В уравнение гармонического колебания x acos wt величина стоящая под знаком

Видео:Уравнения и графики механических гармонических колебаний. 11 класс.Скачать

Уравнения и графики механических гармонических колебаний. 11 класс.

В уравнении гармонических колебаний х = A cos(wt + ф0) величина w называется 1) фазой 2) частотой

Видео:График гармонического колебания | Алгебра 10 класс #23 | ИнфоурокСкачать

График гармонического колебания | Алгебра 10 класс #23 | Инфоурок

Ваш ответ

Видео:Урок 327. Гармонические колебанияСкачать

Урок 327. Гармонические колебания

решение вопроса

Видео:10 класс, 19 урок, График гармонического колебанияСкачать

10 класс, 19 урок, График гармонического колебания

Похожие вопросы

  • Все категории
  • экономические 43,436
  • гуманитарные 33,634
  • юридические 17,907
  • школьный раздел 608,233
  • разное 16,858

Популярное на сайте:

Как быстро выучить стихотворение наизусть? Запоминание стихов является стандартным заданием во многих школах.

Как научится читать по диагонали? Скорость чтения зависит от скорости восприятия каждого отдельного слова в тексте.

Как быстро и эффективно исправить почерк? Люди часто предполагают, что каллиграфия и почерк являются синонимами, но это не так.

Как научится говорить грамотно и правильно? Общение на хорошем, уверенном и естественном русском языке является достижимой целью.

Видео:Гармонические колебания | Физика 11 класс #8 | ИнфоурокСкачать

Гармонические колебания | Физика 11 класс #8 | Инфоурок

Контрольная работа по физике Электромагнитные колебания и волны 11 класс

Контрольная работа по физике Электромагнитные колебания и волны для учащихся 11 класса с ответами. Контрольная работа включает 5 вариантов, в каждом варианте по 8 заданий.

Видео:Гармонические колебания | Физика 9 класс #25 | ИнфоурокСкачать

Гармонические колебания | Физика 9 класс #25 | Инфоурок

1 вариант

A1. В уравнении гармонического колебания q = qmcos(ωt + φ0) величина, стоящая под знаком косинуса, называется

1) фазой
2) начальной фазой
3) амплитудой заряда
4) циклической частотой

А2. На рисунке показан график зависимости силы тока в ме­таллическом проводнике от времени. Определите частоту колебаний тока.

В уравнение гармонического колебания x acos wt величина стоящая под знаком

1) 8 Гц
2) 0,125 Гц
3) 6 Гц
4) 4 Гц

А3. Как изменится период собственных электромагнитных колебаний в контуре, если ключ К перевести из положения 1 в положение 2?

В уравнение гармонического колебания x acos wt величина стоящая под знаком

1) Уменьшится в 2 раза
2) Увеличится в 2 раза
3) Уменьшится в 4 раза
4) Увеличится в 4 раза

А4. По участку цепи с сопротивлением R течёт переменный ток, меняющийся по гармоническому закону. В некото­рый момент времени действующее значение напряжения на этом участке уменьшили в 2 раза, а его сопротивление уменьшили в 4 раза. При этом мощность тока

1) уменьшится в 4 раза
2) уменьшится в 8 раз
3) не изменится
4) увеличится в 2 раза

А5. Сила тока в первичной обмотке трансформатора 0,5 А, напряжение на её концах 220 В. Сила тока во вторичной обмотке 11 А, напряжение на её концах 9,5 В. Опреде­лите КПД трансформатора.

1) 105 %
2) 95 %
3) 85 %
4) 80 %

В1. В таблице показано, как изменялся заряд конденсатора в колебательном контуре с течением времени.

t, 10 -6 с0123456789
q, 10 -6 Кл21,420-1,42-2-1,4201,4221,42

Вычислите ёмкость конденсатора в контуре, если индук­тивность катушки равна 32 мГн. Ответ выразите в пико­фарадах и округлите до десятых.

В2. Колебательный контур радиопередатчика содержит кон­денсатор ёмкостью 0,1 нФ и катушку индуктивностью 1 мкГн. На какой длине волны работает радиопередат­чик? Скорость распространения электромагнитных волн с = 3 · 10 8 м/с. Ответ округлите до целых.

C1. Определите период электромагнитных колебаний в коле­бательном контуре, если амплитуда силы тока равна Im, а амплитуда электрического заряда на пластинах кон­денсатора qm.

Видео:Уравнения и графики механических гармонических колебаний. Практ. часть - решение задачи. 11 класс.Скачать

Уравнения и графики механических гармонических колебаний. Практ. часть - решение задачи. 11 класс.

2 вариант

A1. В уравнении гармонического колебания i = Imcos(ωt + φ0) величина ω называется

1) фазой
2) начальной фазой
3) амплитудой силы тока
4) циклической частотой

А2. На рисунке показан график зависимости силы тока в ме­таллическом проводнике от времени. Определите ампли­туду колебаний тока.

В уравнение гармонического колебания x acos wt величина стоящая под знаком

1) 0,4 А
2) 0,2 А
3) 0,25 А
4) 4 А

А3. Как изменится частота собственных электромагнитных колебаний в кон­туре, если ключ К перевести из положения 1 в положение 2?

В уравнение гармонического колебания x acos wt величина стоящая под знаком

1) Уменьшится в 4 раза
2) Увеличится в 4 раза
3) Уменьшится в 2 раза
4) Увеличится в 2 раза

А4. По участку цепи с сопротивлением R течёт переменный ток, меняющийся по гармоническому закону. В некото­рый момент времени действующее значение напряжения на этом участке увеличили в 2 раза, а сопротивление участка уменьшили в 4 раза. При этом мощность тока

1) не изменилась
2) возросла в 16 раз
3) возросла в 4 раза
4) уменьшилась в 2 раза

А5. Напряжение на концах первичной обмотки трансформа­тора 110 В, сила тока в ней 0,1 А. Напряжение на кон­цах вторичной обмотки 220 В, сила тока в ней 0,04 А. Чему равен КПД трансформатора?

1) 120 %
2) 93 %
3) 80 %
4) 67 %

B1. Напряжение на конденсаторе в цепи переменного тока меняется с циклической частотой ω = 4000 с -1 . Амплиту­да колебаний напряжения и силы тока равны соответст­венно Um = 200 В и Im = 4 А. Найдите ёмкость конденса­тора.

В2. Найдите минимальную длину волны, которую может принять приёмник, если ёмкость конденсатора в его ко­лебательном контуре можно плавно изменять от 200 пФ до 1800 пФ, а индуктивность катушки постоянна и равна 60 мкГн. Скорость распространения электромагнитных волн с = 3 · 10 8 м/с.

C1. В процессе колебаний в идеальном колебательном конту­ре в момент времени t заряд конденсатора q = 4 · 10 -9 Кл, а сила электрического тока в катушке равна I = 3 мА. Период колебаний Т = 6,28 · 10 -6 с. Найдите амплитуду колебаний заряда.

Видео:5.4 Уравнение гармонических колебанийСкачать

5.4 Уравнение гармонических колебаний

3 вариант

А1. В уравнении гармонического колебания u = Umsin(ωt + φ0) величина φ0 называется

1) фазой
2) начальной фазой
3) амплитудой напряжения
4) циклической частотой

А2. На рисунке представлена зависимость силы тока в ме­таллическом проводнике от времени.

В уравнение гармонического колебания x acos wt величина стоящая под знаком

Амплитуда колебаний тока равна

1) 20 А
2) 10 А
3) 0,25 А
4) 4 А

А3. В наборе радиодеталей для изготовления простого коле­бательного контура имеются две катушки с индуктивно­стями L1 = 1 мкГн и L2 = 2 мкГн, а также два конденса­тора, ёмкости которых С1 = 3 пФ и С2 = 4 пФ. При каком выборе двух элементов из этого набора частота собственных колебаний контура будет наибольшей?

А4. По участку цепи сопротивлением R течёт переменный ток, меняющийся по гармоническому закону. Как изме­нится мощность переменного тока на этом участке цепи, если действующее значение напряжения на нём умень­шить в 2 раза, а его сопротивление в 4 раза увеличить?

1) Уменьшится в 16 раз
2) Уменьшится в 4 раза
3) Увеличится в 4 раза
4) Увеличится в 2 раза

А5. Напряжение на концах первичной обмотки трансформа­тора 127 В, сила тока в ней 1 А. Напряжение на концах вторичной обмотки 12,7 В, сила тока в ней 8 А. Чему равен КПД трансформатора?

1) 100 %
2) 90 %
3) 80 %
4) 70 %

B1. В таблице показано, как изменялся заряд конденсатора в колебательном контуре с течением времени.

t, 10 -6 с024681012141618
q, 10 -6 Кл02,1332,130-2,13-3-2,1302,13

Вычислите индуктивность катушки, если ёмкость кон­денсатора в контуре равна 100 пФ. Ответ выразите в миллигенри и округлите до целых.

В2. Найдите максимальную длину волны, которую может принять приёмник, если ёмкость конденсатора в его ко­лебательном контуре можно плавно изменять от 200 пФ до 1800 пФ, а индуктивность катушки постоянна и равна 60 мкГн. Скорость распространения электромагнитных волн с = 3 · 10 8 м/с.

C1. В идеальном колебательном контуре амплитуда колеба­ний силы тока в катушке индуктивности равна 10 мА, а амплитуда колебаний заряда конденсатора равна 5 нКл. В момент времени t заряд конденсатора равен 3 нКл. Найдите силу тока в катушке в этот момент.

Видео:Гармонические колебанияСкачать

Гармонические колебания

4 вариант

A1. В уравнении гармонического колебания u = Umsin(ωt + φ0) величина Um называется

1) фазой
2) начальной фазой
3) амплитудой напряжения
4) циклической частотой

А2. На рисунке представлена зависимость силы тока в ме­таллическом проводнике от времени.

В уравнение гармонического колебания x acos wt величина стоящая под знаком

Частота колебаний тока равна

1) 0,12 Гц
2) 0,25 Гц
3) 0,5 Гц
4) 4 Гц

А3. На рисунке приведён график зависимости силы тока от времени в колебательном контуре при свободных колеба­ниях. Катушку в этом контуре заменили на другую ка­тушку, индуктивность которой в 4 раза меньше. Каким будет период колебаний контура?

В уравнение гармонического колебания x acos wt величина стоящая под знаком

1) 1 мкс
2) 2 мкс
3) 4 мкс
4) 8 мкс

А4. По участку цепи с некоторым сопротивлением R течёт переменный ток, меняющийся по гармоническому зако­ну. Как изменится мощность переменного тока на этом участке цепи, если действующее значение силы тока на нём увеличить в 2 раза, а его сопротивление в 2 раза уменьшить?

1) Не изменится
2) Увеличится в 2 раза
3) Уменьшится в 2 раза
4) Увеличится в 4 раза

А5. Напряжение на концах первичной обмотки трансформа­тора 220 В, сила тока в ней 1 А. Напряжение на концах вторичной обмотки 22 В. Какой была бы сила тока во вторичной обмотке при коэффициенте полезного дейст­вия трансформатора 100 %?

1) 0,1 А
2) 1 А
3) 10 А
4) 100 А

B1. Индуктивность катушки равна 0,125 Гн. Уравнение ко­лебаний силы тока в ней имеет вид: i = 0,4cos(2 · 10 3 t), где все величины выражены в СИ. Определите амплиту­ду напряжения на катушке.

В2. Колебательный контур радиоприёмника содержит кон­денсатор, ёмкость которого 10 нФ. Какой должна быть индуктивность контура, чтобы обеспечить приём волны длиной 300 м? Скорость распространения электромаг­нитных волн с = 3 · 10 8 м/с.

C1. В идеальном колебательном контуре в катушке индук­тивности амплитуда колебаний силы тока Im = 5 мА, а амплитуда колебаний заряда конденсатора qm = 2,5 нКл. В момент времени t сила тока в катушке i = 3 мА. Най­дите заряд конденсатора в этот момент.

Видео:Тема 1. Колебательное движение. Гармонические колебания. Уравнение гармонических колебанийСкачать

Тема 1. Колебательное движение. Гармонические колебания. Уравнение гармонических колебаний

5 вариант

A1. В уравнении гармонического колебания q = qmcos(ωt + φ0) величина, стоящая перед знаком косинуса, называется

1) фазой
2) начальной фазой
3) амплитудой заряда
4) циклической частотой

А2. На рисунке представлена зависимость силы тока в ме­таллическом проводнике от времени.

В уравнение гармонического колебания x acos wt величина стоящая под знаком

Период колебаний тока равен

1) 2 мс
2) 4 мс
3) 6 мс
4) 10 мс

А3. На рисунке приведён график зависимости силы тока от времени в колебательном контуре при свободных колебаниях.

В уравнение гармонического колебания x acos wt величина стоящая под знаком

Если ёмкость конденсатора увеличить в 4 раза, то период собственных колебаний контура станет равным

1) 2 мкс
2) 4 мкс
3) 8 мкс
4) 16 мкс

А4. По участку цепи с некоторым сопротивлением R течёт пе­ременный ток, меняющийся по гармоническому закону. В некоторый момент времени действующее значение силы тока на участке цепи увеличивается в 2 раза, а сопротив­ление уменьшается в 4 раза. При этом мощность тока

1) увеличится в 4 раза
2) увеличится в 2 раза
3) уменьшится в 2 раза
4) не изменится

А5. КПД трансформатора 90 %. Напряжение на концах пер­вичной обмотки 220 В, на концах вторичной 22 В. Сила тока во вторичной обмотке 9 А. Какова сила тока в пер­вичной обмотке трансформатора?

1) 0,1 А
2) 0,45 А
3) 0,9 А
4) 1 А

B1. В таблице показано, как изменялся заряд конденсатора в колебательном контуре с течением времени.

t, 10 -6 с0123456789
q, 10 -6 Кл21,420-1,42-2-1,4201,4221,42

Вычислите индуктивность катушки, если ёмкость кон­денсатора в контуре равна 50 пФ. Ответ выразите в мил­лигенри и округлите до целых.

В2. Электрический колебательный контур радиоприёмника содержит катушку индуктивности 10 мГн и два парал­лельно соединенных конденсатора, ёмкости которых равны 360 пФ и 40 пФ. На какую длину волны настроен контур? Скорость распространения электромагнитных волн с = 3 · 10 8 м/с.

C1. В идеальном колебательном контуре амплитуда колеба­ний силы электрического тока в катушке индуктивности Im = 5 мА, а амплитуда напряжения на конденсаторе Um = 2 В. В момент времени t сила тока в катушке i = 3 мА. Найдите напряжение на конденсаторе в этот момент.

Ответы на контрольную работу по физике Электромагнитные колебания и волны 11 класс
1 вариант
1-1
2-2
3-1
4-3
5-2
6. 50,7 пФ
7. 18,84 м
8. T = 2πqm/Im
2 вариант
1-4
2-2
3-3
4-2
5-3
6. 5 мкФ
7. 206,4 м
8. 5 нКл
3 вариант
1-2
2-2
3-3
4-1
5-3
6. 65 мГн
7. 619,1 м
8. 8 мА
4 вариант
1-3
2-2
3-2
4-2
5-3
6. 100 В
7. 2,54 мкГн
8. 2 нКл
5 вариант
1-3
2-2
3-3
4-4
5-4
6. 32 мГн
7. 3768 м
8. 1,6 В

Видео:Как решить уравнение колебаний? | Олимпиадная физика, механические гармонические колебания, 11 классСкачать

Как решить уравнение колебаний? | Олимпиадная физика, механические гармонические колебания, 11 класс

X xmax cos wt формула

Механические волны

Е) Вынужденные колебания. Резонанс.

Гармонические колебания

План лекции

Механические колебания и волны.

ЛЕКЦИЯ 1

а) Общая характеристика и уравнение колебательного движения

б) Баланс энергии при колебательном движении

в) Сложение гармонических колебаний

г) Гармонический спектр простого и сложного колебания

д) Затухающие колебания

а) Общая характеристика волны. Волны продольные и поперечные.

б) Уравнение плоской волны

в) Поток энергии волны. Уравнение Умова.

а) Общая характеристика и уравнение колебательного движения.

Колебательное движение – один из видов механического движения. В жизни оно встречается повсюду: маятник в настенных часах, груз, подвешенный на пружине, вода в открытом сосуде, вагон на рессорах, корабль на волнах и др. Главной характерной чертой колебательного движения является егоповторяемость,т.е. каждое последующее движение повторяет предыдущее.

Для осуществления колебательного движения необходимы следующие условия: во-первых, должно быть наличие инертной массы, во-вторых, при выведении тела из положения равновесия должна возникать возвращающая сила.Данная сила должна быть пропорциональна величине отклонения тела от положения равновесия. Данная сила сообщает телу ускорение.

F = -kX– сила упругости; F = ma– сила инерции.

В данном случае, сила упругости является силой инерции: ma = -kX

Отсюда: a = -(k/m)XВведём обозначение: k/m = w 2 Здесь w– циклическая частота колебаний. Перепишем это уравнение в виде:

d 2 X/dt 2 = -w 2 X

В уравнение гармонического колебания x acos wt величина стоящая под знаком

Это – дифференциальное уравнение 2-го порядка. Представим его в виде:

d 2 X/dt 2 + w 2 X = 0

где d 2 X/dt 2 = kX/m w = k/m

Частное решение этого уравнения будет выглядеть так:

X = A sin ( wt + fо)

X – текущая координата

A – амплитуда

w – циклическая частота

t – время

f – фаза

– начальная фаза.

Следует напомнить, что здесь, как и во всей физике принято координату и амплитуду измерять в метрах, время – в секундах, фазу – в радианах, циклическую частоту – в с -1 .

Кроме того, в физике колебательного движения приняты следующие единицы:

n– частота (Гц)

Т – период (с)

Частота (в герцах) показывает, сколько колебаний совершит тело за 1 секунду.

Частота w ( в с -1 ) показывает, сколько колебаний тело совершит за 2pсекунд.

Период Т показывает продолжительность одного полного колебания (в секундах)

Особенность колебательного движения в том, что его легко можно связать с вращательным. Если представить себе какое-либо тело, движущееся по окружности в плоскости чертежа, то тень от него, падающая на вертикальную ось координат Х, будет совершать колебания вверх-вниз и если развернуть это движение на горизонтальную ось t, то получится кривая, являющаяся синусоидой.

В уравнение гармонического колебания x acos wt величина стоящая под знаком

Следует заметить, что графиком частного решения вышеуказанного дифференциального уравнения является кривая той же формы:

В уравнение гармонического колебания x acos wt величина стоящая под знаком

Наибольшее затруднение у студентов вызывает понятие фазы. В колебательном движении фаза играет туже роль, что координата в поступательном движении.

X = (ut + X ) для поступательного движения

f = ( wt + f ) для колебательного движения

В колебательном движении фаза показывает, какая часть периода прошла от начала колебания.

Зная, что координата колеблющегося тела изменяется по закону:

Х = А sin (wt + f )

найдём закон, по которому изменяется скорость и ускорение:

u = X = A w cos(wt + f )

a = u = X = -Aw 2 sin (wt + f )

Отсюда видно, что координата, скорость и ускорение изменяются либо по закону синуса, либо по закону косинуса. Причём, производная любого порядка даст либо синус, либо косинус. Из этого следует, что синус и косинус являются гармоническими функциями. Значит движение, осуществляющееся по законам синуса или косинуса является гармоническим колебанием, или колебанием, типа «проще некуда».

Все эти три графика представляют собой кривую одинаковой формы, только эти кривые сдвинуты относительно друг друга на 90 о

В уравнение гармонического колебания x acos wt величина стоящая под знаком

б) Баланс энергии при колебательном движении

Следует напомнить формулы кинетической и потенциальной энергии, используемые в механике.

Ек = mu 2 /2 – кинетическая энергия

Еп = kX 2/ /2 – потенциальная энергия

Из закона сохранения энергии следует, что полная механическая энергия замкнутой системы – есть величина постоянная:

Ек + Еп = Е

u = dX/dt = ( A sin wt) = A cos wt u = Aw

a = d 2 X/dt 2 = du/dt (Acos wt) = -Aw 2 sin wt a = Aw 2

Кинетическая энергия точки:

Ek = mA 2 cos 2 w t

Потенциальная энергия точки:

Еп = kA 2 /2 здесь: k = m w 2 так как k = ma /X = mA 2 w 2 /X

Еп =mA 2 w 2 sin 2 w t

Ек = mA 2 w 2 sin 2 w t

2

Ек + Еп = mA 2 w 2 (sin 2 wt + cos 2 wt)

Учитывая, что выражение в скобках равно единице, окончательно получим значение полной механической энергии колеблющейся точки

Е = mA 2 w 2

в) Сложение гармонических колебаний

Гармонические колебания можно сложить как в одном направлении, так и во взаимно перпендикулярных направлениях. Рассмотрим сложение колебаний в одном направлении. Возьмём простейший случай, когда складываются колебания одинаковой частоты, совпадающих по фазе. В этом случае будут складываться их амплитуды:

В уравнение гармонического колебания x acos wt величина стоящая под знаком

Если складываются колебания, находящиеся в противофазе, то их амплитуды будут вычитаться. При одинаковых амплитудах, колебания вообще погасят друг друга:

В уравнение гармонического колебания x acos wt величина стоящая под знаком

Если колебания складываются во взаимно перпендикулярном направлении, то колеблющаяся точка будет на плоскости выписывать сложную траекторию. Если частоты этих колебаний будут относиться как целые числа, то траектория будет иметь вид устойчивой кривой, которая называется фигурой Лиссажу:

В уравнение гармонического колебания x acos wt величина стоящая под знакомВ уравнение гармонического колебания x acos wt величина стоящая под знаком

г) Гармонический спектр

Если в одном направлении складываются колебания разных частот, то точка будет совершать сложные колебания, график которых будет представлять очень замысловатый вид, изобразить который графически бывает очень трудно. Существует ещё один способ графического изображения колебательного движения.

Французский математик Фурье доказал, что периодический процесс любой формы можно разложить на простые гармонические колебания. В связи с этим, графически колебания можно изобразить гармоническим спектром. По горизонтальной оси откладывается частота, а по вертикальной – амплитуда. Таким образом, гармонический спектр простого синусоидального колебания представляет собой отрезок прямой, перпендикулярный оси частот. Положение отрезка по горизонтали определяется частотой, а длина отрезка – амплитудой колебания.

В уравнение гармонического колебания x acos wt величина стоящая под знаком

Спектр сложного колебания представляет собой несколько линий.

Во многих случаях колебания изображать гармоническим спектром удобнее и проще, чем их графиком.

д) Затухающие колебания

В идеальном случае в колебательной системе происходит обмен кинетической и потенциальной энергии, причём, потерь энергии на трение нет. Поэтому, амплитуда колебания остаётся постоянной. В реальных же условиях при каждом цикле часть энергии переходит во внутреннюю, поэтому амплитуда колебания постепенно уменьшается по экспоненциальному закону:

Х = Aoe – bt sinwt гдe b– коэффициент затухания

График затухающего колебания имеет вид:

В уравнение гармонического колебания x acos wt величина стоящая под знаком

Дата добавления: 2014-01-05 ; Просмотров: 3739 ; Нарушение авторских прав? ;

Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет

Ответ оставил Гость

Решение: 1. запишем уровнение гк – X = Xmax * cos (wt + Фи(0)

2. выразим Омегу (w) через период (Т) : w = 2Пи/ T => w = 4*2Пи/10 = 4Пи/5 или

6.28 / 2.4 = 2,616. 7

3. подставляем в уравнение Х = 0.05*cos(4Пи/5 * 0.6)

Видео:Физика. 11 класс. Уравнение и графика гармонических колебаний /03.09.2020/Скачать

Физика. 11 класс. Уравнение и графика гармонических колебаний /03.09.2020/

Гармонические Колебания

Механическое гармоническое колебание – это прямолинейное неравномерное движение, при котором координаты колеблющегося тела (материальной точки) изменяются по закону косинуса или синуса в зависимости от времени.

Согласно этому определению, закон изменения координаты в зависимости от времени имеет вид:

В уравнение гармонического колебания x acos wt величина стоящая под знакомгде wt – величина под знаком косинуса или синуса; w – коэффициент, физический смысл которого раскроем ниже; А – амплитуда механических гармонических колебаний.

Уравнения (4.1) являются основными кинематическими уравнениями механических гармонических колебаний.

Рассмотрим следующий пример. Возьмем ось Ох (рис. 64). Из точки 0 проведем окружность с радиусом R = А. Пусть точка М из положения 1 начинает двигаться по окружности с постоянной скоростью v (или с постоянной угловой скоростью w , v = wА ). Через некоторое время t радиус повернется на угол ф: ф=wt .

При таком движении по окружности точки М ее проекция на ось х М х будет совершать движение вдоль оси х, координата которой х будет равна х = А • cos ф = = А • cos wt . Таким образом, если материальная точка движется по окружности радиусом А, центр которой совпадает с началом координат, то проекция этой точки на ось х (и на ось у) будет совершать гармонические механические колебания.

Если известна величина wt, которая стоит под знаком косинуса, и амплитуда А, то можно определить и х в уравнении (4.1).

Величину wt, стоящую под знаком косинуса (или синуса), однозначно определяющую координату колеблющейся точки при заданной амплитуде, называют фазой колебания . Для точки М, движущейся по окружности, величина w означает ее угловую скорость. Каков физический смысл величины w для точки М х , совершающей механические гармонические колебания? Координаты колеблющейся точки М х одинаковы в некоторый момент времени t и (Т +1) (из определения периода Т), т. е. A cos wt = A cos w (t + Т), а это значит, что w (t + Т) – wt = 2 ПИ (из свойства периодичности функции косинуса). Отсюда следует, что

В уравнение гармонического колебания x acos wt величина стоящая под знаком

В уравнение гармонического колебания x acos wt величина стоящая под знаком

Следовательно, для материальной точки, совершающей гармонические механические колебания, величину w можно интерпретировать как количество колебаний за определенный цикл времени, равный 2л . Поэтому величину w назвали циклической (или круговой) частотой .

Если точка М начинает свое движение не из точки 1 а из точки 2, то уравнение (4,1) примет вид:

В уравнение гармонического колебания x acos wt величина стоящая под знаком

Величину ф 0 называют начальной фазой .

Скорость точки М х найдем как производную от координаты по времени:

В уравнение гармонического колебания x acos wt величина стоящая под знаком

Ускорение точки, колеблющейся по гармоническому закону, определим как производную от скорости:

В уравнение гармонического колебания x acos wt величина стоящая под знаком

Из формулы (4.4) видно, что скорость точки, совершающей гармонические колебания, изменяется тоже по закону косинуса. Но скорость по фазе опережает координату на ПИ/2 . Ускорение при гармоническом колебании изменяется по закону косинуса, но опережает координату по фазе на п . Уравнение (4.5) можно записать через координату х:

В уравнение гармонического колебания x acos wt величина стоящая под знаком

Ускорение при гармонических колебаниях пропорционально смещению с противоположным знаком. Умножим правую и левую части уравнения (4.5) на массу колеблющей материальной точки т, получим соотношения:

В уравнение гармонического колебания x acos wt величина стоящая под знаком

Согласно второму закону Ньютона, физический смысл правой части выражения (4.6) есть проекция силы F x , которая обеспечивает гармоническое механическое движение:

В уравнение гармонического колебания x acos wt величина стоящая под знаком

Величина F x пропорциональна смещению х и направлена противоположно ему. Примером такой силы является сила упругости, величина которой пропорциональна деформации и противоположно ей направлена (закон Гука).

Закономерность зависимости ускорения от смещения, вытекающую из уравнения (4.6), рассмотренную нами для механических гармонических колебаний, можно обобщить и применить при рассмотрении колебаний другой физической природы (например, изменение тока в колебательном контуре, изменение заряда, напряжения, индукции магнитного поля и т. д.). Поэтому уравнение (4.8) называют основным уравнением динамики гармонических колебаний .

Рассмотрим движение пружинного и математического маятников.

Пусть к пружине (рис. 63), расположенной горизонтально и закрепленной в точке 0, одним концом прикреплено тело массой т, которое может перемещаться вдоль оси х без трения. Коэффициент жесткости пружины пусть будет равен k. Выведем тело m внешней силой из положения равновесия и отпустим. Тогда вдоль оси х на тело будет действовать только упругая сила, которая согласно закону Гука, будет равна: F yпp = -kx.

Уравнение движения этого тела будет иметь вид:

В уравнение гармонического колебания x acos wt величина стоящая под знаком

Сравнивая уравнения (4.6) и (4.9), делаем два вывода:

  1. Движение тела на пружине будет происходить по гармоническому закону, т. е. тело m будет совершать механические гармонические колебания;
  2. Сравнивая коэффициенты перед х уравнений (4.6) и (4.9), заключаем, что циклическая частота этих гармонических колебаний будет равна: В уравнение гармонического колебания x acos wt величина стоящая под знаком

Из формул (4.2) и (4.10) выводим формулу для периода колебаний груза на пружине:

В уравнение гармонического колебания x acos wt величина стоящая под знаком

Математическим маятником называется тело массой т, подвешенное на длинной нерастяжимой нити пренебрежимо малой массы. В положении равновесия на это тело будут действовать сила тяжести и сила упругости нити. Эти силы будут уравновешивать друг друга.

Если нить отклонить на угол а от положения равновесия, то на тело действуют те же силы, но они уже не уравновешивают друг друга, и тело начинает двигаться по дуге под действием составляющей силы тяжести, направленной вдоль касательной к дуге и равной mg sin a .

Уравнение движения маятника принимает вид:

В уравнение гармонического колебания x acos wt величина стоящая под знаком

Знак минус в правой части означает, что сила F x = mg sin a направлена против смещения. Гармоническое колебание будет происходить при малых углах отклонения, т. е. при условии а 2* sin a .

Заменим sin а в уравнении (4.12), получим следующее уравнение:

В уравнение гармонического колебания x acos wt величина стоящая под знаком

Уравнение (4.13) показывает, что ускорение колебания маятника прямо пропорционально смещению и противоположно ему направлено. Следовательно, маятник будет совершать механические гармонические колебания с циклической частотой

В уравнение гармонического колебания x acos wt величина стоящая под знаком

и поэтому, согласно уравнению (4.2), период колебаний его будет равен:

В уравнение гармонического колебания x acos wt величина стоящая под знаком

Превращение энергии при гармонических механических колебаниях рассмотрим на примере пружинного маятника. В любой момент времени полная энергия колеблющегося груза (Е полн ) будет состоять из кинети-

В уравнение гармонического колебания x acos wt величина стоящая под знаком

Полная энергия при гармонических механических колебаниях пропорциональна квадрату амплитуды и квадрату циклической частоты.

В уравнение гармонического колебания x acos wt величина стоящая под знаком

В уравнение гармонического колебания x acos wt величина стоящая под знаком

На рис. 65 качественно изображены графики зависимостей потенциальной и кинетической энергии пружинного маятника от координаты х.

На рис. 66 представлены качественные графики зависимостей кинетической и потенциальной энергии от времени.

За начальный момент времени принято положение тела, максимально отклоненное от положения равновесия. Частота колебания потенциальной и кинетической энергии в два раза больше, чем частота колебания движущегося тела.

Видео:Физика 9 класс (Урок№11 - Гармонические колебания. Затухающие колебания. Резонанс.)Скачать

Физика 9 класс (Урок№11 - Гармонические колебания. Затухающие колебания. Резонанс.)

Гармонические колебания

теория по физике 🧲 колебания и волны

Гармоническими законами называют законы синуса и косинуса. Следовательно, гармоническими колебаниями называют те колебания, при которых координата тела изменяется синусоидально или косинусоидально.

Гармонические колебания — колебания, при которых координата тела изменяется с течением времени по гармоническому закону.

Ниже представлен график косинусоидальной функции. Обратите внимание, что косинус при возрастании аргумента от нуля сначала меняется медленно, а потом он все быстрее и быстрее приближается к нулю. Пройдя через него, его модуль снова быстро возрастает. Но по мере приближения к максимальному значению он снова замедляется. Точно так же меняются координаты свободно колеблющегося тела.

В уравнение гармонического колебания x acos wt величина стоящая под знаком

Важно! Гармоническими можно считать только те колебания, что совершаются грузом, закрепленном на пружине, или математическим маятником, отклоняемым на малый угол, при котором ускорение тела пропорционально его смещению.

Видео:Физика ЦТ | Механические колебания. Часть1. Уравнение колебаний гармонического осциллятораСкачать

Физика ЦТ | Механические колебания. Часть1. Уравнение колебаний гармонического осциллятора

Уравнение движения гармонических колебаний

Известно, что ускорение колеблющегося на пружине груза пропорционально его смещению от положения равновесия:

Также известно, что ускорение есть вторая производная координаты. Следовательно, при свободных колебаниях координата изменяется со временем так, что вторая производная координаты по времени прямо пропорциональна самой координате и противоположна ей по знаку.

Вид — группа особей, сходных по морфолого-анатомическим, физиолого-экологическим, биохимическим и генетическим признакам, занимающих естественный ареал, способных свободно скрещиваться между собой и давать плодовитое потомство.

x″ = − x m a x cos . t = − x

Видно, что в этом случае теряется величина k m . . , служащая постоянной для каждой колебательной системы. Чтобы получить ее во второй производной, нужно усложнить функцию до следующего вида:

x = x m a x cos . √ k m . . t

Тогда первая производная примет

Вид — группа особей, сходных по морфолого-анатомическим, физиолого-экологическим, биохимическим и генетическим признакам, занимающих естественный ареал, способных свободно скрещиваться между собой и давать плодовитое потомство.

x′ = − √ k m . . x m a x sin . √ k m . . t

Вторая производная примет вид:

x″ = − k m . . x m a x cos . √ k m . . t = − k m . . x

Так как мы получили ровно такое же выражение, то описать свободные колебания можно уравнениями следующего вида:

x = x m a x sin . √ k m . . t

x = x m a x cos . √ k m . . t

Обозначим постоянную величину √ k m . . , зависящую от свойств системы, за ω0:

x = x m a x sin . ω 0 t

x = x m a x cos . ω 0 t

Само уравнение движения, описывающего свободные колебания, примет вид:

Видео:Физика 9 класс. §25 Гармонические колебанияСкачать

Физика 9 класс. §25 Гармонические колебания

Период и частота гармонических колебаний

Минимальный промежуток времени T, через который движение тела полностью повторяется, называют периодом колебания. Зная его, можно вычислить частоту колебаний, равную числу колебаний в единицу времени. Эти величины связаны между собой выражением:

Через промежуток времени, равный периоду T и соответствующий изменению аргумента косинуса на ω 0 T , движение тела повторяется, и косинус принимает прежнее значение. Но из математики известно, что наименьший период косинуса равен 2π. Следовательно:

ω 0 = 2 π T . . = 2 π ν

Таким образом, величина ω 0 представляет собой число колебаний тела, но не за 1 секунду, а за 2 π секунд. Эта величина называется циклической (круговой) частотой. А частоту свободных колебаний называют собственной частотой колебательной системы.

Видео:Урок 335. Анализ графика гармонических колебанийСкачать

Урок 335. Анализ графика гармонических колебаний

Зависимость частоты и периода свободных колебаний от свойств системы

Изначально за величину ω 0 мы принимали постоянную, характеризующую свойства системы:

Теперь мы выяснили, что циклическая частота связана с периодом и частотой колебаний. Следовательно, период и частота колебаний также зависят от свойств системы:

ω 0 = √ k m . . = 2 π T . . = 2 π ν

Отсюда период и частота колебаний соответственно равны:

T = 2 π ω 0 . . = 2 π √ m k . .

ν = 1 2 π . . √ k m . .

Вспомним, что свойства колебательной системы математического маятника определяются постоянной величиной g l . . . Следовательно, циклическая частота для него равна:

Отсюда период и частота колебаний математического маятника соответственно равны:

T = 2 π ω 0 . . = 2 π √ l g . .

ν = 1 2 π . . √ g l . .

Эта формула была впервые получена и проверена на опыте голландским ученым Г. Гюйгенсом, современником И. Ньютона.

Период колебания возрастает с увеличением длины маятника. От массы маятника он не зависит. Это легко проверить на опыте с различными маятниками. Зависимость периода от ускорения свободного падения также легко прослеживается. Чем меньше величина g, тем больше период колебания маятника, и, следовательно, тем медленнее идут часы с маятником. Так, часы с маятником в виде груза на стержне отстанут в сутки почти на 3 с, если их поднять из подвала на верхний этаж Московского университета, который находится на высоте 200 м. И это только за счет уменьшения ускорения свободного падения с высотой.

Зависимость периода колебаний маятника от значения g используется на практике. Измеряя период колебания, можно легко измерить g. Ускорение свободного падения меняется с географической широтой. Но и на данной широте оно неодинаково, так как плотность земной коры неоднородна. В районах, где залегают более плотные породы, ускорение свободного падения принимает большие значения.

Пример №1. Сколько колебаний совершает математический маятник длиной 4,9 м за время 5 минут?

Искомое число колебаний равно отношению времени к периоду колебаний:

Период колебаний для математического маятника определяется формулой:

N = t 2 π . . √ g l . . = 300 2 · 3 , 14 . . √ 9 , 8 4 , 9 . . ≈ 68

Видео:Гармонические колебания. Физика 11 классСкачать

Гармонические колебания. Физика 11 класс

Фаза колебаний

При заданной амплитуде гармонических колебаний координата колеблющегося тела в любой момент времени однозначно определяется аргументом косинуса или синуса, который равен ω 0 t . Обозначим его за ϕ и получим:

Величину ϕ, стоящую под знаком косинуса или синуса, называют фазой колебаний, описываемой этой функцией. Выражается фаза в угловых единицах — радианах (рад).

Фаза определяет значение не только координаты, но и других физических величин (к примеру, скорости и ускорения, которые также изменяются по гармоническому закону). Отсюда можно сделать вывод, что фаза определяет при заданной амплитуде состояния колебательной системы в любой момент времени.

Колебания с одинаковыми частотами и амплитудами могут отличаться друг от друга фазами. Так как ω 0 = 2 π T . . , фаза определяется формулой:

ϕ = ω 0 t = 2 π t T . .

t T . . — отношение, которое указывает, какая часть периода прошла от момента начала колебаний. Любому моменту времени, выраженному в долях периода, соответствует значение фазы, выраженное в радианах. К примеру:

Можно изобразить на графике зависимость координаты колеблющейся точки не от времени, а от фазы. В этом случае графиком также будет являться косинусоида (или синусоида), но аргументом функции будет не время (период), а фаза, выражающаяся в радианах (см. рис.).

В уравнение гармонического колебания x acos wt величина стоящая под знаком

Синус от косинуса отличается только смещением аргумента на π 2 . . (см. рис. ниже). Поэтому для описания гармонических колебаний можно использовать как синусоидальный, так и косинусоидальный закон.

В уравнение гармонического колебания x acos wt величина стоящая под знаком

Выбор закона зависит от условий задачи. Если колебания начинаются с того, что тело выводят из положения равновесия и отпускают, удобнее пользоваться косинусоидальным законом, поскольку в начальный момент времени косинусоида показывает, что это тело отклонено максимально, а не находится в положении равновесия. Если для того чтобы начались колебания, совершают толчок, удобнее использовать синусоидальный закон, так как начальному моменту времени на синусоиде соответствует положение равновесия.

Колебания, совершаемые по закону синуса и косинуса, отличаются только фазой, которая смещена на значение, равное π 2 . . . Это значение называют сдвигом фаз, или их разностью. Поэтому косинусоидальная функция также может быть записана как:

x = x m a x cos . ω 0 t = x m a x sin . ( ω 0 t + π 2 . . )

Видео:Урок 329. Задачи на гармонические колебания - 1Скачать

Урок 329. Задачи на гармонические колебания - 1

Превращение энергии при гармонических колебаниях

Чтобы описать превращения энергии при гармонических колебаниях, условимся, что силой трения будем пренебрегать. Для описания обратимся к рисунку ниже.

В уравнение гармонического колебания x acos wt величина стоящая под знаком

Точке О на рисунке соответствует положение равновесия шарика. Если его оттянуть на расстояние xmax, равное амплитуде, пружина получит потенциальную энергию, которая примет в этом положении максимальное значение, равное:

W p m a x = k x 2 m a x 2 . .

Когда шарик отпускают, возникает сила упругости, под действием которой шарик устремляется влево. По мере уменьшения расстояния между точкой максимального отклонения и положением равновесия уменьшается и потенциальная энергия. Но в это время увеличивается кинетическая энергия шарика. Когда шарик проходит через положение равновесия в первый раз, его потенциальная энергия становится равной нулю, а кинетическая энергия обретает максимальное значение (скорость в этот момент времени тоже максимальна):

W k m a x = m v 2 m a x 2 . .

После прохождения точки О расстояние между шариком и положением равновесия снова увеличивается, и потенциальная энергия растет. Кинетическая же энергия при этом уменьшается. А в крайнем положении слева она становится равной нулю, в то время как потенциальная энергия снова примет максимальное значение.

Так как мы условились пренебрегать трением, данную колебательную систему можно считать изолированной. Тогда в ней должен соблюдаться закон сохранения энергии. Согласно ему, полная механическая энергия системы равна:

W = W p + W k = k x 2 x 2 . . + m v 2 x 2 . . = k x 2 m a x 2 . . = m v 2 m a x 2 . .

В действительности свободные колебания всегда затухают, так как в колебательной системе действует сила трения. И часть механической энергии рассеивается в виде тепла. Пример графика затухающих колебаний выглядит следующим образом:

В уравнение гармонического колебания x acos wt величина стоящая под знаком

Пример №2. Груз, прикрепленный к пружине, колеблется на горизонтальном гладком стержне. Найдите отношение кинетической энергии груза к его потенциальной энергии системы в момент, когда груз находится в точке, расположенной посередине между крайним положением и положением равновесия.

Так как груз находится посередине между крайним положением и положением равновесия, его координата равна половине амплитуды:

В это время потенциальная энергия груза будет равна:

W p = k x 2 2 . . = k ( x m a x 2 . . ) 2 2 . . = k x 2 m a x 8 . .

Согласно закону сохранения энергии, кинетическая энергия в это время равна:

Полная механическая энергия системы равна максимальной потенциальной энергии:

W = W p m a x = k x 2 m a x 2 . .

Тогда кинетическая энергия равна:

W k = k x 2 m a x 2 . . − k x 2 m a x 8 . .

Следовательно, отношение кинетической энергии к потенциальной будет выглядеть так:

W k W p . . = k x 2 m a x 2 . . − k x 2 m a x 8 . . k x 2 m a x 8 . . . . = k x 2 m a x 2 . . 8 k x 2 m a x . . − 1 = 4 − 1 = 3

Видео:КАК РЕШАТЬ ТРИГОНОМЕТРИЧЕСКИЕ УРАВНЕНИЯ? // УРАВНЕНИЕ COSX=AСкачать

КАК РЕШАТЬ ТРИГОНОМЕТРИЧЕСКИЕ УРАВНЕНИЯ? // УРАВНЕНИЕ COSX=A

Резонанс

Самый простой способ возбуждения незатухающих колебаний состоит в том, что на систему воздействуют внешней периодической силой. Такие колебания называют вынужденными.

Работы силы над такой системой обеспечивает приток энергии к системе извне. Приток энергии не дает колебаниям затухнуть, несмотря на действие сил трения.

Особый интерес вызывают вынужденные колебаний в системе, способной совершать свободные колебания. Примером такой системы служат качели. Их не получится отклонить на большой угол всего лишь одним толчком. Если их толкать то в одну, то в другую сторону, тоже ничего не получится. Но если подталкивать качели всякий раз, как они сравниваются с нами, можно раскачать их очень сильно. При этом не нужно прикладывать большую силу, но на это понадобится время. Причем после каждого такого толчка амплитуда колебаний качелей будет увеличиваться до тех пор, пока не достигнет своего максимального значения. Такое явление называется резонансом.

Резонанс — резкое возрастание амплитуды вынужденных колебаний при совпадении частоты изменения внешней силы, действующей на систему, с частотой свободных колебаний.

В уравнение гармонического колебания x acos wt величина стоящая под знаком

Графически явление резонанса можно изобразить как резкий скачок графика вверх (см. рис. выше). Причем высота «зубца», или амплитуда колебаний, будет зависеть от величины сил трения. Чем больше сила трения, тем меньше при резонансе возрастает амплитуда вынужденных колебаний. Это можно продемонстрировать графиками на рисунке ниже. Графику 1 соответствует минимальное трение, графику 3 — максимальное.

В уравнение гармонического колебания x acos wt величина стоящая под знаком

На явлении резонанса основан принцип работы частотомера — устройства, предназначенного для измерения частоты переменного тока. Он состоит из набора упругих пластин, которые закреплены на одной планке. Каждая пластина обладает определенной собственной частотой колебаний, которая зависит от упругих свойств, длины и массы. Собственные колебания пластин известны. Под действием электромагнита планка, а вместе с ней и пластины совершают вынужденные колебания. Но лишь та пластина, собственная частота которой совпадает с частотой колебаний планки, будет иметь большую амплитуду колебаний. Таким образом, определяется частота переменного тока.

Пример №3. Автомобиль движется по неровной дороге, на которой расстояние между буграми равно приблизительно 8 м. Период свободных колебаний автомобиля на рессорах 1,5 с. При какой скорости автомобиля его колебания в вертикальной плоскости станут особенно заметными?

Колебания автомобиля в вертикальной плоскости будут заметны тогда, когда частота наезда на бугры сравняется с частотой свободных колебаний автомобиля на рессорах. Поскольку частота обратно пропорциональна периоду, можно сказать, что резонанс будет достигнут тогда, когда автомобиль будет наезжать на бугры каждые 1,5 секунды. Зная расстояние между буграми и время, можем вычислить скорость:

v = s t . . = 8 1 , 5 . . ≈ 5 , 33 ( м с . . ) ≈ 19 , 2 ( к м ч . . )

Смещение груза пружинного маятника меняется с течением времени по закону x = A cos . 2 π T . . t , где период Т = 1 с. Через какое минимальное время, начиная с момента t = 0, потенциальная энергия маятника вернется к своему исходному значению?

💡 Видео

Физика 10 класс. Гармонические колебания. Решение задачСкачать

Физика 10 класс. Гармонические колебания. Решение задач
Поделиться или сохранить к себе:
Время, t (с)0
Фаза, ϕ (рад)0