В дифференциальном уравнении замена независимых переменных

Видео:Замена переменной в дифференциальных выражениях. Постановка задачи. Замена независимых переменных.Скачать

Замена переменной в дифференциальных выражениях. Постановка задачи. Замена независимых переменных.

Замена переменных

Выражения, содержащие различные функции и их производные, постоянно встречаются в математике и ее приложениях. Целесообразность перехода к новым независимым переменным, а иногда и к новым функциям, основана как на особой роли новых переменных в изучаемом вопросе, так и на упрощениях, к которым приводит выбранная замена переменных.
Техника замены переменных основана на правилах дифференцирования сложных функций и функций, заданных неявно при помощи уравнений. Такая техника будет продемонстрирована на нескольких достаточно содержательных примерах. Обоснование всех условий, при выполнении которых замена переменных будет законной, в большинстве примеров не представляет труда и поэтому не обсуждается.

В уравнении (displaystyle x^2+frac+xfrac+y=0) сделать замену независимой переменной (x=e^t).

(triangle) Если (z(t) = y(e^t)), то, применяя правило нахождения производной сложной функции, получаем
$$
frac=e^tfrac=xfrac,nonumber
$$
откуда (displaystyle frac=xfrac).

Заметим, что уравнение (displaystyle frac+z=0) является уравнением гармонических колебаний, а его решением является (z=C_sin t + C_2cos t). Поэтому при (x > 0) решение исходного уравнения имеет следующий вид: (y= C_1 sin (ln x) + C_2cos (ln x)). Так как уравнение не изменяет своего вида при замене (x) на (-x), то при любом (xin R, xneq 0), решение имеет следующий вид:
$$
y(x)=C_1sin(ln |x|) + C_2cos(ln |x|).qquadblacktrianglenonumber
$$

В системе уравнений:
$$
left<begindisplaystylefrac=y-2kx(x^2+y^2),\displaystylefrac=-x-2kx(x^2+y^2),\displaystyle k > 0,endright.nonumber
$$
перейти к полярным координатам.

(triangle) Умножим первое уравнение на (x), второе на (y) и сложим. Аналогично умножим первое уравнение на (y) и вычтем из него второе уравнение, умноженное на (x). Получим новую систему уравнений, при (x^2+y^2 > 0) эквивалентную исходной системе уравнений,
$$
left<begindisplaystyle xfrac+yfrac=-2k(x^2+y^2)^2,\displaystyle yfrac-xfrac=y^2+x^2.endright.label
$$

Но (x^2+y^2=r^2), (x=rcosvarphi), (y=rsinvarphi). Поэтому систему eqref можно записать в виде:
$$
left<begindisplaystyle rfrac=-2kr^4,\displaystylefrac=1.endright.Longleftrightarrowleft<begindisplaystylefrac=-2kr^3,\displaystylefrac=1.endright.label
$$

Заметим, что система eqref легко решается. Получаем решение в виде:
$$
r=frac<sqrt>,quad varphi=varphi_0+tquad (-t_0 Пример 3.

Преобразовать уравнение (y’y»’-3(y»)^2=x), принимая (y) за независимую переменную, а (x) — за неизвестную функцию.

Таким образом, при (y’neq 0) уравнение преобразуется к виду (x»’+x(x’)^5=0). Это частный случай уравнения общего вида (x»’=Phi(y,x,x’,x»)) с непрерывно дифференцируемой в (R^4) функцией (Phi(y,u,v,w)). Уравнения такого типа хорошо изучены в теории обыкновенных дифференциальных уравнений. Исходное уравнение не имело стандартного вида. (blacktriangle)

Преобразовать выражение (omega=displaystyle frac+frac) к полярным координатам, полагая (x=rcosvarphi, y=rsinvarphi). Найти решение уравнения Лапласа (displaystyle frac+frac=0), зависящее только от полярного радиуса (r).

Пусть (u=v(r)) есть решение уравнения Лапласа, зависящее только от (r). Тогда функция (v(r)) должна быть решением дифференциального уравнения
$$
frac+frac1rfrac=0quadLongleftrightarrowquadfracleft(rfracright)=0nonumber
$$
$$
rfrac=C,quadLongrightarrowquad v=C_1ln r+C_2,label
$$
где (C_1) и (C_2) — произвольные постоянные. (blacktriangle)

Сделать в уравнении колебаний струны
$$
frac-a^2frac=0,quad a > 0,quad -infty Решение.

Решение уравнения (displaystylefrac=0) легко находится. Так как (displaystylefracpartialleft(fracright)=0), то (displaystylefrac=varphi(eta)), где (varphi(eta)) — произвольная непрерывная функция (eta).

Пусть (Phi(eta)) есть ее первообразная на (R). Тогда, интегрируя уравнение (omega_=varphi(eta)), получаем, что (omega=Phi(eta)+Psi(xi)), где (Psi(xi)) — произвольная функция.

Если считать, что функции (Phi(eta)) и (Psi(xi)) есть непрерывно дифференцируемые функции, то общее решение уравнения eqref имеет следующий вид:
$$
u(x,t)=Psi(x-at)+Phi(x+at).quadblacktrianglenonumber
$$

Видео:Замена переменных в дифференциальных уравнениях.Скачать

Замена переменных в дифференциальных уравнениях.

Математический портал

Видео:Дифференциальное уравнение.Замена переменныхСкачать

Дифференциальное уравнение.Замена переменных
  • Вы здесь:
  • HomeВ дифференциальном уравнении замена независимых переменных
  • Математический анализВ дифференциальном уравнении замена независимых переменных
  • Замена переменных в дифференциальных выражениях.

В дифференциальном уравнении замена независимых переменныхВ дифференциальном уравнении замена независимых переменныхВ дифференциальном уравнении замена независимых переменныхВ дифференциальном уравнении замена независимых переменныхВ дифференциальном уравнении замена независимых переменных

Видео:Могилевский И. Е. - Математический анализ II - Замена независимых переменныхСкачать

Могилевский И. Е. - Математический анализ II - Замена независимых переменных

Замена переменных в дифференциальных выражениях.

Литература: Сборник задач по математике. Часть 1. Под ред А. В. Ефимова, Б. П. Демидовича.

Часто в дифференциальных выражениях входящие в них производные по одним переменным необходимо выразить через производные по новым переменным.

Примеры.

7.165. Преобразовать уравнение $$x^4frac+2x^3frac-y=0,$$ полагая $x=frac.$

Решение.

Подставим найденные значения производных и выражение $x=frac$ в заданное уравнение.

Ответ: $frac

-y=0.$

7.167. Преобразовать уравнение $$3left(fracright)^2-fracfrac-fracleft(fracright)^2=0,$$ приняв $y$ за аргумент.

Решение.

Выразим производные от $y$ по $x$ через производные от $x$ по $y:$ $$frac=frac<frac>,$$

Подставим полученные выражения производных в заданное уравнение. Получаем

Таким образом, получили ответ.

7.168. Преобразовать уравнение $$(xy’-y)^2=2xy(1+y’^2),$$ перейдя к полярным координатам.

Решение.

$$dx=cosvarphi dr-rsinvarphi dvarphi,qquad dy=sinvarphi dr+rcosvarphi dvarphi,$$

$$r^4 dvarphi^2=r^2sin2varphi dr^2+r^4sin 2varphi dvarphi^2Rightarrow$$

$$sin2varphi dr^2=(1-sin 2varphi)r^2 dvarphi^2 Rightarrowleft(fracright)^2=frac r^2Rightarrow$$

7.170. Преобразовать уравнение $$(x+y)frac-(x-y)frac=0,$$ перейдя к новым независимым переменным $u$ и $v,$ если $u=lnsqrt,,, v=arctgfrac.$

Решение.

Выразим частные производные от $z$ по $x$ и $y$ через частные производные от $z$ по $u$ и $v.$

Подставим найденные выражения производных в заданное уравнение:

7.174. Преобразовать уравнение $$(xy+z)frac+(1-y^2)frac=x+yz,$$ приняв за новые независимые переменные $u=yz-x,,, v=xz-y$ и за новую функцию $w=xy-z.$

Решение.

$$ ydx+xdy-dz =fraccdot left(-dx+zdy+ydzright) +fraccdot left(zdx+xdz-dy right)Rightarrow$$

Подставим найденные выражения $frac$ и

$frac$ в заданное уравнение. Получим

Видео:28.09.2023 Практика 7. Замена переменных в дифференциальных уравненияхСкачать

28.09.2023 Практика 7. Замена переменных в дифференциальных уравнениях

Дифференциальные уравнения, допускающие понижение порядка

Материал данной статьи дает представление о дифференциальных уравнениях порядка выше второго с возможностью понизить порядок, используя замену. Подобные уравнения часто представлены F ( x , y ( k ) , y ( k + 1 ) , . . . , y ( n ) ) = 0 , не содержащими искомой функции и производных до k – 1 порядка, а также дифференциальными уравнениями записи F ( y , y ‘ , y » , . . . , y ( n ) ) = 0 , не содержащими независимой переменной.

Видео:Дифференциальные уравнения в полных дифференциалах, замена переменных | poporyadku.schoolСкачать

Дифференциальные уравнения в полных дифференциалах, замена переменных | poporyadku.school

Понижение порядка дифференциальных уравнений, не содержащих искомой функции и производных до
k – 1 порядка вида F ( x , y ( k ) , y ( k + 1 ) , . . . , y ( n ) ) = 0

Мы имеем возможность понижения порядка дифференциального уравнения F ( x , y ( k ) , y ( k + 1 ) , . . . , y ( n ) ) = 0 до n – k , используя замену переменных y ( k ) = p ( x ) . Осуществив подобную замену, имеем: y ( k + 1 ) = p ‘ ( x ) , y ( k + 2 ) = p » ( x ) , . . . , y ( n ) = p ( n — k ) ( x ) . Затем подставим полученный результат в исходное уравнение и увидим дифференциальное уравнение порядка n – k с неизвестной функцией p ( x ) .

После нахождения p ( x ) функцию y ( x ) найдем из равенства y ( k ) = p ( x ) интегрированием k раз подряд.

Для наглядности разберём решение такой задачи.

Задано дифференциальное уравнение 4 y ( 4 ) — 8 y ( 3 ) + 3 y » = 0 . Необходимо найти его общее решение.

Решение

Произведя замену y » = p ( x ) , получим возможность понизить порядок дифференциального уравнения с четвертого до второго. Итак, y ( 3 ) = p ‘ , y ( 4 ) = p » , и, таким образом, исходное уравнение четвертого порядка мы преобразуем в линейное однородное дифференциальное уравнение второго порядка, имеющее постоянные коэффициенты 4 p » — 8 p ‘ + 3 p = 0 .

Характеристическое уравнение будет записано так: 4 k 2 — 8 k + 3 = 0 , а корни его — k 1 = 1 2 и k 2 = 3 2 , тогда общим решением дифференциального уравнения 4 p » — 8 p ‘ + 3 p = 0 будет p ( x ) = C 1 · e 1 2 x + C 2 · e 3 2 x .

Проинтегрируем два раза полученный результат и можем записать необходимое нам общее решение дифференциального уравнения четвертого порядка:

y » = p ( x ) ⇒ y ‘ = ∫ p ( x ) d x = ∫ C 1 · e 1 2 x + C 2 · e 3 2 x d x = = 2 C 1 · e 1 2 x + 2 3 C 2 · e 3 2 x + C 3 ⇒ y = ∫ y ‘ d x = ∫ 2 C 1 · e 1 2 x + 2 3 C 2 · e 3 2 x + C 3 d x = = 4 C 1 · e 1 2 x + 4 9 C 2 · e 3 2 x + C 3 · x + C 4

Ответ: y = 4 C 1 · e 1 2 x + 4 9 C 2 · e 3 2 x + C 3 · x + C 4 ( С 1 , С 2 , С 3 и С 4 являются произвольными постоянными).

Задано общее дифференциальное уравнение третьего порядка y ‘ ‘ ‘ · x · ln ( x ) = y » . Необходимо найти его общее решение.

Решение

Осуществим замену y » = p ( x ) , следовательно, y ‘ ‘ ‘ = p ‘ , а заданное дифференциальное уравнение третьего порядка преобразуется в дифференциальное уравнение, имеющее разделяющиеся переменные записи p ‘ · x · ln ( x ) = p .

Осуществим разделение переменных и интегрирование:

d p p = d x x ln ( x ) , p ≠ 0 ∫ d p p = ∫ d x x ln ( x ) ∫ d p p = ∫ d ( ln ( x ) ) ln ( x ) ln p + C 1 = ln ln ( x ) + C 2

Последующее потенцирование с учетом того, что p ( x ) = 0 тоже является решением, даст нам возможность получить общее решение дифференциального уравнения p ‘ · x · ln ( x ) = p в записи p ( x ) = C · ln ( x ) , в которой C будет произвольной постоянной.

Поскольку в самом начале была использована замена y » = p ( x ) , то y ‘ = ∫ p ( x ) d x тогда: y ‘ = C · ∫ ln ( x ) d x . Задействуем метод интегрирования по частям:

y ‘ = C · ∫ ln ( x ) d x = u = ln ( x ) , d v = d x d u = d x x , v = x = = C · x · ln ( x ) — ∫ x d x x = C · ( x · ln ( x ) — x ) + C 3

Произведем интегрирование повторно для получения общего решения заданного дифференциального уравнения третьего порядка:
y = ∫ y ‘ d x = ∫ C · x · ln ( x ) — x + C 3 d x = = C · ∫ x · ln ( x ) d x — C · ∫ x d x + C 3 · ∫ d x = = C · ∫ x · ln ( x ) d x — C · x 2 2 + C 3 · x = = u = ln x , d v = x d x d u = d x x , v = x 2 2 = = C · x 2 2 · ln x — ∫ x d x 2 — C · x 2 2 + C 3 · x + C 4 = = C · x 2 ln ( x ) 2 — 3 x 2 4 + C 3 · x + C 4

Ответ: y = C · x 2 ln ( x ) 2 — 3 x 2 4 + C 3 · x + C 4 ( С , С 3 и С 4 являются произвольными постоянными).

Видео:18+ Математика без Ху!ни. Дифференциальные уравнения.Скачать

18+ Математика без Ху!ни. Дифференциальные уравнения.

Понижение порядка дифференциальных уравнений, не содержащих независимую переменную, записи F ( x , y ( k ) , y ( k + 1 ) , . . . , y ( n ) ) = 0

Теперь рассмотрим дифференциальные уравнения F ( y , y ‘ , y » , . . . , y ( n ) ) = 0 , не имеющие в своей записи независимую переменную.

В данном случае снижение порядка на единицу возможно с использованием замены d y d x = p ( y ) . Опираясь на правило дифференцирования сложных функций, получим:

d 2 y d x 2 = d p d y d y d x = d p d y p ( y ) d 3 y d x 3 = d d p d y p ( y ) d x = d 2 p d y 2 d y d x p ( y ) + d p d y d p d y d y d x = = d 2 p d y 2 p 2 ( y ) + d p d y 2 p ( y ) . . .

Подставив результат в заданное уравнение, получаем дифференциальное уравнение с порядком ниже на единицу.

Рассмотрим данный алгоритм в решении конкретной задачи.

Задано дифференциальное уравнение 4 y 3 y » = y 4 — 1 и начальные условия: y ( 0 ) = 2 , y ‘ ( 0 ) = 1 2 2 . Необходимо найти частное решение заданного уравнения.

Решение

Заданное уравнение не имеет в своем составе независимую переменную x , следовательно, мы можем снизить порядок уравнения на единицу, используя замену d y d x = p ( y ) .

Тогда d 2 y d x 2 = d p d y · p ( y ) . Произведем подстановку и получим дифференциальное уравнение с разделяющимися переменными 4 y 3 · d p d y · p ( y ) = y 4 — 1 .

4 y 3 · d p d y · p ( y ) = y 4 — 1 ⇔ p ( y ) d p = y 4 — 1 4 y 3 d y , y ≠ 0 ∫ p ( y ) d p = ∫ y 4 — 1 4 y 3 d y p 2 ( y ) 2 + C 1 = y 2 8 + 1 8 y 2 + C 2 p 2 ( y ) = 1 4 y 4 + 8 C y 2 + 1 y 2 , C = C 2 — C 1 P ( y ) = ± 1 2 y 4 + 8 C y 2 + 1 y 2

Поскольку d y d x = p ( y ) , тогда y ‘ = ± 1 2 y 4 + 8 C y 2 + 1 y 2 .

Этап решения позволяет найти константу C , задействовав начальные условия y ( 0 ) = 2 , y ‘ ( 0 ) = 1 2 2 :

y ‘ ( 0 ) = ± 1 2 y 4 ( 0 ) + 8 C y 2 ( 0 ) + 1 y 2 ( 0 ) 1 2 2 = ± 1 2 2 4 + 8 C 2 2 + 1 2 1 2 2 = ± 1 2 5 + 16 C 2 1 = ± 5 + 16 C

Крайнее равенство дает возможность сформулировать вывод:

C = — 1 4 ,а y ‘ = — 1 2 y 4 + 8 C y 2 + 1 y 2 не удовлетворяет условиям задачи.

y ‘ = 1 2 y 4 + 8 C y 2 + 1 y 2 = 1 2 y 4 + 8 · — 1 4 y 2 + 1 y 2 = = 1 2 y 4 + 2 y 2 + 1 y 2 = 1 2 ( y 2 — 1 2 ) y 2 = 1 2 y 2 — 1 y

При y 2 — 1 y ≥ 0 ⇔ y ∈ — 1 ; 0 ∪ [ 1 ; + ∞ ) получаем y ‘ = 1 2 · y 2 — 1 y , откуда

2 y d y y 2 — 1 = d x ∫ 2 y d y y 2 — 1 = ∫ d x ∫ d ( y 2 — 1 ) y 2 — 1 = ∫ d x ln ( y 2 — 1 ) + C 3 = x + C 4 y 2 — 1 = e x + C 3 = x + C 4 y 2 — 1 = x + C 1 , C 5 + C 4 — C 2 y = ± e x + C 5 + 1

Область значений функции y = — e x + C 5 + 1 — это ( — ∞ , — 1 ] , и такой интервал не будет удовлетворять условию y 2 — 1 y ≥ 0 ⇔ y ∈ — 1 ; 0 ∪ [ 1 ; + ∞ ) , а значит y = — e x + C 5 + 1 не рассматриваем.

Обратимся к начальному условию y ( 0 ) = 2 :

y ( 0 ) = e 0 + C 5 + 1 2 = e 0 + C 5 + 1 2 = e C 5 + 1 С 5 = 0

Таким образом, y = e x + C 5 + 1 = e x + 0 + 1 = e x + 1 — необходимое нам частное решение.

При у 2 — 1 y 0 ⇔ y ∈ — ∞ ; — 1 ∪ 0 ; 1 получим y ‘ = — 1 2 · y 2 — 1 y , откуда y = ± e x + C 5 + 1 . Область значений функции y = e — x + C 5 + 1 — интервал [ 1 , + ∞ ) , и такой интервал не будет удовлетворять условию y 2 — 1 y 0 ⇔ y ∈ — ∞ ; — 1 ∪ 0 ; 1 , тогда y = e — x + C 5 + 1 не рассматриваем.

Для функции y = e — x + C 5 + 1 начальное условие y ( 0 ) = 2 не будет удовлетворяться ни для каких С 6 , поскольку

📸 Видео

Диффуры.Замена переменныхСкачать

Диффуры.Замена переменных

18+ Математика без Ху!ни. Дифференциальные уравнения. Однородное уравнение.Скачать

18+ Математика без Ху!ни. Дифференциальные уравнения. Однородное уравнение.

2. Дифференциальные уравнения с разделяющимися переменными. Часть 1.Скачать

2. Дифференциальные уравнения с разделяющимися переменными. Часть 1.

ДУ высших порядков, не содержащие независимую переменную.Скачать

ДУ высших порядков, не содержащие независимую переменную.

Дифференциальные уравнения с разделяющими переменными. 11 класс.Скачать

Дифференциальные уравнения с разделяющими переменными. 11 класс.

#Дифуры I. Урок 2. Замены в дифференциальных уравненияхСкачать

#Дифуры I. Урок 2. Замены в дифференциальных уравнениях

Математика без Ху!ни. Частные производные функции нескольких переменных. Градиент.Скачать

Математика без Ху!ни. Частные производные функции нескольких переменных. Градиент.

4. Однородные дифференциальные уравнения (часть 1)Скачать

4. Однородные дифференциальные уравнения (часть 1)

Замена переменных в выражениях, содержащих частные производные (А.В. Бегунц)Скачать

Замена переменных в выражениях, содержащих частные производные (А.В. Бегунц)

10. Уравнения БернуллиСкачать

10. Уравнения Бернулли

7. Линейные дифференциальные уравнения первого порядка. Метод Бернулли.Скачать

7. Линейные дифференциальные уравнения первого порядка. Метод Бернулли.

6. Дифференциальные уравнения, приводящиеся к однороднымСкачать

6. Дифференциальные уравнения, приводящиеся к однородным
Поделиться или сохранить к себе: