В каких случаях уравнение состояния применимо к реальным газам ответ

Видео:Уравнение состояния идеального газа. 10 класс.Скачать

Уравнение состояния идеального газа. 10 класс.

Каким образом можно проверить применимость уравнения состояния идеального газа для описания свойств реальных газов?

Видео:Урок 156. Уравнение состояния идеального газа. Квазистатические процессыСкачать

Урок 156. Уравнение состояния идеального газа. Квазистатические процессы

Ваш ответ

Видео:ЕГЭ. Физика. Уравнение состояния идеального газа. ПрактикаСкачать

ЕГЭ. Физика. Уравнение состояния идеального газа. Практика

решение вопроса

Видео:Уравнение состояния идеального газаСкачать

Уравнение состояния идеального газа

Похожие вопросы

  • Все категории
  • экономические 43,414
  • гуманитарные 33,633
  • юридические 17,906
  • школьный раздел 608,054
  • разное 16,856

Популярное на сайте:

Как быстро выучить стихотворение наизусть? Запоминание стихов является стандартным заданием во многих школах.

Как научится читать по диагонали? Скорость чтения зависит от скорости восприятия каждого отдельного слова в тексте.

Как быстро и эффективно исправить почерк? Люди часто предполагают, что каллиграфия и почерк являются синонимами, но это не так.

Как научится говорить грамотно и правильно? Общение на хорошем, уверенном и естественном русском языке является достижимой целью.

Видео:Физика 10 класс (Урок№20 - Уравнение состояния идеального газа. Газовые законы.)Скачать

Физика 10 класс (Урок№20 - Уравнение состояния идеального газа. Газовые законы.)

Уравнения состояния реальных газов

Вопрос №1

Идеальный газ. Законы идеальных газов

Идеальным называется газ, у которого объемы молекул беско­нечно малы и отсутствуют силы межмолекулярного взаимодей­ствия. Молекулы идеального газа представляют собой материаль­ные точки, взаимодействие между которыми ограничено молеку­лярными соударениями.

Любой реальный газ тем ближе к идеальному, чем ниже его давление и выше температура. Например, окружающий нас воз­дух можно считать идеальным газом. Понятие идеального газа и законы идеальных газов полезны в качестве предела законов реального газа.

Изм.
Лист
№ докум.
Подпись
Дата
Лист

На практике часто приходится иметь дело с газами при невы­соких давлениях, поэтому расчеты различных термодинамических процессов с достаточной степенью точности можно проводить по уравнениям идеального газа.

Закон Авогадро

Согласно этому закону, все газы при одинаковых температу­рах и одинаковом давлении содержат в одном и том же объеме оди­наковое число молекул. Большую техническую значимость имеет следствие из закона Авогадро: объемы киломолей различных га­зов равны, если они находятся при одинаковых температурах и давлениях. При нормальных физических условиях (Т= 273,15 К, р = 760 мм рт. ст.) объем киломоля любого вещества равен Vµ=µν=22,4 м 3 /кмоль.Напомним, что киломолем называется количество вещества в килограммах, численно равное его молекулярной массе.

Этот закон был открыт независимо друг от друга английским физиком Р. Бойлем и французским ученым Э. Мариоттом. Ими было доказано, что при постоянной температуре газа произведе­ние давления газа на его объем есть величина постоянная, т.е. при

рV= const и рv = const.

Закон Гей-Люссака

Этот закон устанавливает, что если в процессе нагрева или охлаждения газа давление подцерживается постоянным, то объем изменяется пропорционально абсолютной температуре, т.е. если

Р = const, то и v/ Т = const.

Если же мы рассмотрим процесс нагрева или охлаждения газа в сосуде постоянного объема (v= const), то р/Т = const.

Уравнение состояния идеального газа

Для 1 кг газа Клапейроном установлено уравнение состояния рv = RT, в котором газовая постоянная Rимеет для каждого газа свое постоянное значение. Измеряется Rв Дж/кг-К и имеет вполне определенный физический смысл — это работа, совершаемая 1 кг газа при его нагреве на один кельвин при постоянном давлении. Для газа с произвольной массой M/(кг) уравнение состояния имеет вид

Для одного киломоля вещества уравнение состояния (получе­но Д.И. Менделеевым) имеет вид рVµ =µRT, где µR— универсаль­ная газовая постоянная, которая одинакова для всех газов и равна 8314 Дж/кмольК.

Во всех этих уравнениях давление подставляется в Па, темпе­ратура — в К, объем — в м 3 и удельный объем — в м 3 /кг.

В резервуаре объемом 10 м 3 находится азот при из­быточном давлении 100 кПа и при температуре 27 °С. Атмосфер­ное давление равно 750 мм рт. ст. Требуется найти массу и плот­ность азота.

Выразим атмосферное давление в паскалях: рб = 10 5 Па.

Абсолютное давление газа равно:p =риб = 100 • 10 3 + 10 5 = = 2 • 10 5 Па.

Газовая постоянная азота равна (µ = 28 кг/кмоль)

R = 8314/28 = 297 Дж/кгЧК. Масса газа равна

М =рV/RT= 2*10 5* 10/297 • (273,15 + 27) = 22,43 кг.

р = M/V= 22,43/10 = 2,243 кг/м 3 .

Изм.
Лист
№ докум.
Подпись
Дата
Лист

РЕАЛЬНЫЕ ГАЗЫ

Свойства реальных газов

Свойства реальных газов значительно отличаются от свойств идеальных газов, причем отличия тем значительнее, чем выше дав­ление и ниже температура газа. Это объясняется тем, что молеку­лы реальных газов имеют конечный объем и между ними существу­ют силы межмолекулярного взаимодействия. Уравнение состояния 1 кг реального газа имеет вид

где z= φ(р, T) — коэффициент сжимаемости, который может быть как больше, так и меньше единицы.

При проведении термодинамических расчетов с реальными газами нужно учитывать зависимость внутренней энергии, энталь­пии и теплоемкости не только от температуры, но и от давления газа. При одном и том же давлении какое-либо вещество в зависи­мости от температуры может находиться в разных состояниях.

Из физики известно, что любое вещество может находиться в твердом, жидком или газообразном состоянии. Эти состояния бу­дем называть фазами, а процесс перехода из одного состояния в другое — фазовым переходом.

При определенных условиях могут существовать одновремен­но две фазы вещества, например, лед и жидкость, пар и жидкость. Если пар и жидкость находятся в состоянии равновесия, то пар называется насыщенным.

У всех веществ фазовые переходы происходят при определен­ных физических параметрах, поэтому рассмотрение свойств реаль­ных газов можно начать на примере вещества, которое является основным рабочим телом в циклах тепловых электростанций, в том числе и атомных. Этим рабочим телом является вода, и не только потому, что она относительно дешева и нетоксична, а потому, что она обладает благоприятными для работы термодинамическими свойствами.

Рассмотрим диаграмму «v—p» воды и во­дяного пара, на которой изобразим грани­цы между фазами (рис. 1.1). В области а нахо­дится в равновесии смесь льда и некипящей воды, в области Ь находится некипящая вода, в области с находится смесь кипящей воды и водяного пара, в области d— перегретый во­дяной пар. Прямой 1-2 показан изобарный процесс подвода теплоты.

Показанные на рис. 1.1 кривые называют­ся пограничными; кривые, ограничивающие с двух сторон область с, называются левой и правой пограничными кривыми. Им соответствуют кипящая вода (левой) и сухой насы­щенный пар (правой). Область между этими кривыми называется областью влажного насыщенного пара — в этой области находятся в равновесии сухой насыщенный пар и кипящая вода. Смесь сухо­го насыщенного пара и кипящей воды называют влажным насы­щенным паром. Масса влажного насыщенного пара равна

где М’ — масса кипящей воды и М» — масса сухого насыщенного пара.

В дальнейшем все параметры, относящиеся к кипящей жидкости, будут иметь индекс «штрих» (р’, h’и т.д.), а все параметры, от­носящиеся к сухому насыщенному пару,— индекс «два штри­ха» (р’, h» и т.д.).

Температуру и давление насыщенного пара принято обозна­чать Тн и рн. В то же время в ряде литературных источников их обозначают Тs и рs (буква s является первой буквой английского слова sаturation — насыщение). Отношение массы сухого насыщен­ного пара к общей массе влажного насыщенного пара называется степенью сухости и обозначается х. Ясно, что на левой погранич­ной кривой х = 0, а на правой — х = 1. Разность <1-х) называется степенью влажности.

Чем выше давление пара, тем меньше расстояние по горизон­тали между левой и правой пограничными кривыми, а при определенном давлении пара эти кривые смыкаются. Точка, в которой исчезают различия в свойствах кипящей жидкости и сухого насы­щенного пара, называется критической (точка к на рис. 1.1).

Термические параметры различных веществ в критической точке различны. Эти параметры для ряда химических веществ приведе­ны в табл. 1

Изм.
Лист
№ докум.
Подпись
Дата
Лист

Таблица 1 Критические параметры веществ

ВеществоTкр, Кpкр,МПаρкр, кг/м 3
Азот N23,40
Водород Н233,21,29
Водяной пар H2O647,1222,115
Кислород О25,05
Ртуть Нg
Диоксид углерода СО27,38

При сверхкритическом давлении не может быть влажного на­сыщенного пара. Если давление пара больше критического и по­стоянно по величине (р > ркр), то при подводе (или отводе) тепло­ты физические параметры (удельный объем, энтальпия и др.) меня­ются плавно, в то же время наблюдается резкое изменение тепло-емкостей сp исvв тех процессах, где сверхперегретая вода перехо­дит в сверхперегретый водяной пар.

Уравнения состояния реальных газов

Известно значительное число уравнений состояния реальных газов, и одна из самых удачных попыток была сделана Ван-дер-Ваальсом, который получил уравнение в виде

Слагаемое a/v 2 учитывает внутреннее давление, обусловлен­ное силами взаимодействия молекул газа, а величина b— умень­шение объема, в котором движутся молекулы реального газа. Если по этому уравнению находить величины удельных объе­мов реальных газов, то уравнение (1) имеет три действительных корня при Т Ткр . Точность вычислений по этому уравнению невелика.

В самой общей форме уравнение состояния реальных газов имеет вид

В каких случаях уравнение состояния применимо к реальным газам ответ(2)

где 𝛽k — вириальные коэффициенты, зависящие от температуры газа.

Число членов ряда в уравнении (2) может быть достаточно велико, поэтому расчеты по этому уравнению вызывают значитель­ные трудности.

Изм.
Лист
№ докум.
Подпись
Дата
Лист

Изохорный процесс – это процесс сообщения или отнятия теплоты от газа при постоянном объеме v=const.

В каких случаях уравнение состояния применимо к реальным газам ответ

Этот процесс используется как подготовительный процесс в циклах.

Соотношение между параметрами для конечного участка процесса 1-2 определяется законом Шарля: В каких случаях уравнение состояния применимо к реальным газам ответ, который следует из уравнений состояния для точек 1 и 2:

В каких случаях уравнение состояния применимо к реальным газам ответи В каких случаях уравнение состояния применимо к реальным газам ответпри В каких случаях уравнение состояния применимо к реальным газам ответ.

Поскольку работа расширения в этом процессе равна нулю: В каких случаях уравнение состояния применимо к реальным газам ответ, т.к. В каких случаях уравнение состояния применимо к реальным газам ответ, то из уравнения 1-го закона термодинамики следует, что:

В каких случаях уравнение состояния применимо к реальным газам ответ.

Таким образом, подведенная к газу в изохорном процессе теплота целиком идет на увеличение его внутренней энергии. Для ТП В каких случаях уравнение состояния применимо к реальным газам ответкоэффициент распределения теплоты В каких случаях уравнение состояния применимо к реальным газам ответ, теплоемкость В каких случаях уравнение состояния применимо к реальным газам ответи показатель политропы:

В каких случаях уравнение состояния применимо к реальным газам ответ.

Изм.
Лист
№ докум.
Подпись
Дата
Лист

Изобарный процесс – это процесс сообщения или отнятия теплоты от газа при постоянном давлении р=const.

В каких случаях уравнение состояния применимо к реальным газам ответ

Соотношение между параметрами в процессе р=const: В каких случаях уравнение состояния применимо к реальным газам ответ— закон Гей-Люссака, т.к.: В каких случаях уравнение состояния применимо к реальным газам ответ, В каких случаях уравнение состояния применимо к реальным газам ответи В каких случаях уравнение состояния применимо к реальным газам ответ.

Работа расширения В каких случаях уравнение состояния применимо к реальным газам ответ. Т.к. В каких случаях уравнение состояния применимо к реальным газам ответ, то В каких случаях уравнение состояния применимо к реальным газам ответ.

Следовательно, удельная газовая постоянная R— это работа, совершаемая 1кг газа в процессе p=const при его нагревании на один градус. Размерность R: Дж/кгК. Уравнение 1-го закона термодинамики в этом случае имеем вид:

В каких случаях уравнение состояния применимо к реальным газам ответ.

Таким образом, вся теплота, подведенная к газу в изобарном процессе, расходуется на увеличение его энтальпии.

Коэффициент распределения теплоты в процессе р=const равен:

В каких случаях уравнение состояния применимо к реальным газам ответ, В каких случаях уравнение состояния применимо к реальным газам ответ.

В T-s координатах взаимное положение изобары и изохоры имеет вид:

Изм.
Лист
№ докум.
Подпись
Дата
Лист

В каких случаях уравнение состояния применимо к реальным газам ответ

В каких случаях уравнение состояния применимо к реальным газам ответ, В каких случаях уравнение состояния применимо к реальным газам ответ, т.е. изобара более пологая логарифмическая кривая в T-s координатах, чем изохора.

Изотермический процесс – это процесс сообщения или отнятия теплоты от газа при постоянной температуре

В каких случаях уравнение состояния применимо к реальным газам ответВ каких случаях уравнение состояния применимо к реальным газам ответ

При Т=const из уравнения состояния В каких случаях уравнение состояния применимо к реальным газам ответимеем: В каких случаях уравнение состояния применимо к реальным газам ответ— это уравнение изотермического процесса является уравнением равнобокой гиперболы.

Тогда В каких случаях уравнение состояния применимо к реальным газам ответ, и В каких случаях уравнение состояния применимо к реальным газам ответ— закон Бойля-Мариотта.

Из уравнения 1-го закона термодинамики В каких случаях уравнение состояния применимо к реальным газам ответпри В каких случаях уравнение состояния применимо к реальным газам ответимеем:

В каких случаях уравнение состояния применимо к реальным газам ответи q=l, т.е. вся теплота, сообщаемая газу в изотермическом процессе, целиком идет на работу расширения газа.

Изменение энтальпии в процессе T=const равно:

В каких случаях уравнение состояния применимо к реальным газам ответ.

Изм.
Лист
№ докум.
Подпись
Дата
Лист

Работа расширения В каких случаях уравнение состояния применимо к реальным газам ответ.

Коэффициент распределения теплоты

В каких случаях уравнение состояния применимо к реальным газам ответ.

Тогда теплоемкость В каких случаях уравнение состояния применимо к реальным газам ответи показатель политропы для процесса T=const будет равен В каких случаях уравнение состояния применимо к реальным газам ответ, т.е. В каких случаях уравнение состояния применимо к реальным газам ответ.

Адиабатный процесс – это процесс, протекающий без внешнего теплообмена, т.е. q=0 и В каких случаях уравнение состояния применимо к реальным газам ответ(на конечном и бесконечно малом участке процесса).

Если записать для этого случая уравнения 1-го закона термодинамики в виде:

1. В каких случаях уравнение состояния применимо к реальным газам ответили В каких случаях уравнение состояния применимо к реальным газам ответ,

2. В каких случаях уравнение состояния применимо к реальным газам ответили В каких случаях уравнение состояния применимо к реальным газам ответ, то после деления (1) на (2) получим:

В каких случаях уравнение состояния применимо к реальным газам ответ— показатель адиабаты.

Тогда после интегрирования выражения В каких случаях уравнение состояния применимо к реальным газам ответдля конечного процесса 1-2 будем иметь В каких случаях уравнение состояния применимо к реальным газам ответ, или В каких случаях уравнение состояния применимо к реальным газам ответ— это есть уравнение адиабатного процесса в p-v-координатах, которое является уравнением неравнобокой гиперболы.

Изм.
Лист
№ докум.
Подпись
Дата
Лист

В каких случаях уравнение состояния применимо к реальным газам ответВ каких случаях уравнение состояния применимо к реальным газам ответ

В каких случаях уравнение состояния применимо к реальным газам ответ, т.к. Т В каких случаях уравнение состояния применимо к реальным газам ответ, то ds=0 и s=const. Таким образом, адиабатный процесс с идеальным газом есть изоэнтропийный процесс.

Для теплового двигателя цикл Карно – прямой цикл, состоящий из двух адиабат и двух изотерм, а для тепловых трансформаторов используется обратный цикл Карно. Тепловые машины, работающие по циклу Карно, имеют наибольшие значения термических кпд по сравнению с любым другим циклом при одинаковых предельных температурах цикла Т1 и Т2.

Рассмотрим прямой цикл Карно.

Графически в p-v и T-s координатах этот цикл можно представить в виде:

В каких случаях уравнение состояния применимо к реальным газам ответВ каких случаях уравнение состояния применимо к реальным газам ответ

где ab – адиабатное сжатие ТРТ;

bc – подвод теплоты q1 в изотермическом процессе при Т1=const;

cd – адиабатное расширение ТРТ;

da – отвод теплоты В каких случаях уравнение состояния применимо к реальным газам ответв холодильник при Т2=const;

q1 = площадь bсFEb – теплота, затраченная на совершение цикла В каких случаях уравнение состояния применимо к реальным газам ответ.

q2 = площадь adFЕa – теплота, отведенная в холодильник В каких случаях уравнение состояния применимо к реальным газам ответ.

Изм.
Лист
№ докум.
Подпись
Дата
Лист

Тогда термический кпд прямого цикла Карно будет равен:

В каких случаях уравнение состояния применимо к реальным газам ответ.

Таким образом, термический кпд цикла Карно зависит только от предельных температур источника и холодильника и не зависит от рода рабочего тела. (Первая теорема Карно). Температура Т1 и Т2 являются основными параметрами цикла Карно, которые полностью определяют этот цикл.

При Т1=Т2 термический кпд цикла Карно В каких случаях уравнение состояния применимо к реальным газам ответ, т.е. превращение теплоты в работу невозможно.

При Т2=0 или Т1= В каких случаях уравнение состояния применимо к реальным газам ответ В каких случаях уравнение состояния применимо к реальным газам ответ, что невыполнимо. Следовательно, в цикле Карно термический кпд цикла всегда меньше единицы: В каких случаях уравнение состояния применимо к реальным газам ответ. Таким образом, для прямого цикла Карно В каких случаях уравнение состояния применимо к реальным газам ответ.

Любое заключение, вытекающее из анализа прямого цикла Карно, можно рассматривать как формулировку второго закона термодинамики.

В двух разобщенных между собой теплоизолированных сосудах А и В содержатся газы, в сосуде А – аргон, в сосуде В– водород, объем сосуда А– 150 л, сосуда В – 250 л. Давление и температура аргона – р1, t1, водорода – р2, t2. Определить давление и температуру, которые установятся после соединения сосудов и смешения газов. Теплообменом с окружающей средой пренебречь

Видео:Уравнение состояния идеального газа | Физика 10 класс #33 | ИнфоурокСкачать

Уравнение состояния идеального газа | Физика 10 класс #33 | Инфоурок

6.2. Уравнения состояния реального газа

Наиболее простым и качественно верно отображающим поведение реального газа, является уравнение Ван-дер-Ваальса:

(P + a/ n 2 )·( n – b) = R·T . (6.3)

а, b – постоянные величины, первая учитывает силы взаимодействия, вторая учитывает размер молекул.

a/ n 2 – характеризует добавочное давление, под которым находится реальный газ вследствие сил сцепления между молекулами и называется внутренним давлением. Для жидких тел это давление имеет большие значения (например, для воды при 20 0 С составляет 1050 Мпа), а для газов из-за малых сил сцепления молекул оно очень мало. Поэтому внешнее давление, под которым находится жидкость, оказывает ничтожное влияние на её объем, и жидкость считают несжимаемой. В газах в виду малости значения a/ n 2 внешнее давление легко изменяет их объем.

Уравнение Ван-дер-Ваальса качественно верно отображает поведение жидких и газообразных веществ, для двухфазных состояний оно неприменимо.

На PV – диаграмме (рис.6.1) показаны изотермы построенные по уравнению Ван-дер-Ваальса. Из кривых видно, что при сравнительно низких температурах имеются волнообразные участки. Чем выше температура, тем короче эти части кривых. Эти волнообразные кривые указывают на непрерывный переход от жидкого состояния в парообразное при данной температуре. Точка А соответствует состоянии жидкости, точка В относится парообразному состоянии вещества.

В каких случаях уравнение состояния применимо к реальным газам ответ

В действительности переход из жидкого состояния в парообразное всегда происходит через двухфазное состояние вещества. При этом при данной температуре процесс перехода происходит также и при постоянном давлении. Этот действительный переход из жидкого состояния в парообразное изображается прямой линией АВ.

Практически для особо чистых веществ возможно осуществление участков волнообразной кривой AQ и DB. В первом случае имеют место неустойчивые состояния перегретой жидкости, а во втором – переохлажденного пара.

При определенной температуре изотерма уравнения Ван-дер-Ваальса не будет иметь волнообразного участка (точка К). Эту температуру называют критической. Если соединить точки А1, А2, А3 … и В1, В2, В3 . получим кривую похожую на параболу. Кривая АК называется нижней пограничной кривой и соответствует в состоянии кипения жидкости. Кривая КВ называется верхней пограничной кривой и соответствует состояния сухого насыщенного пара.

Таким образом, для реального вещества PV – диаграмму можно разбить на 3 области:

1 — область жидкого состояния, расположена левее нижней пограничной кривой;

2 — область двухфазных состояний (влажный пар), расположена между нижней и верхней пограничной кривой);

3 – область перегретого пара, расположена правее верхней пограничной кривой и выше критической точки. Условно область жидкости ограничивают сверху линией КМ – критическая изобара.

Критическую температуру Д.И.Менделеев называл абсолютной температурой кипения, при которой поверхностное натяжение в жидкости становится равным нулю, т.е. исчезает различие между жидкостью и парообразным состоянием вещества (насыщенным паром).

Связь между критическими параметрами и постоянными уравнения Ван-дер-Ваальса:

Уравнение Ван-дер-Ваальса при больших плотностях газа дает значительные ошибки. Кроме этого экспериментальным путем доказана, что коэффициенты а, b зависят от температуры и давления, причем эта зависимость очень сложная.

М.П.Вукалович и И.И.Новиков в 1939 г. предложили новое универсальное уравнение состояния реальных газов с учетом ассоциации и диссоциации их молекул, который имеет следующий вид:

(P + a/ n 2 )·( n – b) = R·T (1 – С/( n ·Т (3+2m)/2 ), (6.6)

С, m – постоянные, определяемые на основании опытных данных.

📺 Видео

Урок 145. Идеальный газ. Основное ур-ние МКТ ид. газа - 1Скачать

Урок 145. Идеальный газ. Основное ур-ние МКТ ид. газа - 1

МКТ идеального газа. Уравнения состояния идеального газа | Физика, онлайн-форумСкачать

МКТ идеального газа. Уравнения состояния идеального газа | Физика, онлайн-форум

Подготовка к ЕГЭ по физике. Уравнение состояния идеального газа. Изопроцессы.Скачать

Подготовка к ЕГЭ по физике. Уравнение состояния идеального газа. Изопроцессы.

Уравнение состояния идеального газа. Практическая часть. 10 класс.Скачать

Уравнение состояния идеального газа. Практическая часть. 10 класс.

Уравнение состояния идеального газаСкачать

Уравнение состояния идеального газа

Cистемы уравнений. Разбор задания 6 и 21 из ОГЭ. | МатематикаСкачать

Cистемы уравнений. Разбор задания 6 и 21 из ОГЭ.  | Математика

Эта тема ВСЕГДА встречается на экзамене ЦТ — Изопроцессы (Физика для чайников)Скачать

Эта тема ВСЕГДА встречается на экзамене ЦТ — Изопроцессы (Физика для чайников)

Физика. 10 класс. Уравнение состояния идеального газа /23.11.2020/Скачать

Физика. 10 класс. Уравнение состояния идеального газа /23.11.2020/

Идеальный и реальный газ | Газы.Молекулярно-кинетическая теория | Химия (видео 7)Скачать

Идеальный и реальный газ | Газы.Молекулярно-кинетическая теория | Химия (видео 7)

Урок 194. Уравнение Ван-дер-ВаальсаСкачать

Урок 194. Уравнение Ван-дер-Ваальса

Физика. МКТ: Уравнение Менделеева-Клапейрона для идеального газа. Центр онлайн-обучения «Фоксфорд»Скачать

Физика. МКТ: Уравнение Менделеева-Клапейрона для идеального газа. Центр онлайн-обучения «Фоксфорд»

Уравнение Ван-дер-Ваальса | Газы.Молекулярно-кинетическая теория | Химия (видео 8)Скачать

Уравнение Ван-дер-Ваальса | Газы.Молекулярно-кинетическая теория | Химия (видео 8)
Поделиться или сохранить к себе: