Выражения, содержащие различные функции и их производные, постоянно встречаются в математике и ее приложениях. Целесообразность перехода к новым независимым переменным, а иногда и к новым функциям, основана как на особой роли новых переменных в изучаемом вопросе, так и на упрощениях, к которым приводит выбранная замена переменных.
Техника замены переменных основана на правилах дифференцирования сложных функций и функций, заданных неявно при помощи уравнений. Такая техника будет продемонстрирована на нескольких достаточно содержательных примерах. Обоснование всех условий, при выполнении которых замена переменных будет законной, в большинстве примеров не представляет труда и поэтому не обсуждается.
В уравнении (displaystyle x^2+frac+xfrac+y=0) сделать замену независимой переменной (x=e^t).
(triangle) Если (z(t) = y(e^t)), то, применяя правило нахождения производной сложной функции, получаем
$$
frac=e^tfrac=xfrac,nonumber
$$
откуда (displaystyle frac=xfrac).
Заметим, что уравнение (displaystyle frac+z=0) является уравнением гармонических колебаний, а его решением является (z=C_sin t + C_2cos t). Поэтому при (x > 0) решение исходного уравнения имеет следующий вид: (y= C_1 sin (ln x) + C_2cos (ln x)). Так как уравнение не изменяет своего вида при замене (x) на (-x), то при любом (xin R, xneq 0), решение имеет следующий вид:
$$
y(x)=C_1sin(ln |x|) + C_2cos(ln |x|).qquadblacktrianglenonumber
$$
В системе уравнений:
$$
left<begindisplaystylefrac=y-2kx(x^2+y^2),\displaystylefrac=-x-2kx(x^2+y^2),\displaystyle k > 0,endright.nonumber
$$
перейти к полярным координатам.
(triangle) Умножим первое уравнение на (x), второе на (y) и сложим. Аналогично умножим первое уравнение на (y) и вычтем из него второе уравнение, умноженное на (x). Получим новую систему уравнений, при (x^2+y^2 > 0) эквивалентную исходной системе уравнений,
$$
left<begindisplaystyle xfrac+yfrac=-2k(x^2+y^2)^2,\displaystyle yfrac-xfrac=y^2+x^2.endright.label
$$
Но (x^2+y^2=r^2), (x=rcosvarphi), (y=rsinvarphi). Поэтому систему eqref можно записать в виде:
$$
left<begindisplaystyle rfrac=-2kr^4,\displaystylefrac=1.endright.Longleftrightarrowleft<begindisplaystylefrac=-2kr^3,\displaystylefrac=1.endright.label
$$
Заметим, что система eqref легко решается. Получаем решение в виде:
$$
r=frac<sqrt>,quad varphi=varphi_0+tquad (-t_0 Пример 3.
Преобразовать уравнение (y’y»’-3(y»)^2=x), принимая (y) за независимую переменную, а (x) — за неизвестную функцию.
Таким образом, при (y’neq 0) уравнение преобразуется к виду (x»’+x(x’)^5=0). Это частный случай уравнения общего вида (x»’=Phi(y,x,x’,x»)) с непрерывно дифференцируемой в (R^4) функцией (Phi(y,u,v,w)). Уравнения такого типа хорошо изучены в теории обыкновенных дифференциальных уравнений. Исходное уравнение не имело стандартного вида. (blacktriangle)
Преобразовать выражение (omega=displaystyle frac+frac) к полярным координатам, полагая (x=rcosvarphi, y=rsinvarphi). Найти решение уравнения Лапласа (displaystyle frac+frac=0), зависящее только от полярного радиуса (r).
Пусть (u=v(r)) есть решение уравнения Лапласа, зависящее только от (r). Тогда функция (v(r)) должна быть решением дифференциального уравнения
$$
frac+frac1rfrac=0quadLongleftrightarrowquadfracleft(rfracright)=0nonumber
$$
$$
rfrac=C,quadLongrightarrowquad v=C_1ln r+C_2,label
$$
где (C_1) и (C_2) — произвольные постоянные. (blacktriangle)
Сделать в уравнении колебаний струны
$$
frac-a^2frac=0,quad a > 0,quad -infty Решение.
Решение уравнения (displaystylefrac=0) легко находится. Так как (displaystylefracpartialleft(fracright)=0), то (displaystylefrac=varphi(eta)), где (varphi(eta)) — произвольная непрерывная функция (eta).
Пусть (Phi(eta)) есть ее первообразная на (R). Тогда, интегрируя уравнение (omega_=varphi(eta)), получаем, что (omega=Phi(eta)+Psi(xi)), где (Psi(xi)) — произвольная функция.
Если считать, что функции (Phi(eta)) и (Psi(xi)) есть непрерывно дифференцируемые функции, то общее решение уравнения eqref имеет следующий вид:
$$
u(x,t)=Psi(x-at)+Phi(x+at).quadblacktrianglenonumber
$$
- Математический портал
- Nav view search
- Navigation
- Search
- Замена переменных в дифференциальных выражениях.
- Дифференциальные уравнения, допускающие понижение порядка
- Понижение порядка дифференциальных уравнений, не содержащих искомой функции и производных до k – 1 порядка вида F ( x , y ( k ) , y ( k + 1 ) , . . . , y ( n ) ) = 0
- Понижение порядка дифференциальных уравнений, не содержащих независимую переменную, записи F ( x , y ( k ) , y ( k + 1 ) , . . . , y ( n ) ) = 0
- 🔍 Видео
Видео:Замена переменных в дифференциальных уравнениях.Скачать
Математический портал
Видео:Дифференциальное уравнение.Замена переменныхСкачать
Nav view search
Navigation
Search
- Вы здесь:
- Home
- Математический анализ
- Замена переменных в дифференциальных выражениях.
Видео:Замена переменной в дифференциальных выражениях. Постановка задачи. Замена независимых переменных.Скачать
Замена переменных в дифференциальных выражениях.
Литература: Сборник задач по математике. Часть 1. Под ред А. В. Ефимова, Б. П. Демидовича.
Часто в дифференциальных выражениях входящие в них производные по одним переменным необходимо выразить через производные по новым переменным.
Примеры.
7.165. Преобразовать уравнение $$x^4frac+2x^3frac-y=0,$$ полагая $x=frac.$
Решение.
Подставим найденные значения производных и выражение $x=frac$ в заданное уравнение.
Ответ: $frac
7.167. Преобразовать уравнение $$3left(fracright)^2-fracfrac-fracleft(fracright)^2=0,$$ приняв $y$ за аргумент.
Решение.
Выразим производные от $y$ по $x$ через производные от $x$ по $y:$ $$frac=frac<frac>,$$
Подставим полученные выражения производных в заданное уравнение. Получаем
Таким образом, получили ответ.
7.168. Преобразовать уравнение $$(xy’-y)^2=2xy(1+y’^2),$$ перейдя к полярным координатам.
Решение.
$$dx=cosvarphi dr-rsinvarphi dvarphi,qquad dy=sinvarphi dr+rcosvarphi dvarphi,$$
$$r^4 dvarphi^2=r^2sin2varphi dr^2+r^4sin 2varphi dvarphi^2Rightarrow$$
$$sin2varphi dr^2=(1-sin 2varphi)r^2 dvarphi^2 Rightarrowleft(fracright)^2=frac r^2Rightarrow$$
7.170. Преобразовать уравнение $$(x+y)frac-(x-y)frac=0,$$ перейдя к новым независимым переменным $u$ и $v,$ если $u=lnsqrt,,, v=arctgfrac.$
Решение.
Выразим частные производные от $z$ по $x$ и $y$ через частные производные от $z$ по $u$ и $v.$
Подставим найденные выражения производных в заданное уравнение:
7.174. Преобразовать уравнение $$(xy+z)frac+(1-y^2)frac=x+yz,$$ приняв за новые независимые переменные $u=yz-x,,, v=xz-y$ и за новую функцию $w=xy-z.$
Решение.
$$ ydx+xdy-dz =fraccdot left(-dx+zdy+ydzright) +fraccdot left(zdx+xdz-dy right)Rightarrow$$
Подставим найденные выражения $frac$ и
$frac$ в заданное уравнение. Получим
Видео:Диффуры.Замена переменныхСкачать
Дифференциальные уравнения, допускающие понижение порядка
Материал данной статьи дает представление о дифференциальных уравнениях порядка выше второго с возможностью понизить порядок, используя замену. Подобные уравнения часто представлены F ( x , y ( k ) , y ( k + 1 ) , . . . , y ( n ) ) = 0 , не содержащими искомой функции и производных до k – 1 порядка, а также дифференциальными уравнениями записи F ( y , y ‘ , y » , . . . , y ( n ) ) = 0 , не содержащими независимой переменной.
Видео:Дифференциальные уравнения в полных дифференциалах, замена переменных | poporyadku.schoolСкачать
Понижение порядка дифференциальных уравнений, не содержащих искомой функции и производных до
k – 1 порядка вида F ( x , y ( k ) , y ( k + 1 ) , . . . , y ( n ) ) = 0
Мы имеем возможность понижения порядка дифференциального уравнения F ( x , y ( k ) , y ( k + 1 ) , . . . , y ( n ) ) = 0 до n – k , используя замену переменных y ( k ) = p ( x ) . Осуществив подобную замену, имеем: y ( k + 1 ) = p ‘ ( x ) , y ( k + 2 ) = p » ( x ) , . . . , y ( n ) = p ( n — k ) ( x ) . Затем подставим полученный результат в исходное уравнение и увидим дифференциальное уравнение порядка n – k с неизвестной функцией p ( x ) .
После нахождения p ( x ) функцию y ( x ) найдем из равенства y ( k ) = p ( x ) интегрированием k раз подряд.
Для наглядности разберём решение такой задачи.
Задано дифференциальное уравнение 4 y ( 4 ) — 8 y ( 3 ) + 3 y » = 0 . Необходимо найти его общее решение.
Решение
Произведя замену y » = p ( x ) , получим возможность понизить порядок дифференциального уравнения с четвертого до второго. Итак, y ( 3 ) = p ‘ , y ( 4 ) = p » , и, таким образом, исходное уравнение четвертого порядка мы преобразуем в линейное однородное дифференциальное уравнение второго порядка, имеющее постоянные коэффициенты 4 p » — 8 p ‘ + 3 p = 0 .
Характеристическое уравнение будет записано так: 4 k 2 — 8 k + 3 = 0 , а корни его — k 1 = 1 2 и k 2 = 3 2 , тогда общим решением дифференциального уравнения 4 p » — 8 p ‘ + 3 p = 0 будет p ( x ) = C 1 · e 1 2 x + C 2 · e 3 2 x .
Проинтегрируем два раза полученный результат и можем записать необходимое нам общее решение дифференциального уравнения четвертого порядка:
y » = p ( x ) ⇒ y ‘ = ∫ p ( x ) d x = ∫ C 1 · e 1 2 x + C 2 · e 3 2 x d x = = 2 C 1 · e 1 2 x + 2 3 C 2 · e 3 2 x + C 3 ⇒ y = ∫ y ‘ d x = ∫ 2 C 1 · e 1 2 x + 2 3 C 2 · e 3 2 x + C 3 d x = = 4 C 1 · e 1 2 x + 4 9 C 2 · e 3 2 x + C 3 · x + C 4
Ответ: y = 4 C 1 · e 1 2 x + 4 9 C 2 · e 3 2 x + C 3 · x + C 4 ( С 1 , С 2 , С 3 и С 4 являются произвольными постоянными).
Задано общее дифференциальное уравнение третьего порядка y ‘ ‘ ‘ · x · ln ( x ) = y » . Необходимо найти его общее решение.
Решение
Осуществим замену y » = p ( x ) , следовательно, y ‘ ‘ ‘ = p ‘ , а заданное дифференциальное уравнение третьего порядка преобразуется в дифференциальное уравнение, имеющее разделяющиеся переменные записи p ‘ · x · ln ( x ) = p .
Осуществим разделение переменных и интегрирование:
d p p = d x x ln ( x ) , p ≠ 0 ∫ d p p = ∫ d x x ln ( x ) ∫ d p p = ∫ d ( ln ( x ) ) ln ( x ) ln p + C 1 = ln ln ( x ) + C 2
Последующее потенцирование с учетом того, что p ( x ) = 0 тоже является решением, даст нам возможность получить общее решение дифференциального уравнения p ‘ · x · ln ( x ) = p в записи p ( x ) = C · ln ( x ) , в которой C будет произвольной постоянной.
Поскольку в самом начале была использована замена y » = p ( x ) , то y ‘ = ∫ p ( x ) d x тогда: y ‘ = C · ∫ ln ( x ) d x . Задействуем метод интегрирования по частям:
y ‘ = C · ∫ ln ( x ) d x = u = ln ( x ) , d v = d x d u = d x x , v = x = = C · x · ln ( x ) — ∫ x d x x = C · ( x · ln ( x ) — x ) + C 3
Произведем интегрирование повторно для получения общего решения заданного дифференциального уравнения третьего порядка:
y = ∫ y ‘ d x = ∫ C · x · ln ( x ) — x + C 3 d x = = C · ∫ x · ln ( x ) d x — C · ∫ x d x + C 3 · ∫ d x = = C · ∫ x · ln ( x ) d x — C · x 2 2 + C 3 · x = = u = ln x , d v = x d x d u = d x x , v = x 2 2 = = C · x 2 2 · ln x — ∫ x d x 2 — C · x 2 2 + C 3 · x + C 4 = = C · x 2 ln ( x ) 2 — 3 x 2 4 + C 3 · x + C 4
Ответ: y = C · x 2 ln ( x ) 2 — 3 x 2 4 + C 3 · x + C 4 ( С , С 3 и С 4 являются произвольными постоянными).
Видео:18+ Математика без Ху!ни. Дифференциальные уравнения.Скачать
Понижение порядка дифференциальных уравнений, не содержащих независимую переменную, записи F ( x , y ( k ) , y ( k + 1 ) , . . . , y ( n ) ) = 0
Теперь рассмотрим дифференциальные уравнения F ( y , y ‘ , y » , . . . , y ( n ) ) = 0 , не имеющие в своей записи независимую переменную.
В данном случае снижение порядка на единицу возможно с использованием замены d y d x = p ( y ) . Опираясь на правило дифференцирования сложных функций, получим:
d 2 y d x 2 = d p d y d y d x = d p d y p ( y ) d 3 y d x 3 = d d p d y p ( y ) d x = d 2 p d y 2 d y d x p ( y ) + d p d y d p d y d y d x = = d 2 p d y 2 p 2 ( y ) + d p d y 2 p ( y ) . . .
Подставив результат в заданное уравнение, получаем дифференциальное уравнение с порядком ниже на единицу.
Рассмотрим данный алгоритм в решении конкретной задачи.
Задано дифференциальное уравнение 4 y 3 y » = y 4 — 1 и начальные условия: y ( 0 ) = 2 , y ‘ ( 0 ) = 1 2 2 . Необходимо найти частное решение заданного уравнения.
Решение
Заданное уравнение не имеет в своем составе независимую переменную x , следовательно, мы можем снизить порядок уравнения на единицу, используя замену d y d x = p ( y ) .
Тогда d 2 y d x 2 = d p d y · p ( y ) . Произведем подстановку и получим дифференциальное уравнение с разделяющимися переменными 4 y 3 · d p d y · p ( y ) = y 4 — 1 .
4 y 3 · d p d y · p ( y ) = y 4 — 1 ⇔ p ( y ) d p = y 4 — 1 4 y 3 d y , y ≠ 0 ∫ p ( y ) d p = ∫ y 4 — 1 4 y 3 d y p 2 ( y ) 2 + C 1 = y 2 8 + 1 8 y 2 + C 2 p 2 ( y ) = 1 4 y 4 + 8 C y 2 + 1 y 2 , C = C 2 — C 1 P ( y ) = ± 1 2 y 4 + 8 C y 2 + 1 y 2
Поскольку d y d x = p ( y ) , тогда y ‘ = ± 1 2 y 4 + 8 C y 2 + 1 y 2 .
Этап решения позволяет найти константу C , задействовав начальные условия y ( 0 ) = 2 , y ‘ ( 0 ) = 1 2 2 :
y ‘ ( 0 ) = ± 1 2 y 4 ( 0 ) + 8 C y 2 ( 0 ) + 1 y 2 ( 0 ) 1 2 2 = ± 1 2 2 4 + 8 C 2 2 + 1 2 1 2 2 = ± 1 2 5 + 16 C 2 1 = ± 5 + 16 C
Крайнее равенство дает возможность сформулировать вывод:
C = — 1 4 ,а y ‘ = — 1 2 y 4 + 8 C y 2 + 1 y 2 не удовлетворяет условиям задачи.
y ‘ = 1 2 y 4 + 8 C y 2 + 1 y 2 = 1 2 y 4 + 8 · — 1 4 y 2 + 1 y 2 = = 1 2 y 4 + 2 y 2 + 1 y 2 = 1 2 ( y 2 — 1 2 ) y 2 = 1 2 y 2 — 1 y
При y 2 — 1 y ≥ 0 ⇔ y ∈ — 1 ; 0 ∪ [ 1 ; + ∞ ) получаем y ‘ = 1 2 · y 2 — 1 y , откуда
2 y d y y 2 — 1 = d x ∫ 2 y d y y 2 — 1 = ∫ d x ∫ d ( y 2 — 1 ) y 2 — 1 = ∫ d x ln ( y 2 — 1 ) + C 3 = x + C 4 y 2 — 1 = e x + C 3 = x + C 4 y 2 — 1 = x + C 1 , C 5 + C 4 — C 2 y = ± e x + C 5 + 1
Область значений функции y = — e x + C 5 + 1 — это ( — ∞ , — 1 ] , и такой интервал не будет удовлетворять условию y 2 — 1 y ≥ 0 ⇔ y ∈ — 1 ; 0 ∪ [ 1 ; + ∞ ) , а значит y = — e x + C 5 + 1 не рассматриваем.
Обратимся к начальному условию y ( 0 ) = 2 :
y ( 0 ) = e 0 + C 5 + 1 2 = e 0 + C 5 + 1 2 = e C 5 + 1 С 5 = 0
Таким образом, y = e x + C 5 + 1 = e x + 0 + 1 = e x + 1 — необходимое нам частное решение.
При у 2 — 1 y 0 ⇔ y ∈ — ∞ ; — 1 ∪ 0 ; 1 получим y ‘ = — 1 2 · y 2 — 1 y , откуда y = ± e x + C 5 + 1 . Область значений функции y = e — x + C 5 + 1 — интервал [ 1 , + ∞ ) , и такой интервал не будет удовлетворять условию y 2 — 1 y 0 ⇔ y ∈ — ∞ ; — 1 ∪ 0 ; 1 , тогда y = e — x + C 5 + 1 не рассматриваем.
Для функции y = e — x + C 5 + 1 начальное условие y ( 0 ) = 2 не будет удовлетворяться ни для каких С 6 , поскольку
🔍 Видео
28.09.2023 Практика 7. Замена переменных в дифференциальных уравненияхСкачать
Могилевский И. Е. - Математический анализ II - Замена независимых переменныхСкачать
18+ Математика без Ху!ни. Дифференциальные уравнения. Однородное уравнение.Скачать
2. Дифференциальные уравнения с разделяющимися переменными. Часть 1.Скачать
Дифференциальные уравнения с разделяющими переменными. 11 класс.Скачать
#Дифуры I. Урок 2. Замены в дифференциальных уравненияхСкачать
ДУ высших порядков, не содержащие независимую переменную.Скачать
10. Уравнения БернуллиСкачать
4. Однородные дифференциальные уравнения (часть 1)Скачать
Замена переменных в выражениях, содержащих частные производные (А.В. Бегунц)Скачать
Математика без Ху!ни. Частные производные функции нескольких переменных. Градиент.Скачать
7. Линейные дифференциальные уравнения первого порядка. Метод Бернулли.Скачать
6. Дифференциальные уравнения, приводящиеся к однороднымСкачать