В каких случаях уравнение состояния применимо к реальным газам ответ

Каким образом можно проверить применимость уравнения состояния идеального газа для описания свойств реальных газов?

Видео:Уравнение состояния идеального газа. 10 класс.Скачать

Уравнение состояния идеального газа. 10 класс.

Ваш ответ

Видео:ЕГЭ. Физика. Уравнение состояния идеального газа. ПрактикаСкачать

ЕГЭ. Физика. Уравнение состояния идеального газа. Практика

решение вопроса

Видео:Урок 156. Уравнение состояния идеального газа. Квазистатические процессыСкачать

Урок 156. Уравнение состояния идеального газа. Квазистатические процессы

Похожие вопросы

  • Все категории
  • экономические 43,414
  • гуманитарные 33,633
  • юридические 17,906
  • школьный раздел 608,054
  • разное 16,856

Популярное на сайте:

Как быстро выучить стихотворение наизусть? Запоминание стихов является стандартным заданием во многих школах.

Как научится читать по диагонали? Скорость чтения зависит от скорости восприятия каждого отдельного слова в тексте.

Как быстро и эффективно исправить почерк? Люди часто предполагают, что каллиграфия и почерк являются синонимами, но это не так.

Как научится говорить грамотно и правильно? Общение на хорошем, уверенном и естественном русском языке является достижимой целью.

Видео:Физика 10 класс (Урок№20 - Уравнение состояния идеального газа. Газовые законы.)Скачать

Физика 10 класс (Урок№20 - Уравнение состояния идеального газа. Газовые законы.)

Уравнения состояния реальных газов

Вопрос №1

Идеальный газ. Законы идеальных газов

Идеальным называется газ, у которого объемы молекул беско­нечно малы и отсутствуют силы межмолекулярного взаимодей­ствия. Молекулы идеального газа представляют собой материаль­ные точки, взаимодействие между которыми ограничено молеку­лярными соударениями.

Любой реальный газ тем ближе к идеальному, чем ниже его давление и выше температура. Например, окружающий нас воз­дух можно считать идеальным газом. Понятие идеального газа и законы идеальных газов полезны в качестве предела законов реального газа.

Изм.
Лист
№ докум.
Подпись
Дата
Лист

На практике часто приходится иметь дело с газами при невы­соких давлениях, поэтому расчеты различных термодинамических процессов с достаточной степенью точности можно проводить по уравнениям идеального газа.

Закон Авогадро

Согласно этому закону, все газы при одинаковых температу­рах и одинаковом давлении содержат в одном и том же объеме оди­наковое число молекул. Большую техническую значимость имеет следствие из закона Авогадро: объемы киломолей различных га­зов равны, если они находятся при одинаковых температурах и давлениях. При нормальных физических условиях (Т= 273,15 К, р = 760 мм рт. ст.) объем киломоля любого вещества равен Vµ=µν=22,4 м 3 /кмоль.Напомним, что киломолем называется количество вещества в килограммах, численно равное его молекулярной массе.

Этот закон был открыт независимо друг от друга английским физиком Р. Бойлем и французским ученым Э. Мариоттом. Ими было доказано, что при постоянной температуре газа произведе­ние давления газа на его объем есть величина постоянная, т.е. при

рV= const и рv = const.

Закон Гей-Люссака

Этот закон устанавливает, что если в процессе нагрева или охлаждения газа давление подцерживается постоянным, то объем изменяется пропорционально абсолютной температуре, т.е. если

Р = const, то и v/ Т = const.

Если же мы рассмотрим процесс нагрева или охлаждения газа в сосуде постоянного объема (v= const), то р/Т = const.

Уравнение состояния идеального газа

Для 1 кг газа Клапейроном установлено уравнение состояния рv = RT, в котором газовая постоянная Rимеет для каждого газа свое постоянное значение. Измеряется Rв Дж/кг-К и имеет вполне определенный физический смысл — это работа, совершаемая 1 кг газа при его нагреве на один кельвин при постоянном давлении. Для газа с произвольной массой M/(кг) уравнение состояния имеет вид

Для одного киломоля вещества уравнение состояния (получе­но Д.И. Менделеевым) имеет вид рVµ =µRT, где µR— универсаль­ная газовая постоянная, которая одинакова для всех газов и равна 8314 Дж/кмольК.

Во всех этих уравнениях давление подставляется в Па, темпе­ратура — в К, объем — в м 3 и удельный объем — в м 3 /кг.

В резервуаре объемом 10 м 3 находится азот при из­быточном давлении 100 кПа и при температуре 27 °С. Атмосфер­ное давление равно 750 мм рт. ст. Требуется найти массу и плот­ность азота.

Выразим атмосферное давление в паскалях: рб = 10 5 Па.

Абсолютное давление газа равно:p =риб = 100 • 10 3 + 10 5 = = 2 • 10 5 Па.

Газовая постоянная азота равна (µ = 28 кг/кмоль)

R = 8314/28 = 297 Дж/кгЧК. Масса газа равна

М =рV/RT= 2*10 5* 10/297 • (273,15 + 27) = 22,43 кг.

р = M/V= 22,43/10 = 2,243 кг/м 3 .

Изм.
Лист
№ докум.
Подпись
Дата
Лист

РЕАЛЬНЫЕ ГАЗЫ

Свойства реальных газов

Свойства реальных газов значительно отличаются от свойств идеальных газов, причем отличия тем значительнее, чем выше дав­ление и ниже температура газа. Это объясняется тем, что молеку­лы реальных газов имеют конечный объем и между ними существу­ют силы межмолекулярного взаимодействия. Уравнение состояния 1 кг реального газа имеет вид

где z= φ(р, T) — коэффициент сжимаемости, который может быть как больше, так и меньше единицы.

При проведении термодинамических расчетов с реальными газами нужно учитывать зависимость внутренней энергии, энталь­пии и теплоемкости не только от температуры, но и от давления газа. При одном и том же давлении какое-либо вещество в зависи­мости от температуры может находиться в разных состояниях.

Из физики известно, что любое вещество может находиться в твердом, жидком или газообразном состоянии. Эти состояния бу­дем называть фазами, а процесс перехода из одного состояния в другое — фазовым переходом.

При определенных условиях могут существовать одновремен­но две фазы вещества, например, лед и жидкость, пар и жидкость. Если пар и жидкость находятся в состоянии равновесия, то пар называется насыщенным.

У всех веществ фазовые переходы происходят при определен­ных физических параметрах, поэтому рассмотрение свойств реаль­ных газов можно начать на примере вещества, которое является основным рабочим телом в циклах тепловых электростанций, в том числе и атомных. Этим рабочим телом является вода, и не только потому, что она относительно дешева и нетоксична, а потому, что она обладает благоприятными для работы термодинамическими свойствами.

Рассмотрим диаграмму «v—p» воды и во­дяного пара, на которой изобразим грани­цы между фазами (рис. 1.1). В области а нахо­дится в равновесии смесь льда и некипящей воды, в области Ь находится некипящая вода, в области с находится смесь кипящей воды и водяного пара, в области d— перегретый во­дяной пар. Прямой 1-2 показан изобарный процесс подвода теплоты.

Показанные на рис. 1.1 кривые называют­ся пограничными; кривые, ограничивающие с двух сторон область с, называются левой и правой пограничными кривыми. Им соответствуют кипящая вода (левой) и сухой насы­щенный пар (правой). Область между этими кривыми называется областью влажного насыщенного пара — в этой области находятся в равновесии сухой насыщенный пар и кипящая вода. Смесь сухо­го насыщенного пара и кипящей воды называют влажным насы­щенным паром. Масса влажного насыщенного пара равна

где М’ — масса кипящей воды и М» — масса сухого насыщенного пара.

В дальнейшем все параметры, относящиеся к кипящей жидкости, будут иметь индекс «штрих» (р’, h’и т.д.), а все параметры, от­носящиеся к сухому насыщенному пару,— индекс «два штри­ха» (р’, h» и т.д.).

Температуру и давление насыщенного пара принято обозна­чать Тн и рн. В то же время в ряде литературных источников их обозначают Тs и рs (буква s является первой буквой английского слова sаturation — насыщение). Отношение массы сухого насыщен­ного пара к общей массе влажного насыщенного пара называется степенью сухости и обозначается х. Ясно, что на левой погранич­ной кривой х = 0, а на правой — х = 1. Разность <1-х) называется степенью влажности.

Чем выше давление пара, тем меньше расстояние по горизон­тали между левой и правой пограничными кривыми, а при определенном давлении пара эти кривые смыкаются. Точка, в которой исчезают различия в свойствах кипящей жидкости и сухого насы­щенного пара, называется критической (точка к на рис. 1.1).

Термические параметры различных веществ в критической точке различны. Эти параметры для ряда химических веществ приведе­ны в табл. 1

Изм.
Лист
№ докум.
Подпись
Дата
Лист

Таблица 1 Критические параметры веществ

ВеществоTкр, Кpкр,МПаρкр, кг/м 3
Азот N23,40
Водород Н233,21,29
Водяной пар H2O647,1222,115
Кислород О25,05
Ртуть Нg
Диоксид углерода СО27,38

При сверхкритическом давлении не может быть влажного на­сыщенного пара. Если давление пара больше критического и по­стоянно по величине (р > ркр), то при подводе (или отводе) тепло­ты физические параметры (удельный объем, энтальпия и др.) меня­ются плавно, в то же время наблюдается резкое изменение тепло-емкостей сp исvв тех процессах, где сверхперегретая вода перехо­дит в сверхперегретый водяной пар.

Уравнения состояния реальных газов

Известно значительное число уравнений состояния реальных газов, и одна из самых удачных попыток была сделана Ван-дер-Ваальсом, который получил уравнение в виде

Слагаемое a/v 2 учитывает внутреннее давление, обусловлен­ное силами взаимодействия молекул газа, а величина b— умень­шение объема, в котором движутся молекулы реального газа. Если по этому уравнению находить величины удельных объе­мов реальных газов, то уравнение (1) имеет три действительных корня при Т Ткр . Точность вычислений по этому уравнению невелика.

В самой общей форме уравнение состояния реальных газов имеет вид

В каких случаях уравнение состояния применимо к реальным газам ответ(2)

где 𝛽k — вириальные коэффициенты, зависящие от температуры газа.

Число членов ряда в уравнении (2) может быть достаточно велико, поэтому расчеты по этому уравнению вызывают значитель­ные трудности.

Изм.
Лист
№ докум.
Подпись
Дата
Лист

Изохорный процесс – это процесс сообщения или отнятия теплоты от газа при постоянном объеме v=const.

В каких случаях уравнение состояния применимо к реальным газам ответ

Этот процесс используется как подготовительный процесс в циклах.

Соотношение между параметрами для конечного участка процесса 1-2 определяется законом Шарля: В каких случаях уравнение состояния применимо к реальным газам ответ, который следует из уравнений состояния для точек 1 и 2:

В каких случаях уравнение состояния применимо к реальным газам ответи В каких случаях уравнение состояния применимо к реальным газам ответпри В каких случаях уравнение состояния применимо к реальным газам ответ.

Поскольку работа расширения в этом процессе равна нулю: В каких случаях уравнение состояния применимо к реальным газам ответ, т.к. В каких случаях уравнение состояния применимо к реальным газам ответ, то из уравнения 1-го закона термодинамики следует, что:

В каких случаях уравнение состояния применимо к реальным газам ответ.

Таким образом, подведенная к газу в изохорном процессе теплота целиком идет на увеличение его внутренней энергии. Для ТП В каких случаях уравнение состояния применимо к реальным газам ответкоэффициент распределения теплоты В каких случаях уравнение состояния применимо к реальным газам ответ, теплоемкость В каких случаях уравнение состояния применимо к реальным газам ответи показатель политропы:

В каких случаях уравнение состояния применимо к реальным газам ответ.

Изм.
Лист
№ докум.
Подпись
Дата
Лист

Изобарный процесс – это процесс сообщения или отнятия теплоты от газа при постоянном давлении р=const.

В каких случаях уравнение состояния применимо к реальным газам ответ

Соотношение между параметрами в процессе р=const: В каких случаях уравнение состояния применимо к реальным газам ответ— закон Гей-Люссака, т.к.: В каких случаях уравнение состояния применимо к реальным газам ответ, В каких случаях уравнение состояния применимо к реальным газам ответи В каких случаях уравнение состояния применимо к реальным газам ответ.

Работа расширения В каких случаях уравнение состояния применимо к реальным газам ответ. Т.к. В каких случаях уравнение состояния применимо к реальным газам ответ, то В каких случаях уравнение состояния применимо к реальным газам ответ.

Следовательно, удельная газовая постоянная R— это работа, совершаемая 1кг газа в процессе p=const при его нагревании на один градус. Размерность R: Дж/кгК. Уравнение 1-го закона термодинамики в этом случае имеем вид:

В каких случаях уравнение состояния применимо к реальным газам ответ.

Таким образом, вся теплота, подведенная к газу в изобарном процессе, расходуется на увеличение его энтальпии.

Коэффициент распределения теплоты в процессе р=const равен:

В каких случаях уравнение состояния применимо к реальным газам ответ, В каких случаях уравнение состояния применимо к реальным газам ответ.

В T-s координатах взаимное положение изобары и изохоры имеет вид:

Изм.
Лист
№ докум.
Подпись
Дата
Лист

В каких случаях уравнение состояния применимо к реальным газам ответ

В каких случаях уравнение состояния применимо к реальным газам ответ, В каких случаях уравнение состояния применимо к реальным газам ответ, т.е. изобара более пологая логарифмическая кривая в T-s координатах, чем изохора.

Изотермический процесс – это процесс сообщения или отнятия теплоты от газа при постоянной температуре

В каких случаях уравнение состояния применимо к реальным газам ответВ каких случаях уравнение состояния применимо к реальным газам ответ

При Т=const из уравнения состояния В каких случаях уравнение состояния применимо к реальным газам ответимеем: В каких случаях уравнение состояния применимо к реальным газам ответ— это уравнение изотермического процесса является уравнением равнобокой гиперболы.

Тогда В каких случаях уравнение состояния применимо к реальным газам ответ, и В каких случаях уравнение состояния применимо к реальным газам ответ— закон Бойля-Мариотта.

Из уравнения 1-го закона термодинамики В каких случаях уравнение состояния применимо к реальным газам ответпри В каких случаях уравнение состояния применимо к реальным газам ответимеем:

В каких случаях уравнение состояния применимо к реальным газам ответи q=l, т.е. вся теплота, сообщаемая газу в изотермическом процессе, целиком идет на работу расширения газа.

Изменение энтальпии в процессе T=const равно:

В каких случаях уравнение состояния применимо к реальным газам ответ.

Изм.
Лист
№ докум.
Подпись
Дата
Лист

Работа расширения В каких случаях уравнение состояния применимо к реальным газам ответ.

Коэффициент распределения теплоты

В каких случаях уравнение состояния применимо к реальным газам ответ.

Тогда теплоемкость В каких случаях уравнение состояния применимо к реальным газам ответи показатель политропы для процесса T=const будет равен В каких случаях уравнение состояния применимо к реальным газам ответ, т.е. В каких случаях уравнение состояния применимо к реальным газам ответ.

Адиабатный процесс – это процесс, протекающий без внешнего теплообмена, т.е. q=0 и В каких случаях уравнение состояния применимо к реальным газам ответ(на конечном и бесконечно малом участке процесса).

Если записать для этого случая уравнения 1-го закона термодинамики в виде:

1. В каких случаях уравнение состояния применимо к реальным газам ответили В каких случаях уравнение состояния применимо к реальным газам ответ,

2. В каких случаях уравнение состояния применимо к реальным газам ответили В каких случаях уравнение состояния применимо к реальным газам ответ, то после деления (1) на (2) получим:

В каких случаях уравнение состояния применимо к реальным газам ответ— показатель адиабаты.

Тогда после интегрирования выражения В каких случаях уравнение состояния применимо к реальным газам ответдля конечного процесса 1-2 будем иметь В каких случаях уравнение состояния применимо к реальным газам ответ, или В каких случаях уравнение состояния применимо к реальным газам ответ— это есть уравнение адиабатного процесса в p-v-координатах, которое является уравнением неравнобокой гиперболы.

Изм.
Лист
№ докум.
Подпись
Дата
Лист

В каких случаях уравнение состояния применимо к реальным газам ответВ каких случаях уравнение состояния применимо к реальным газам ответ

В каких случаях уравнение состояния применимо к реальным газам ответ, т.к. Т В каких случаях уравнение состояния применимо к реальным газам ответ, то ds=0 и s=const. Таким образом, адиабатный процесс с идеальным газом есть изоэнтропийный процесс.

Для теплового двигателя цикл Карно – прямой цикл, состоящий из двух адиабат и двух изотерм, а для тепловых трансформаторов используется обратный цикл Карно. Тепловые машины, работающие по циклу Карно, имеют наибольшие значения термических кпд по сравнению с любым другим циклом при одинаковых предельных температурах цикла Т1 и Т2.

Рассмотрим прямой цикл Карно.

Графически в p-v и T-s координатах этот цикл можно представить в виде:

В каких случаях уравнение состояния применимо к реальным газам ответВ каких случаях уравнение состояния применимо к реальным газам ответ

где ab – адиабатное сжатие ТРТ;

bc – подвод теплоты q1 в изотермическом процессе при Т1=const;

cd – адиабатное расширение ТРТ;

da – отвод теплоты В каких случаях уравнение состояния применимо к реальным газам ответв холодильник при Т2=const;

q1 = площадь bсFEb – теплота, затраченная на совершение цикла В каких случаях уравнение состояния применимо к реальным газам ответ.

q2 = площадь adFЕa – теплота, отведенная в холодильник В каких случаях уравнение состояния применимо к реальным газам ответ.

Изм.
Лист
№ докум.
Подпись
Дата
Лист

Тогда термический кпд прямого цикла Карно будет равен:

В каких случаях уравнение состояния применимо к реальным газам ответ.

Таким образом, термический кпд цикла Карно зависит только от предельных температур источника и холодильника и не зависит от рода рабочего тела. (Первая теорема Карно). Температура Т1 и Т2 являются основными параметрами цикла Карно, которые полностью определяют этот цикл.

При Т1=Т2 термический кпд цикла Карно В каких случаях уравнение состояния применимо к реальным газам ответ, т.е. превращение теплоты в работу невозможно.

При Т2=0 или Т1= В каких случаях уравнение состояния применимо к реальным газам ответ В каких случаях уравнение состояния применимо к реальным газам ответ, что невыполнимо. Следовательно, в цикле Карно термический кпд цикла всегда меньше единицы: В каких случаях уравнение состояния применимо к реальным газам ответ. Таким образом, для прямого цикла Карно В каких случаях уравнение состояния применимо к реальным газам ответ.

Любое заключение, вытекающее из анализа прямого цикла Карно, можно рассматривать как формулировку второго закона термодинамики.

В двух разобщенных между собой теплоизолированных сосудах А и В содержатся газы, в сосуде А – аргон, в сосуде В– водород, объем сосуда А– 150 л, сосуда В – 250 л. Давление и температура аргона – р1, t1, водорода – р2, t2. Определить давление и температуру, которые установятся после соединения сосудов и смешения газов. Теплообменом с окружающей средой пренебречь

Видео:Урок 145. Идеальный газ. Основное ур-ние МКТ ид. газа - 1Скачать

Урок 145. Идеальный газ. Основное ур-ние МКТ ид. газа - 1

6.2. Уравнения состояния реального газа

Наиболее простым и качественно верно отображающим поведение реального газа, является уравнение Ван-дер-Ваальса:

(P + a/ n 2 )·( n – b) = R·T . (6.3)

а, b – постоянные величины, первая учитывает силы взаимодействия, вторая учитывает размер молекул.

a/ n 2 – характеризует добавочное давление, под которым находится реальный газ вследствие сил сцепления между молекулами и называется внутренним давлением. Для жидких тел это давление имеет большие значения (например, для воды при 20 0 С составляет 1050 Мпа), а для газов из-за малых сил сцепления молекул оно очень мало. Поэтому внешнее давление, под которым находится жидкость, оказывает ничтожное влияние на её объем, и жидкость считают несжимаемой. В газах в виду малости значения a/ n 2 внешнее давление легко изменяет их объем.

Уравнение Ван-дер-Ваальса качественно верно отображает поведение жидких и газообразных веществ, для двухфазных состояний оно неприменимо.

На PV – диаграмме (рис.6.1) показаны изотермы построенные по уравнению Ван-дер-Ваальса. Из кривых видно, что при сравнительно низких температурах имеются волнообразные участки. Чем выше температура, тем короче эти части кривых. Эти волнообразные кривые указывают на непрерывный переход от жидкого состояния в парообразное при данной температуре. Точка А соответствует состоянии жидкости, точка В относится парообразному состоянии вещества.

В каких случаях уравнение состояния применимо к реальным газам ответ

В действительности переход из жидкого состояния в парообразное всегда происходит через двухфазное состояние вещества. При этом при данной температуре процесс перехода происходит также и при постоянном давлении. Этот действительный переход из жидкого состояния в парообразное изображается прямой линией АВ.

Практически для особо чистых веществ возможно осуществление участков волнообразной кривой AQ и DB. В первом случае имеют место неустойчивые состояния перегретой жидкости, а во втором – переохлажденного пара.

При определенной температуре изотерма уравнения Ван-дер-Ваальса не будет иметь волнообразного участка (точка К). Эту температуру называют критической. Если соединить точки А1, А2, А3 … и В1, В2, В3 . получим кривую похожую на параболу. Кривая АК называется нижней пограничной кривой и соответствует в состоянии кипения жидкости. Кривая КВ называется верхней пограничной кривой и соответствует состояния сухого насыщенного пара.

Таким образом, для реального вещества PV – диаграмму можно разбить на 3 области:

1 — область жидкого состояния, расположена левее нижней пограничной кривой;

2 — область двухфазных состояний (влажный пар), расположена между нижней и верхней пограничной кривой);

3 – область перегретого пара, расположена правее верхней пограничной кривой и выше критической точки. Условно область жидкости ограничивают сверху линией КМ – критическая изобара.

Критическую температуру Д.И.Менделеев называл абсолютной температурой кипения, при которой поверхностное натяжение в жидкости становится равным нулю, т.е. исчезает различие между жидкостью и парообразным состоянием вещества (насыщенным паром).

Связь между критическими параметрами и постоянными уравнения Ван-дер-Ваальса:

Уравнение Ван-дер-Ваальса при больших плотностях газа дает значительные ошибки. Кроме этого экспериментальным путем доказана, что коэффициенты а, b зависят от температуры и давления, причем эта зависимость очень сложная.

М.П.Вукалович и И.И.Новиков в 1939 г. предложили новое универсальное уравнение состояния реальных газов с учетом ассоциации и диссоциации их молекул, который имеет следующий вид:

(P + a/ n 2 )·( n – b) = R·T (1 – С/( n ·Т (3+2m)/2 ), (6.6)

С, m – постоянные, определяемые на основании опытных данных.

📹 Видео

Уравнение состояния идеального газаСкачать

Уравнение состояния идеального газа

МКТ идеального газа. Уравнения состояния идеального газа | Физика, онлайн-форумСкачать

МКТ идеального газа. Уравнения состояния идеального газа | Физика, онлайн-форум

Уравнение состояния идеального газа | Физика 10 класс #33 | ИнфоурокСкачать

Уравнение состояния идеального газа | Физика 10 класс #33 | Инфоурок

Подготовка к ЕГЭ по физике. Уравнение состояния идеального газа. Изопроцессы.Скачать

Подготовка к ЕГЭ по физике. Уравнение состояния идеального газа. Изопроцессы.

Cистемы уравнений. Разбор задания 6 и 21 из ОГЭ. | МатематикаСкачать

Cистемы уравнений. Разбор задания 6 и 21 из ОГЭ.  | Математика

Уравнение состояния идеального газаСкачать

Уравнение состояния идеального газа

Эта тема ВСЕГДА встречается на экзамене ЦТ — Изопроцессы (Физика для чайников)Скачать

Эта тема ВСЕГДА встречается на экзамене ЦТ — Изопроцессы (Физика для чайников)

Уравнение состояния идеального газа. Практическая часть. 10 класс.Скачать

Уравнение состояния идеального газа. Практическая часть. 10 класс.

Уравнение Ван-дер-Ваальса | Газы.Молекулярно-кинетическая теория | Химия (видео 8)Скачать

Уравнение Ван-дер-Ваальса | Газы.Молекулярно-кинетическая теория | Химия (видео 8)

Физика. 10 класс. Уравнение состояния идеального газа /23.11.2020/Скачать

Физика. 10 класс. Уравнение состояния идеального газа /23.11.2020/

Физика. МКТ: Уравнение Менделеева-Клапейрона для идеального газа. Центр онлайн-обучения «Фоксфорд»Скачать

Физика. МКТ: Уравнение Менделеева-Клапейрона для идеального газа. Центр онлайн-обучения «Фоксфорд»

Урок 194. Уравнение Ван-дер-ВаальсаСкачать

Урок 194. Уравнение Ван-дер-Ваальса

Идеальный и реальный газ | Газы.Молекулярно-кинетическая теория | Химия (видео 7)Скачать

Идеальный и реальный газ | Газы.Молекулярно-кинетическая теория | Химия (видео 7)
Поделиться или сохранить к себе: