В уравнении полуреакции для перехода число электронов равно s0 so42

Видео:ОВР и Метод Электронного Баланса — Быстрая Подготовка к ЕГЭ по ХимииСкачать

ОВР и Метод Электронного Баланса — Быстрая Подготовка к ЕГЭ по Химии

Метод электронного баланса и ионно-электронный метод (метод полуреакций)

Спецификой многих ОВР является то, что при составлении их уравнений подбор коэффициентов вызывает затруднение.

Для облегчения подбора коэффициентов чаще всего используют метод электронного баланса и ионно-электронный метод (метод полуреакций). Рассмотрим применение каждого из этих методов на примерах.

Видео:Составление ур-й окислительно-восст. реакций методом ионно-электронного баланса. 1ч. 10 класс.Скачать

Составление ур-й окислительно-восст. реакций методом ионно-электронного баланса. 1ч. 10 класс.

Метод электронного баланса

В его основе метода электронного баланса лежит следующее правило: общее число электронов, отдаваемое атомами-восстановителями, должно совпадать с общим числом электронов, которые принимают атомы-окислители .

В качестве примера составления ОВР рассмотрим процесс взаимодействия сульфита натрия с перманганатом калия в кислой среде.

1) Составить схему реакции:

Записать исходные вещества и продукты реакции, учитывая, что в кислой среде MnO4 — восстанавливается до Mn 2+ (см. схему):

Найдем степень окисления элементов:

Из приведенной схемы понятно, что в процессе реакции происходит увеличение степени окисления серы с +4 до +6. S +4 отдает 2 электрона и является восстановителем. Степень окисления марганца уменьшилась от +7 до +2, т.е. Mn +7 принимает 5 электронов и является окислителем.

3) Составить электронные уравнения и найти коэффициенты при окислителе и восстановителе.

S +4 – 2e — = S +6 | 5 восстановитель, процесс окисления

Mn +7 +5e — = Mn +2 | 2 окислитель, процесс восстановления

Чтобы число электронов, отданных восстановителем, было равно числу электронов, принятых восстановителем, необходимо:

  • Число электронов, отданных восстановителем, поставить коэффициентом перед окислителем.
  • Число электронов, принятых окислителем, поставить коэффициентом перед восстановителем.

Таким образом, 5 электронов, принимаемых окислителем Mn +7 , ставим коэффициентом перед восстановителем, а 2 электрона, отдаваемых восстановителем S +4 коэффициентом перед окислителем:

4) Уравнять количества атомов элементов, не изменяющих степень окисления

Соблюдаем последовательность: число атомов металлов, кислотных остатков, количество молекул среды (кислоты или щелочи). В последнюю очередь подсчитывают количество молекул образовавшейся воды.

Итак, в нашем случае число атомов металлов в правой и левой частях совпадают.

По числу кислотных остатков в правой части уравнения найдем коэффициент для кислоты.

В результате реакции образуется 8 кислотных остатков SO4 2- , из которых 5 – за счет превращения 5SO3 2- → 5SO4 2- , а 3 – за счет молекул серной кислоты 8SO4 2- — 5SO4 2- = 3SO4 2- .

Таким образом, серной кислоты надо взять 3 молекулы:

Аналогично, находим коэффициент для воды по числу ионов водорода, во взятом количестве кислоты

6H + + 3O -2 = 3H2O

Окончательный вид уравнения следующий:

Признаком того, что коэффициенты расставлены правильно является равное количество атомов каждого из элементов в обеих частях уравнения.

Видео:8 класс. ОВР. Окислительно-восстановительные реакции.Скачать

8 класс. ОВР. Окислительно-восстановительные реакции.

Ионно-электронный метод (метод полуреакций)

Реакции окисления-восстановления, также как и реакции обмена, в растворах электролитов происходят с участием ионов. Именно поэтому ионно-молекулярные уравнения ОВР более наглядно отражают сущность реакций окисления-восстановления.

При написании ионно-молекулярных уравнений, сильные электролиты записывают в виде ионов, а слабые электролиты, осадки и газы записывают в виде молекул (в недиссоциированном виде).

При написании полуреакций в ионной схеме указывают частицы, подвергающиеся изменению их степеней окисления, а также характеризующие среду, частицы:

H +кислая среда, OH —щелочная среда и H2Oнейтральная среда.

Пример 1.

Рассмотрим пример составления уравнения реакции между сульфитом натрия и перманганатом калия в кислой среде.

1) Составить схему реакции:

Записать исходные вещества и продукты реакции:

2) Записать уравнение в ионном виде

В уравнении сократим те ионы, которые не принимают участие в процессе окисления-восстановления:

SO3 2- + MnO4 — + 2H + = Mn 2+ + SO4 2- + H2O

3) Определить окислитель и восстановитель и составить полуреакции процессов восстановления и окисления.

В приведенной реакции окислитель — MnO4 — принимает 5 электронов восстанавливаясь в кислой среде до Mn 2+ . При этом освобождается кислород, входящий в состав MnO4 — , который, соединяясь с H + образует воду:

MnO4 — + 8H + + 5e — = Mn 2+ + 4H2O

Восстановитель SO3 2- — окисляется до SO4 2- , отдав 2 электрона. Как видно образовавшийся ион SO4 2- содержит больше кислорода, чем исходный SO3 2- . Недостаток кислорода восполняется за счет молекул воды и в результате этого происходит выделение 2H + :

SO3 2- + H2O — 2e — = SO4 2- + 2H +

4) Найти коэффициенты для окислителя и восстановителя

Необходимо учесть, что окислитель присоединяет столько электронов, сколько отдает восстановитель в процессе окисления-восстановления:

MnO4 — + 8H + + 5e — = Mn 2+ + 4H2O |2 окислитель, процесс восстановления

SO3 2- + H2O — 2e — = SO4 2- + 2H + |5 восстановитель, процесс окисления

5) Просуммировать обе полуреакции

Предварительно умножая на найденные коэффициенты, получаем:

2MnO4 — + 16H + + 5SO3 2- + 5H2O = 2Mn 2+ + 8H2O + 5SO4 2- + 10H +

Сократив подобные члены, находим ионное уравнение:

2MnO4 — + 5SO3 2- + 6H + = 2Mn 2+ + 5SO4 2- + 3H2O

6) Записать молекулярное уравнение

Молекулярное уравнение имеет следующий вид:

Пример 2.

Далее рассмотрим пример составления уравнения реакции между сульфитом натрия и перманганатом калия в нейтральной среде.

В ионном виде уравнение принимает вид:

Также, как и предыдущем примере, окислителем является MnO4 — , а восстановителем SO3 2- .

В нейтральной и слабощелочной среде MnO4 — принимает 3 электрона и восстанавливается до MnО2. SO3 2- — окисляется до SO4 2- , отдав 2 электрона.

Полуреакции имеют следующий вид:

MnO4 — + 2H2O + 3e — = MnО2 + 4OH — |2 окислитель, процесс восстановления

SO3 2- + 2OH — — 2e — = SO4 2- + H2O |3 восстановитель, процесс окисления

Запишем ионное и молекулярное уравнения, учитывая коэффициенты при окислителе и восстановителе:

Пример 3.

Составление уравнения реакции между сульфитом натрия и перманганатом калия в щелочной среде.

В ионном виде уравнение принимает вид:

В щелочной среде окислитель MnO4 — принимает 1 электрон и восстанавливается до MnО4 2- . Восстановитель SO3 2- — окисляется до SO4 2- , отдав 2 электрона.

Полуреакции имеют следующий вид:

MnO4 — + e — = MnО2 |2 окислитель, процесс восстановления

SO3 2- + 2OH — — 2e — = SO4 2- + H2O |1 восстановитель, процесс окисления

Запишем ионное и молекулярное уравнения, учитывая коэффициенты при окислителе и восстановителе:

Необходимо отметить, что не всегда при наличии окислителя и восстановителя, возможно самопроизвольное протекание ОВР. Поэтому для количественной характеристики силы окислителя и восстановителя и для определения направления реакции пользуются значениями окислительно-восстановительных потенциалов.

Еще больше примеров составления окислительно-восстановительных реакций приведены в разделе Задачи к разделу Окислительно-восстановительные реакции. Также в разделе тест Окислительно-восстановительные реакции

Видео:Учимся составлять электронный баланс/овр/8классСкачать

Учимся составлять электронный баланс/овр/8класс

МЕТОД ЭЛЕКТРОННО-ИОННОГО БАЛАНСА (МЕТОД ПОЛУРЕАЦИЙ)

Сегодня мы научимся расставлять коэффициенты в окислительно-восстановительных реакциях (сокращенно ОВР) методом электронно-ионного баланса.

Задание обычно звучит так:

Подберите коэффициенты к уравнениям окислительно-восстановительной реакции, используя метод электронно-ионного баланса, укажите окислитель и восстановитель, процессы окисления и восстановления.

Для примера разберем следующую ОВР:

Первым делом «растворяем то, что растворяется», иначе говоря, растворимые соединения разбиваем на анионы (отрицательно заряженные ионы) и катионы (положительно заряженные ионы).

Для нашей реакции:

Сl2 0 + K2 1+ + S 2- + K 1+ + OH 1- → K 1+ + Cl 1- + K2 1+ + SO4 2- + H2O

Сокращаем те ионы, которые повторяются и слева, и справа и получаем уравнение реакции в ионно-молекулярном виде:

Сl2 0 + S 2- + OH 1- → Cl 1- + SO4 2- + H2O

Определим среду нашей ОВР. Ионы OH- в левой части реакции говорят нам, что среда щелочная. Это хуже, чем кислотная, но мы справимся ☺

Расставим степени окисления над каждым атомом. Принцип очень простой: степень окисления кислорода (почти) всегда 2-; водорода – 1+; степень окисления металлов равна порядковому номеру группы в таблице Менделеева, где живет этот металл. Степени окисления оставшихся атомов вычисляем, вычитая из степени окисления всего иона степени окисления известных атомов.

Сl2 0 + S 2- + O 2- H 1+ → Cl 1- + S 6+ O4 2- + H2O 2-

Видно, что в ОВР изменяются степени окисления хлора (было 0, стало 1-) и серы (было 2-, стало 6+).

Степень окисления хлора уменьшилась, т.е. он забрал себе лишние электроны. Степень окисления серы увеличилась, т.е. она электроны отдала. Ион, отдавший ионы, называется восстановителем; получивший электроны – окислителем.

Теперь записываем две полуреакции для серы и для хлора:

Cl2 0 → Cl 1- — окислитель, полуреакция восстановления

S 2- → SO4 2- — восстановитель, полуреакция окисления

После десятка-другого ОВР все описанное выше делается в уме за несколько секунд.

Теперь начинаем работать с выделенными полуреакциями.

Шаг первый: уравниваем количество атомов главного элемента (хлора).

Шаг второй: уравниваем количество атомов кислорода. У нас кислорода нет, едем дальше.

Шаг третий: уравниваем количество атомов водорода. Водорода тоже нет, едем дальше.

Шаг четвертый: уравниваем заряды с помощью электронов. В нашем случае слева заряд 0, справа 2 заряда по -1, достаточно очевидно, что нужно добавить 2 электрона слева. Что мы и делаем:

Cl2 0 + 2е → 2Cl 1-

Одна полуреакция готова. Принимаемся за вторую.

Шаг первый: уравниваем количество атомов главного элемента (серы). У нас они уже равны, едем дальше.

Поскольку среда щелочная, шаг второй и шаг третий объединяем: нужно уравнять количества атомов кислорода и водорода, причем делать это нужно, добавляя слева ионы OH-, а справа молекулы воды. Я это делаю обычно перебором. В нашем случае справа нужно добавить 8 ионов OH — , а слева – 4 молекулы воды.

Все атомы уравнялись.

Шаг четвертый: уравниваем заряды с помощью электронов. В нашем случае слева заряд -10, справа -2, вычитаем слева 8 электронов:

S 2- + 8OH — — 8e → SO4 2- + 4H2O

Теперь выписываем наши уравненные полуреакции рядом. Хлор забирает 2 электрона, сера отдает 8 электронов, значит, чтобы все сошлось, необходимо умножить полуреакцию хлора на 4.

А если делать на автомате, то записываем количество электронов, сокращаем (если сокращается) и меняем местами. На получившееся число умножаем полуреакцию и собираем обратно в молекулярно-ионную запись.

Cl2 0 + 2е → 2Cl — 2→1→4

S 2- + 8OH — — 8e → SO4 2- + 4H2O 8→4→1

4Сl2 0 + S 2- + 8OH → 8Cl — + SO4 2- + 4H2O

Проверяем, все ли сходится: хлора – по 8 атомов с каждой стороны, серы – по 1, водорода – по 8, кислорода – по 8.

С теми же коэффициентами переписываем полную ОВР.

Для закрепления рассмотрим еще одну реакцию, на этот раз с кислой средой. Не буду расписывать так же подробно, только ключевые моменты.

Наметанным глазом сразу видно: степени окисления меняются у алюминия и у хрома. Выписываем полуреакции и уравниваем их.

Шаг первый: уравниваем количество атомов главного элемента – выполнено.

Шаг второй: уравниваем количество атомов кислорода – выполнено.

Шаг третий: уравниваем количество атомов водорода – выполнено.

Шаг четвертый: уравниваем заряды с помощью электронов. Слева заряд 0, справа +3, нужно вычесть слева 3 электрона. Алюминий электроны отдает, значит, он в реакции восстановитель, а его полуреакция является полуреакцией окисления.

Шаг первый: уравниваем количество атомов главного элемента.

Шаг второй: уравниваем количество атомов кислорода с помощью воды.

Шаг третий: уравниваем количество атомов водорода c помощью ионов H + , потому что среда кислая. О том, что она кислая, нам говорит наличие кислоты в левой части реакции (если бы мы записали ионно-молекулярную форму реакции, слева остались бы ионы H + )

Шаг четвертый: уравниваем заряды с помощью электронов. Слева заряд +12, справа 2 раза по +3, нужно добавить слева 6 электрона. Хром электроны забирает, значит, он в реакции окислитель, а его полуреакция является полуреакцией восстановления.

Выписываем полуреакции рядом и производим манипуляции с электронами:

Al 0 – 3e → Al 3+ 3→1→2

Собираем две полуреакции в ионно-молекулярную реакцию, домножив, соответственно, на полученные числа.

Cr2O7 2- + 2Al 0 + 14H + → 2Cr 3+ + 2Al 3+ + 7H2O

Восстанавливаем полную реакцию, расставляя найденные коэффициенты:

Для проверки я обычно считаю, сходятся ли количества атомов кислорода: слева у нас 7+7*4=35 атомов, справа – 3*4+3*4+4+7=35 атомов.

Кислород сошелся, значит, все верно.

Любую ОВР можно уравнять описанным методом. Бывают, конечно, более сложные варианты, но смысл всегда один и тот же.

Видео:Окислительно-восстановительные реакции. 1 часть. 9 класс.Скачать

Окислительно-восстановительные реакции. 1 часть. 9 класс.

Метод полуреакций — составление уравнений ОВР

Любая окислительно-восстановительная реакция состоит из двух «половинок» — в ходе ОВР идут два процесса — процесс окисления вещества-восстановителя и процесс восстановления вещества-окислителя. Оба эти процесса могут быть описаны соответственными ионными уравнениями, которые потом можно суммировать и получить итоговое общее ионное уравнение реакции, а потом записать молекулярное уравнение.

В качестве примера составим уравнение реакции сероводорода с раствором калия перманганата в кислой среде методом полуреакций. Ранее это уравнение было составлено методом электронного баланса.

В ходе реакции происходит разложение молекул сероводорода на серу и водород, о чем свидетельствует постепенное помутнение раствора перманганата калия (сера выпадает в осадок). Процесс окисления сероводорода запишем в виде уравнения полуреакции окисления:

Поскольку в левой и правой частях схемы кол-во атомов серы и водорода равно, то стрелку можно заменить на знак равенства, уравняв предварительно число зарядов в исходном веществе и продуктах реакции:

Параллельно с помутнение раствора идет и смена его окраски — из малинового раствор становится бесцветным,что объясняется переходом ионов MnO4 — , имеющих малиновую окраску, в практически бесцветный катион марганца Mn 2+ . Эта полуреакция восстановления выражается схемой:

А куда же делся атом кислорода? — обязательно спросит внимательный читатель. В кислой среде атом кислорода, входящий в состав иона, соединяется с атомами водорода, выделяющимися в ходе полуреакции окисления, образуя молекулу воды, при этом, поскольку из одного иона освобождается аж 4 атома кислорода, то для их связывания требуется 8 атомов водорода:

Чтобы уравнять заряды в левой и правой части схемы, в левую часть надо добавить 5 электронов (в левой части сумма зарядов +7, а в левой +2):

Для получения суммарного уравнения реакции, необходимо почленно сложить две полуреакции, предварительно уравняв кол-во отданных и полученных электронов, по аналогии с методом электронного баланса:

Проверяем кол-во атомов и заряды в левой и правой частях суммарного уравнения, они равны, значит уравнение составлено правильно (водорода — по 16 атомов; серы — по 5; марганца — по 2; кислорода — по 8; заряды — по +4).

Чтобы перейти от ионного уравнения к молекулярному, надо в левой части подобрать к катионам и анионам их «пары» — анионы и катионы соответственно, после чего подобранные ионы записать и в правую часть уравнения, после этого ионы объединяются в молекулы, и получается молекулярное уравнение.

Результат аналогичен уравнению, полученному методом электронного баланса.

Видео:Окислительно-восстановительные реакции. Метод электронно-ионного баланса.Скачать

Окислительно-восстановительные реакции. Метод электронно-ионного баланса.

Правила составления уравнений ОВР методом полуреакций

  • На первом этапе в ионном виде записывают полуреакцию окисления и полуреакцию восстановления, в которых указывают вещество-восстановитель и вещество-окислитель, с продуктами их реакции.
  • Сильные электролиты записываются в виде ионов.
  • Слабые электролиты, газы и твердые вещества, выпадающие в осадок — в виде молекул.
  • Продукты реакции между восстановителем и окислителем устанавливаются по справочникам или по «шпаргалке», приведенной на странице «Определение продуктов ОВР» (это самый сложный этап для начинающих).
  • Записывают схему реакции, в которой многоточием обозначают неизвестные продукты реакции.
  • Что делать с кислородом:
    • Если в исходном веществе кислорода содержится больше, чем в продуктах реакции, то «лишний» кислород в растворах с кислой средой связывается с катионами водорода, образуя молекулы воды (O -2 +2H + =H2O); в нейтральных растворах — в гидроксид-ионы: O -2 +H2O=2OH — ;
    • Если в исходном веществе кислорода содержится меньше, чем в продуктах реакции, то «недостающий» кислород «забирается» из молекул воды (в растворах с кислой и нейтральной средой): H2O=O -2 +2H + ; в щелочных растворах — за счет гидроксид-ионов: 2OH — =O -2 +H2O.
  • В левой и правой частях уравнения должны быть равны суммарное число и знак электрических зарядов.

Достоинства метода полуреакций:

  • Работают с реально существующими ионами (MnO4 — ), а не виртуальными (Mn +7 ).
  • Нет необходимости знать степени окисления атомов.
  • Прослеживается роль среды, в которой происходит взаимодействие веществ.
  • Не нужно знать все продукты реакции, они выводятся «сами собой» в процессе составления уравнения.

Пример составления уравнения ОВР для кислотной среды

Составление уравнения реакции серы с азотной кислотой:

  • S+HNO3
  • S 0 → SO4 2- — процесс окисления восстановителя.
  • NO3 — → NO — процесс восстановления окислителя.
  • Приводим в «порядок» первую полуреакцию окисления:
    • S 0 → SO4 2- — отличник должен здесь спросить, откуда справа взялся кислород? Немного терпения, сейчас все станет ясно.
    • в правую часть схемы, где присутствует избыток кислорода, добавляется катион водорода:
      S 0 → SO4 2- +H +
    • у внимательного читателя тут же должен возникнуть вопрос — а откуда взялся катион водорода? Отвечаем: из молекулы воды, которая добавляется в левую часть схемы:
      S 0 +H2O → SO4 2- +H +
    • Вот теперь настало время уравнять в обеих частях схемы кислород, который, теперь понятно, откуда взялся:
      S 0 +4H2O → SO4 2- +H +
    • Теперь надо уравнять водород:
      S 0 +4H2O → SO4 2- +8H +
    • С атомами элементов в обеих частях схемы полный порядок, осталось разобраться с зарядами — в левой части заряд нулевой; в правой: (-2)+8(+1)=+6:
      S 0 +4H2O-6e — → SO4 2- +8H +
  • Делаем аналогичную работу со второй полуреакцией восстановления:
    • NO3 — → NO
    • Добавляем водород, в левую часть, где присутствует «лишний» кислород:
      NO3 — +H + → NO
    • В правую часть добавляем воду:
      NO3 — +H + → NO+H2O
    • Уравниваем кислород:
      NO3 — +H + → NO+2H2O
    • Уравниваем водород:
      NO3 — +4H + → NO+2H2O
    • Уравниваем заряды:
      NO3 — +4H + +3e — → NO+2H2O
  • Уравниваем кол-во электронов, которые были отданы и приняты в двух полуреакциях:
  • Суммируем левые и правые части, предварительно умножив на коэффициент (2) члены второй полуреакции:
  • Проводим сокращение одинаковых членов в левой и правой частях схемы и добавляем в пару к анионам «нужные» катионы, чтобы образовались молекулы, в нашем случае это будут молекулы азотной и серной кислоты, для этого мы добавим катион водорода (2H + ):
  • Суммарное молекулярное уравнение:
    S+2HNO3 = H2SO4+2NO — в результате взаимодействия серы с азотной кислотой получается серная кислота и оксид азота (II).

Пример составления уравнения ОВР для кислотной среды

«Фокус» уравнивания кол-ва атомов кислорода и водорода для уравнений ОВР в щелочной среде заключается в следующем:

  • Вода (H2O) добавляется в ту часть полуреакции, в которой присутствует избыток кислорода.
  • Соответственно, в противоположную часть уравнения-схемы добавляется удвоенное число гидроксид-ионов (OH — ).
  • Перед формулой молекулы воды ставится коэффициент, уравнивающий разницу кол-ва атомов кислорода в левой и правой частях полуреакции.
  • Перед формулой гидроксид-иона ставится удвоенный коэффициент.
  • Восстановитель присоединяет атомы кислорода из гидроксид-ионов.
  • MnO2+KClO3+KOH → ?
  • MnO2 → MnO4 2- оксид марганца является восстановителем, он будет связывать гидроксид-ионы.
  • Поскольку в правой части схемы килорода больше (на 2 атома), то вода добавляется сюда же, перед ее формулой ставится коэффициент 2, соответственно, в левую часть схемы полуреакции добавляют 4 гидроксид-иона:
    MnO2+4OH — → MnO4 2- +2H2O
  • Уравниваем заряды:
    MnO2+4OH — -2e — → MnO4 2- +2H2O
  • ClO3 — → Cl — — полуреакция восстановления.
  • Избыток кислорода (3 «лишних» атома) находится в левой части схемы полуреакции, сюда же добавляем и 3 молекулы воды, а в правую часть 6 гидроксид-ионов:
    ClO3 — +3H2O → Cl — +6OH —
  • Уравниваем заряды:
    ClO3 — +3H2O+6e — → Cl — +6OH —
  • Уравниваем в полуреакциях кол-во отданных и принятых электронов (6 и 2 сокращаем на 2), и получаем суммарное уравнение, путем сложения двух уравнений полуреакций:
  • Проводим сокращение подобных слагаемых и добавляем катионы калия, чтобы перейти к молекулярной форме уравнения реакции:
  • Молекулярное уравнение реакции:
    3MnO2+6KOH+KClO3 = 3K2MnO4+3H2O+KCl

Пример составления уравнения ОВР для нейтральной среды

Среду нейтральной можно счситать лишь условно, в любом случае, среда будет либо слабощелочной, либо слабокислотной.

Составляя уравнение ОВР методом полуреакций для нейтральной среды, одну полуреакцию составляют, как для кислотной среды — в левую часть схемы добавляют молекулу воды, в правую — катион водорода), вторую — как для щелочной (в левую часть добавляют молекулу воды, в правую — гидроксид-ион).

  • Na2SO3+KMnO4+H2O
  • SO3 2- → SO4 2- — процесс окисления восстановителя;
  • MnO4 — → MnO2 — процесс восстановления окислителя;
  • Схема реакции:
    SO3 2- +MnO4 — → SO4 2- +MnO2+.
  • Составляем уравнения полуреакций:
  • Молекулярное уравнение:

Еще один пример:

  • S+KMnO4 → ?
  • S → SO4 2-
  • MnO4 — → MnO2
  • Первую полуреакцию оформляем, как для кислотной среды; вторую — как для щелочной:
  • Сокращаем обе части равенства на 8 молекул воды, и добавляем катионы калия:
  • Молекулярное уравнение:
    S+2KMnO4 = K2SO4+2MnO2

Более подробно составление уравнений окислительно-восстановительных реакций методом полуреакций в различных средах рассмотрено на странице Влияние среды на протекание ОВР.

Если вам понравился сайт, будем благодарны за его популяризацию 🙂 Расскажите о нас друзьям на форуме, в блоге, сообществе. Это наша кнопочка:

В уравнении полуреакции для перехода число электронов равно s0 so42

Код кнопки: В уравнении полуреакции для перехода число электронов равно s0 so42
Политика конфиденциальности Об авторе

📹 Видео

89. Как расставить коэффициенты реакции методом электронного баланса (закрепление)Скачать

89. Как расставить коэффициенты реакции методом электронного баланса (закрепление)

ЭТОТ метод поможет на уроках ХИМИИ / Химия 9 классСкачать

ЭТОТ метод поможет на уроках ХИМИИ / Химия 9 класс

Окислительно-восстановительные реакции в кислой среде. Продвинутый подход.Скачать

Окислительно-восстановительные реакции в кислой среде. Продвинутый подход.

Расстановка коэффициентов в окислительно-восстановительных реакцияхСкачать

Расстановка коэффициентов в окислительно-восстановительных реакциях

Окислительно-восстановительные реакции в кислой среде. Упрощенный подход.Скачать

Окислительно-восстановительные реакции в кислой среде. Упрощенный подход.

схемы перехода электронов/овр/электронный баланс/химия8Скачать

схемы перехода электронов/овр/электронный баланс/химия8

Решение ОВР методом полуреакцийСкачать

Решение ОВР методом полуреакций

Окислительно-восстановительные реакции. 3 часть. 9 класс.Скачать

Окислительно-восстановительные реакции. 3 часть. 9 класс.

Окислительно-восстановительные реакции в щелочноной среде. Упрощенный подход.Скачать

Окислительно-восстановительные реакции в щелочноной среде. Упрощенный подход.

Внутримолекулярное окисление-восстановлениеСкачать

Внутримолекулярное окисление-восстановление

Как быстро определить количество электронов в ОВР? #химия #егэ #егэ2023 #огэ #shorts #оврСкачать

Как быстро определить количество электронов в ОВР? #химия #егэ #егэ2023 #огэ #shorts #овр

Химия 9 класс — Как определять Степень Окисления?Скачать

Химия 9 класс — Как определять Степень Окисления?

Составление ур-й окислительно-восст. реакций методом ионно-электронного баланса. 3ч. 10 класс.Скачать

Составление ур-й окислительно-восст. реакций методом ионно-электронного баланса. 3ч. 10 класс.

Окислительно-восстановительные реакции (ОВР). Что надо знать и как их решатьСкачать

Окислительно-восстановительные реакции (ОВР). Что надо знать и как их решать
Поделиться или сохранить к себе: