 атома), то вода добавляется сюда же, перед ее формулой ставится коэффициент 2, соответственно, в левую часть схемы полуреакции добавляют 4 гидроксид-иона:
    MnO2+4OH — → MnO4 2- +2H2O
  • Уравниваем заряды:
    MnO2+4OH — -2e — → MnO4 2- +2H2O
  • ClO3 — → Cl — — полуреакция восстановления.
  • Избыток кислорода (3 «лишних» атома) находится в левой части схемы полуреакции, сюда же добавляем и 3 молекулы воды, а в правую часть 6 гидроксид-ионов:
    ClO3 — +3H2O → Cl — +6OH —
  • Уравниваем заряды:
    ClO3 — +3H2O+6e — → Cl — +6OH —
  • Уравниваем в полуреакциях кол-во отданных и принятых электронов (6 и 2 сокращаем на 2), и получаем суммарное уравнение, путем сложения двух уравнений полуреакций:
  • Проводим сокращение подобных слагаемых и добавляем катионы калия, чтобы перейти к молекулярной форме уравнения реакции:
  • Молекулярное уравнение реакции:
    3MnO2+6KOH+KClO3 = 3K2MnO4+3H2O+KCl

Пример составления уравнения ОВР для нейтральной среды

Среду нейтральной можно счситать лишь условно, в любом случае, среда будет либо слабощелочной, либо слабокислотной.

Составляя уравнение ОВР методом полуреакций для нейтральной среды, одну полуреакцию составляют, как для кислотной среды — в левую часть схемы добавляют молекулу воды, в правую — катион водорода), вторую — как для щелочной (в левую часть добавляют молекулу воды, в правую — гидроксид-ион).

  • Na2SO3+KMnO4+H2O
  • SO3 2- → SO4 2- — процесс окисления восстановителя;
  • MnO4 — → MnO2 — процесс восстановления окислителя;
  • Схема реакции:
    SO3 2- +MnO4 — → SO4 2- +MnO2+.
  • Составляем уравнения полуреакций:
  • Молекулярное уравнение:

Еще один пример:

  • S+KMnO4 → ?
  • S → SO4 2-
  • MnO4 — → MnO2
  • Первую полуреакцию оформляем, как для кислотной среды; вторую — как для щелочной:
  • Сокращаем обе части равенства на 8 молекул воды, и добавляем катионы калия:
  • Молекулярное уравнение:
    S+2KMnO4 = K2SO4+2MnO2

Более подробно составление уравнений окислительно-восстановительных реакций методом полуреакций в различных средах рассмотрено на странице Влияние среды на протекание ОВР.

Если вам понравился сайт, будем благодарны за его популяризацию 🙂 Расскажите о нас друзьям на форуме, в блоге, сообществе. Это наша кнопочка:

В уравнении полуреакции восстановления n2 nh3 число принятых электронов равно

Код кнопки: В уравнении полуреакции восстановления n2 nh3 число принятых электронов равно
Политика конфиденциальности Об авторе

Видео:Составление ур-й окислительно-восст. реакций методом ионно-электронного баланса. 1ч. 10 класс.Скачать

Составление ур-й окислительно-восст. реакций методом ионно-электронного баланса. 1ч. 10 класс.

Метод полуреакций — составление уравнений ОВР

Любая окислительно-восстановительная реакция состоит из двух «половинок» — в ходе ОВР идут два процесса — процесс окисления вещества-восстановителя и процесс восстановления вещества-окислителя. Оба эти процесса могут быть описаны соответственными ионными уравнениями, которые потом можно суммировать и получить итоговое общее ионное уравнение реакции, а потом записать молекулярное уравнение.

В качестве примера составим уравнение реакции сероводорода с раствором калия перманганата в кислой среде методом полуреакций. Ранее это уравнение было составлено методом электронного баланса.

В ходе реакции происходит разложение молекул сероводорода на серу и водород, о чем свидетельствует постепенное помутнение раствора перманганата калия (сера выпадает в осадок). Процесс окисления сероводорода запишем в виде уравнения полуреакции окисления:

Поскольку в левой и правой частях схемы кол-во атомов серы и водорода равно, то стрелку можно заменить на знак равенства, уравняв предварительно число зарядов в исходном веществе и продуктах реакции:

Параллельно с помутнение раствора идет и смена его окраски — из малинового раствор становится бесцветным,что объясняется переходом ионов MnO4 — , имеющих малиновую окраску, в практически бесцветный катион марганца Mn 2+ . Эта полуреакция восстановления выражается схемой:

А куда же делся атом кислорода? — обязательно спросит внимательный читатель. В кислой среде атом кислорода, входящий в состав иона, соединяется с атомами водорода, выделяющимися в ходе полуреакции окисления, образуя молекулу воды, при этом, поскольку из одного иона освобождается аж 4 атома кислорода, то для их связывания требуется 8 атомов водорода:

Чтобы уравнять заряды в левой и правой части схемы, в левую часть надо добавить 5 электронов (в левой части сумма зарядов +7, а в левой +2):

Для получения суммарного уравнения реакции, необходимо почленно сложить две полуреакции, предварительно уравняв кол-во отданных и полученных электронов, по аналогии с методом электронного баланса:

Проверяем кол-во атомов и заряды в левой и правой частях суммарного уравнения, они равны, значит уравнение составлено правильно (водорода — по 16 атомов; серы — по 5; марганца — по 2; кислорода — по 8; заряды — по +4).

Чтобы перейти от ионного уравнения к молекулярному, надо в левой части подобрать к катионам и анионам их «пары» — анионы и катионы соответственно, после чего подобранные ионы записать и в правую часть уравнения, после этого ионы объединяются в молекулы, и получается молекулярное уравнение.

Результат аналогичен уравнению, полученному методом электронного баланса.

Видео:ЭТОТ метод поможет на уроках ХИМИИ / Химия 9 классСкачать

ЭТОТ метод поможет на уроках ХИМИИ / Химия 9 класс

Правила составления уравнений ОВР методом полуреакций

  • На первом этапе в ионном виде записывают полуреакцию окисления и полуреакцию восстановления, в которых указывают вещество-восстановитель и вещество-окислитель, с продуктами их реакции.
  • Сильные электролиты записываются в виде ионов.
  • Слабые электролиты, газы и твердые вещества, выпадающие в осадок — в виде молекул.
  • Продукты реакции между восстановителем и окислителем устанавливаются по справочникам или по «шпаргалке», приведенной на странице «Определение продуктов ОВР» (это самый сложный этап для начинающих).
  • Записывают схему реакции, в которой многоточием обозначают неизвестные продукты реакции.
  • Что делать с кислородом:
    • Если в исходном веществе кислорода содержится больше, чем в продуктах реакции, то «лишний» кислород в растворах с кислой средой связывается с катионами водорода, образуя молекулы воды (O -2 +2H + =H2O); в нейтральных растворах — в гидроксид-ионы: O -2 +H2O=2OH — ;
    • Если в исходном веществе кислорода содержится меньше, чем в продуктах реакции, то «недостающий» кислород «забирается» из молекул воды (в растворах с кислой и нейтральной средой): H2O=O -2 +2H + ; в щелочных растворах — за счет гидроксид-ионов: 2OH — =O -2 +H2O.
  • В левой и правой частях уравнения должны быть равны суммарное число и знак электрических зарядов.

Достоинства метода полуреакций:

  • Работают с реально существующими ионами (MnO4 — ), а не виртуальными (Mn +7 ).
  • Нет необходимости знать степени окисления атомов.
  • Прослеживается роль среды, в которой происходит взаимодействие веществ.
  • Не нужно знать все продукты реакции, они выводятся «сами собой» в процессе составления уравнения.

Пример составления уравнения ОВР для кислотной среды

Составление уравнения реакции серы с азотной кислотой:

  • S+HNO3
  • S 0 → SO4 2- — процесс окисления восстановителя.
  • NO3 — → NO — процесс восстановления окислителя.
  • Приводим в «порядок» первую полуреакцию окисления:
    • S 0 → SO4 2- — отличник должен здесь спросить, откуда справа взялся кислород? Немного терпения, сейчас все станет ясно.
    • в правую часть схемы, где присутствует избыток кислорода, добавляется катион водорода:
      S 0 → SO4 2- +H +
    • у внимательного читателя тут же должен возникнуть вопрос — а откуда взялся катион водорода? Отвечаем: из молекулы воды, которая добавляется в левую часть схемы:
      S 0 +H2O → SO4 2- +H +
    • Вот теперь настало время уравнять в обеих частях схемы кислород, который, теперь понятно, откуда взялся:
      S 0 +4H2O → SO4 2- +H +
    • Теперь надо уравнять водород:
      S 0 +4H2O → SO4 2- +8H +
    • С атомами элементов в обеих частях схемы полный порядок, осталось разобраться с зарядами — в левой части заряд нулевой; в правой: (-2)+8(+1)=+6:
      S 0 +4H2O-6e — → SO4 2- +8H +
  • Делаем аналогичную работу со второй полуреакцией восстановления:
    • NO3 — → NO
    • Добавляем водород, в левую часть, где присутствует «лишний» кислород:
      NO3 — +H + → NO
    • В правую часть добавляем воду:
      NO3 — +H + → NO+H2O
    • Уравниваем кислород:
      NO3 — +H + → NO+2H2O
    • Уравниваем водород:
      NO3 — +4H + → NO+2H2O
    • Уравниваем заряды:
      NO3 — +4H + +3e — → NO+2H2O
  • Уравниваем кол-во электронов, которые были отданы и приняты в двух полуреакциях:
  • Суммируем левые и правые части, предварительно умножив на коэффициент (2) члены второй полуреакции:
  • Проводим сокращение одинаковых членов в левой и правой частях схемы и добавляем в пару к анионам «нужные» катионы, чтобы образовались молекулы, в нашем случае это будут молекулы азотной и серной кислоты, для этого мы добавим катион водорода (2H + ):
  • Суммарное молекулярное уравнение:
    S+2HNO3 = H2SO4+2NO — в результате взаимодействия серы с азотной кислотой получается серная кислота и оксид азота (II).

Пример составления уравнения ОВР для кислотной среды

«Фокус» уравнивания кол-ва атомов кислорода и водорода для уравнений ОВР в щелочной среде заключается в следующем:

  • Вода (H2O) добавляется в ту часть полуреакции, в которой присутствует избыток кислорода.
  • Соответственно, в противоположную часть уравнения-схемы добавляется удвоенное число гидроксид-ионов (OH — ).
  • Перед формулой молекулы воды ставится коэффициент, уравнивающий разницу кол-ва атомов кислорода в левой и правой частях полуреакции.
  • Перед формулой гидроксид-иона ставится удвоенный коэффициент.
  • Восстановитель присоединяет атомы кислорода из гидроксид-ионов.
  • MnO2+KClO3+KOH → ?
  • MnO2 → MnO4 2- оксид марганца является восстановителем, он будет связывать гидроксид-ионы.
  • Поскольку в правой части схемы килорода больше (на 2 атома), то вода добавляется сюда же, перед ее формулой ставится коэффициент 2, соответственно, в левую часть схемы полуреакции добавляют 4 гидроксид-иона:
    MnO2+4OH — → MnO4 2- +2H2O
  • Уравниваем заряды:
    MnO2+4OH — -2e — → MnO4 2- +2H2O
  • ClO3 — → Cl — — полуреакция восстановления.
  • Избыток кислорода (3 «лишних» атома) находится в левой части схемы полуреакции, сюда же добавляем и 3 молекулы воды, а в правую часть 6 гидроксид-ионов:
    ClO3 — +3H2O → Cl — +6OH —
  • Уравниваем заряды:
    ClO3 — +3H2O+6e — → Cl — +6OH —
  • Уравниваем в полуреакциях кол-во отданных и принятых электронов (6 и 2 сокращаем на 2), и получаем суммарное уравнение, путем сложения двух уравнений полуреакций:
  • Проводим сокращение подобных слагаемых и добавляем катионы калия, чтобы перейти к молекулярной форме уравнения реакции:
  • Молекулярное уравнение реакции:
    3MnO2+6KOH+KClO3 = 3K2MnO4+3H2O+KCl

Пример составления уравнения ОВР для нейтральной среды

Среду нейтральной можно счситать лишь условно, в любом случае, среда будет либо слабощелочной, либо слабокислотной.

Составляя уравнение ОВР методом полуреакций для нейтральной среды, одну полуреакцию составляют, как для кислотной среды — в левую часть схемы добавляют молекулу воды, в правую — катион водорода), вторую — как для щелочной (в левую часть добавляют молекулу воды, в правую — гидроксид-ион).

  • Na2SO3+KMnO4+H2O
  • SO3 2- → SO4 2- — процесс окисления восстановителя;
  • MnO4 — → MnO2 — процесс восстановления окислителя;
  • Схема реакции:
    SO3 2- +MnO4 — → SO4 2- +MnO2+.
  • Составляем уравнения полуреакций:
  • Молекулярное уравнение:

Еще один пример:

  • S+KMnO4 → ?
  • S → SO4 2-
  • MnO4 — → MnO2
  • Первую полуреакцию оформляем, как для кислотной среды; вторую — как для щелочной:
  • Сокращаем обе части равенства на 8 молекул воды, и добавляем катионы калия:
  • Молекулярное уравнение:
    S+2KMnO4 = K2SO4+2MnO2

Более подробно составление уравнений окислительно-восстановительных реакций методом полуреакций в различных средах рассмотрено на странице Влияние среды на протекание ОВР.

Если вам понравился сайт, будем благодарны за его популяризацию 🙂 Расскажите о нас друзьям на форуме, в блоге, сообществе. Это наша кнопочка:

В уравнении полуреакции восстановления n2 nh3 число принятых электронов равно

Код кнопки: В уравнении полуреакции восстановления n2 nh3 число принятых электронов равно
Политика конфиденциальности Об авторе

📹 Видео

КАК УРАВНЯТЬ NH3 + O2 = N2 + H2O ЭЛЕКТРОННЫМ БАЛАНСОМ / Реакция аммиака и кислородаСкачать

КАК УРАВНЯТЬ NH3 + O2 = N2 + H2O ЭЛЕКТРОННЫМ БАЛАНСОМ / Реакция аммиака и кислорода

Mole Ratio for N2 + H2 = NH3Скачать

Mole Ratio for N2 + H2 = NH3

Is N2 + H2 = NH3 a Redox Reaction?Скачать

Is N2 + H2 = NH3 a Redox Reaction?

Окислительно-восстановительные реакции. 3 часть. 9 класс.Скачать

Окислительно-восстановительные реакции. 3 часть. 9 класс.

Окислительно-восстановительные реакции (ОВР). Что надо знать и как их решатьСкачать

Окислительно-восстановительные реакции (ОВР). Что надо знать и как их решать

ОВР часть 2Скачать

ОВР часть 2

Окислительно-восстановительные реакции в кислой среде. Упрощенный подход.Скачать

Окислительно-восстановительные реакции в кислой среде. Упрощенный подход.

Окислительно-восстановительные реакции. 1 часть. 9 класс.Скачать

Окислительно-восстановительные реакции. 1 часть. 9 класс.

Учимся составлять электронный баланс/овр/8классСкачать

Учимся составлять электронный баланс/овр/8класс

5. Окислительно-восстановительные реакцииСкачать

5. Окислительно-восстановительные реакции

Химия 9 класс — Как определять Степень Окисления?Скачать

Химия 9 класс — Как определять Степень Окисления?

89. Как расставить коэффициенты реакции методом электронного баланса (закрепление)Скачать

89. Как расставить коэффициенты реакции методом электронного баланса (закрепление)

Решение ОВР методом полуреакцийСкачать

Решение ОВР методом полуреакций

Химические уравнения // Как Составлять Уравнения Реакций // Химия 9 классСкачать

Химические уравнения // Как Составлять Уравнения Реакций // Химия 9 класс

How to Balance N2 + H2 = NH3 (Synthesis of Ammonia)Скачать

How to Balance N2 + H2 = NH3 (Synthesis of Ammonia)

Химия, 9 класс, тема "Окислительно-восстановительные реакции" (учитель Швецова Елена Евгеньевна)Скачать

Химия, 9 класс, тема "Окислительно-восстановительные реакции" (учитель Швецова Елена Евгеньевна)
Поделиться или сохранить к себе: