В чем состоит матричный способ решения систем линейных уравнений

Матричный метод решения систем линейных уравнений

Матричный метод может применяться в решении систем линейных уравнений, в которых число неизвестных равно числу уравнений, то есть систем линейных уравнений с квадратной матрицей коэффициентов при неизвестных.

Другое условие применимости матричного метода — невырожденность матрицы коэффициентов при неизвестных, то есть неравенство нулю определителя этой матрицы.

Систему линейных уравнений, при выполнении вышеназванных условий, можно представить в матричном виде, а затем решить её путём отыскания обратной матрицы к матрице системы.

Решение систем линейных уравнений матричным методом основано на следующем свойстве обратной матрицы: произведение обратной матрицы и исходной матрицы равно единичной матрице. Обратная матрица обозначается символом В чем состоит матричный способ решения систем линейных уравнений.

Пусть нужно решить систему линейных уравнений:

В чем состоит матричный способ решения систем линейных уравнений

Запишем эту систему уравнений в матричном виде:

В чем состоит матричный способ решения систем линейных уравнений

Обозначим отдельно как A матрицу коэффициентов при неизвестных и как B матрицу неизвестных и матрицу свободных членов

В чем состоит матричный способ решения систем линейных уравнений.

В чем состоит матричный способ решения систем линейных уравнений

То есть, для нахождения решений системы нужно обе части уравнения умножить на матрицу, обратную матрице коэффициентов при неизвестных В чем состоит матричный способ решения систем линейных уравненийи приравнять соответствующие элементы полученных матриц.

Алгоритм решения системы линейных уравнений матричным методом разберём на следующем примере системы линейных уравнений второго порядка.

Пример 1. Решить матричным методом систему линейных уравнений:

В чем состоит матричный способ решения систем линейных уравнений

Решение состоит из следующих шагов.

Шаг 1. Составляем следующие матрицы.

Матрица коэффициентов при неизвестных:

В чем состоит матричный способ решения систем линейных уравнений

В чем состоит матричный способ решения систем линейных уравнений

Матрица свободных членов:

В чем состоит матричный способ решения систем линейных уравнений

Это сделано для того, чтобы применить в решении уже записанные закономерности, основанные на свойстве обратной матрицы:

В чем состоит матричный способ решения систем линейных уравнений

По выведенному выше последнему равенству и будем вычислять решения данной системы.

Но сначала проверим, не является ли матрица коэффициентов при неизвестных вырожденной, то есть можем ли вообще применять матричный метод:

В чем состоит матричный способ решения систем линейных уравнений.

Определитель этой матрицы не равен нулю, следовательно, можем применять матричный метод.

Шаг 2. Находим матрицу, обратную матрице коэффициентов при неизвестных:

В чем состоит матричный способ решения систем линейных уравнений.

Шаг 3. Находим матрицу неизвестных:

В чем состоит матричный способ решения систем линейных уравнений

Итак, получили решение:

В чем состоит матричный способ решения систем линейных уравнений.

В чем состоит матричный способ решения систем линейных уравнений

Следовательно, ответ правильный.

Для второго примера выберем систему линейных уравнений третьего порядка.

Пример 2. Решить матричным методом систему линейных уравнений:

В чем состоит матричный способ решения систем линейных уравнений

Шаг 1. Составляем следующие матрицы.

Матрица коэффициентов при неизвестных:

В чем состоит матричный способ решения систем линейных уравнений

В чем состоит матричный способ решения систем линейных уравнений

Матрица свободных членов:

В чем состоит матричный способ решения систем линейных уравнений

Проверим, не является ли матрица коэффициентов при неизвестных вырожденной:

В чем состоит матричный способ решения систем линейных уравнений.

Определитель этой матрицы не равен нулю, следовательно, можем применять матричный метод.

Шаг 2. Находим матрицу, обратную матрице коэффициентов при неизвестных:

В чем состоит матричный способ решения систем линейных уравнений.

Шаг 3. Находим матрицу неизвестных:

В чем состоит матричный способ решения систем линейных уравнений

Итак, получили решение:

В чем состоит матричный способ решения систем линейных уравнений.

В чем состоит матричный способ решения систем линейных уравнений

Следовательно, ответ правильный.

Решить систему уравнений матричным методом самостоятельно, а затем посмотреть решение

Пример 3. Решить матричным методом систему линейных уравнений:

Видео:Матричный метод решения систем уравненийСкачать

Матричный метод решения систем уравнений

Матричный метод решения СЛАУ: пример решения с помощью обратной матрицы

В данной статье мы расскажем о матричном методе решения системы линейных алгебраических уравнений, найдем его определение и приведем примеры решения.

Метод обратной матрицы — это метод, использующийся при решении СЛАУ в том случае, если число неизвестных равняется числу уравнений.

Найти решение системы n линейных уравнений с n неизвестными:

a 11 x 1 + a 12 x 2 + . . . + a 1 n x n = b 1 a n 1 x 1 + a n 2 x 2 + . . . + a n n x n = b n

Матричный вид записи: А × X = B

где А = а 11 а 12 ⋯ а 1 n а 21 а 22 ⋯ а 2 n ⋯ ⋯ ⋯ ⋯ а n 1 а n 2 ⋯ а n n — матрица системы.

X = x 1 x 2 ⋮ x n — столбец неизвестных,

B = b 1 b 2 ⋮ b n — столбец свободных коэффициентов.

Из уравнения, которое мы получили, необходимо выразить X . Для этого нужно умножить обе части матричного уравнения слева на A — 1 :

A — 1 × A × X = A — 1 × B .

Так как А — 1 × А = Е , то Е × X = А — 1 × В или X = А — 1 × В .

Обратная матрица к матрице А имеет право на существование только, если выполняется условие d e t A н е р а в е н н у л ю . Поэтому при решении СЛАУ методом обратной матрицы, в первую очередь находится d e t А .

В том случае, если d e t A н е р а в е н н у л ю , у системы имеется только один вариант решения: при помощи метода обратной матрицы. Если d e t А = 0 , то систему нельзя решить данным методом.

Видео:Система линейных уравнений. Метод обратной матрицы. Матричный метод.Скачать

Система линейных уравнений. Метод обратной матрицы. Матричный метод.

Пример решения системы линейных уравнений с помощью метода обратной матрицы

Решаем СЛАУ методом обратной матрицы:

2 x 1 — 4 x 2 + 3 x 3 = 1 x 1 — 2 x 2 + 4 x 3 = 3 3 x 1 — x 2 + 5 x 3 = 2

  • Записываем систему в виде матричного уравнения А X = B , где

А = 2 — 4 3 1 — 2 4 3 — 1 5 , X = x 1 x 2 x 3 , B = 1 3 2 .

  • Выражаем из этого уравнения X :
  • Находим определитель матрицы А :

d e t A = 2 — 4 3 1 — 2 4 3 — 1 5 = 2 × ( — 2 ) × 5 + 3 × ( — 4 ) × 4 + 3 × ( — 1 ) × 1 — 3 × ( — 2 ) × 3 — — 1 × ( — 4 ) × 5 — 2 × 4 — ( — 1 ) = — 20 — 48 — 3 + 18 + 20 + 8 = — 25

d e t А не равняется 0, следовательно, для этой системы подходит метод решения обратной матрицей.

  • Находим обратную матрицу А — 1 при помощи союзной матрицы. Вычисляем алгебраические дополнения А i j к соответствующим элементам матрицы А :

А 11 = ( — 1 ) ( 1 + 1 ) — 2 4 — 1 5 = — 10 + 4 = — 6 ,

А 12 = ( — 1 ) 1 + 2 1 4 3 5 = — ( 5 — 12 ) = 7 ,

А 13 = ( — 1 ) 1 + 3 1 — 2 3 — 1 = — 1 + 6 = 5 ,

А 21 = ( — 1 ) 2 + 1 — 4 3 — 1 5 = — ( — 20 + 3 ) = 17 ,

А 22 = ( — 1 ) 2 + 2 2 3 3 5 — 10 — 9 = 1 ,

А 23 = ( — 1 ) 2 + 3 2 — 4 3 — 1 = — ( — 2 + 12 ) = — 10 ,

А 31 = ( — 1 ) 3 + 1 — 4 3 — 2 4 = — 16 + 6 = — 10 ,

А 32 = ( — 1 ) 3 + 2 2 3 1 4 = — ( 8 — 3 ) = — 5 ,

А 33 = ( — 1 ) 3 + 3 2 — 4 1 — 2 = — 4 + 4 = 0 .

  • Записываем союзную матрицу А * , которая составлена из алгебраических дополнений матрицы А :

А * = — 6 7 5 17 1 — 10 — 10 — 5 0

  • Записываем обратную матрицу согласно формуле:

A — 1 = 1 d e t A ( A * ) T : А — 1 = — 1 25 — 6 17 — 10 7 1 — 5 5 — 10 0 ,

  • Умножаем обратную матрицу А — 1 на столбец свободных членов В и получаем решение системы:

X = A — 1 × B = — 1 25 — 6 17 — 10 7 1 — 5 5 — 10 0 1 3 2 = — 1 25 — 6 + 51 — 20 7 + 3 — 10 5 — 30 + 0 = — 1 0 1

Ответ: x 1 = — 1 ; x 2 = 0 ; x 3 = 1

Видео:9. Метод обратной матрицы для решения систем линейных уравнений / матричный методСкачать

9. Метод обратной матрицы для решения систем линейных уравнений / матричный метод

Линейные уравнения. Решение систем линейных уравнений матричным методом.

Матричный метод решения СЛАУ применяют к решению систем уравнений, у которых количество уравнений соответствует количеству неизвестных. Метод лучше применять для решения систем низкого порядка. Матричный метод решения систем линейных уравнений основывается на применении свойств умножения матриц.

Этот способ, другими словами метод обратной матрицы, называют так, так как решение сводится к обычному матричному уравнению, для решения которого нужно найти обратную матрицу.

Матричный метод решения СЛАУ с определителем, который больше или меньше нуля состоит в следующем:

Предположим, есть СЛУ (система линейных уравнений) с n неизвестными (над произвольным полем):

В чем состоит матричный способ решения систем линейных уравнений

Значит, её легко перевести в матричную форму:

AX=B, где A — основная матрица системы, B и X — столбцы свободных членов и решений системы соответственно:

В чем состоит матричный способ решения систем линейных уравнений

Умножим это матричное уравнение слева на A −1 — обратную матрицу к матрице A: A −1 (AX)=A −1 B.

Т.к. A −1 A=E, значит, X=A −1 B. Правая часть уравнения дает столбец решений начальной системы. Условием применимости матричного метода есть невырожденность матрицы A. Необходимым и достаточным условием этого есть неравенство нулю определителя матрицы A:

Для однородной системы линейных уравнений, т.е. если вектор B=0, выполняется обратное правило: у системы AX=0 есть нетривиальное (т.е. не равное нулю) решение лишь когда detA=0. Эта связь между решениями однородных и неоднородных систем линейных уравнений называется альтернатива Фредгольма.

Т.о., решение СЛАУ матричным методом производится по формуле В чем состоит матричный способ решения систем линейных уравнений. Либо, решение СЛАУ находят при помощи обратной матрицы A −1 .

Известно, что у квадратной матрицы А порядка n на n есть обратная матрица A −1 только в том случае, если ее определитель ненулевой. Таким образом, систему n линейных алгебраических уравнений с n неизвестными решаем матричным методом только в случае, если определитель основной матрицы системы не равен нулю.

Не взирая на то, что есть ограничения возможности применения такого метода и существуют сложности вычислений при больших значениях коэффициентов и систем высокого порядка, метод можно легко реализовать на ЭВМ.

Видео:Матричный метод решения систем линейных уравнений (метод обратной матрицы)Скачать

Матричный метод решения систем линейных уравнений (метод обратной матрицы)

Пример решения неоднородной СЛАУ.

В чем состоит матричный способ решения систем линейных уравнений

Для начала проверим, не равен ли нулю определитель матрицы коэффициентов у неизвестных СЛАУ.

В чем состоит матричный способ решения систем линейных уравнений

Далее вычисляем алгебраические дополнения для элементов матрицы, которая состоит из коэффициентов при неизвестных. Эти коэффициенты нужны будут для вычисления обратной матрицы.

В чем состоит матричный способ решения систем линейных уравнений

В чем состоит матричный способ решения систем линейных уравнений

В чем состоит матричный способ решения систем линейных уравнений

Теперь находим союзную матрицу, транспонируем её и подставляем в формулу для определения обратной матрицы.

В чем состоит матричный способ решения систем линейных уравнений

Подставляем переменные в формулу:

В чем состоит матричный способ решения систем линейных уравнений

Теперь находим неизвестные, перемножая обратную матрицу и столбик свободных членов.

В чем состоит матричный способ решения систем линейных уравнений

При переходе от обычного вида СЛАУ к матричной форме будьте внимательными с порядком неизвестных переменных в уравнениях системы. Например:

В чем состоит матричный способ решения систем линейных уравнений

НЕЛЬЗЯ записать как:

В чем состоит матричный способ решения систем линейных уравнений

Необходимо, для начала, упорядочить неизвестные переменные в кадом уравнении системы и только после этого переходить к матричной записи:

В чем состоит матричный способ решения систем линейных уравнений

В чем состоит матричный способ решения систем линейных уравнений

Кроме того, нужно быть внимательными с обозначением неизвестных переменных, вместо x1, x2, …, xn могут оказаться другие буквы. К примеру:

В чем состоит матричный способ решения систем линейных уравнений

в матричной форме записываем так:

В чем состоит матричный способ решения систем линейных уравнений

Матричным методом лучше решать системы линейных уравнений, в которых количество уравнений совпадает с числом неизвестных переменных и определитель основной матрицы системы не равен нулю. Когда в системе более 3-х уравнений, на нахождение обратной матрицы потребуется больше вычислительных усилий, поэтому, в этом случае целесообразно использовать для решения метод Гаусса.

📺 Видео

Решение системы уравнений методом обратной матрицы.Скачать

Решение системы уравнений методом обратной матрицы.

Метод Крамера за 3 минуты. Решение системы линейных уравнений - bezbotvyСкачать

Метод Крамера за 3 минуты. Решение системы линейных уравнений - bezbotvy

Математика без Ху!ни. Метод Гаусса.Скачать

Математика без Ху!ни. Метод Гаусса.

Решение системы уравнений методом обратной матрицы - bezbotvyСкачать

Решение системы уравнений методом обратной матрицы - bezbotvy

10. Метод Крамера решения систем линейных уравнений.Скачать

10. Метод Крамера решения систем линейных уравнений.

Видеоурок "Матричный метод"Скачать

Видеоурок "Матричный метод"

Решение системы уравнений методом ГауссаСкачать

Решение системы уравнений методом Гаусса

6 способов в одном видеоСкачать

6 способов в одном видео

Линейная алгебра, 7 урок, СЛАУ. Матричный методСкачать

Линейная алгебра, 7 урок, СЛАУ. Матричный метод

МЕТОД ПОДСТАНОВКИ 😉 СИСТЕМЫ УРАВНЕНИЙ ЧАСТЬ I#математика #егэ #огэ #shorts #профильныйегэСкачать

МЕТОД ПОДСТАНОВКИ 😉 СИСТЕМЫ УРАВНЕНИЙ ЧАСТЬ I#математика #егэ #огэ #shorts #профильныйегэ

Метод Гаусса решения систем линейных уравненийСкачать

Метод Гаусса решения систем линейных уравнений

Решение системы уравнений методом Крамера 2x2Скачать

Решение системы уравнений методом Крамера 2x2

Решение системы трех уравнений по формулам КрамераСкачать

Решение системы трех уравнений по формулам Крамера

Решение системы уравнений методом Крамера.Скачать

Решение системы уравнений методом Крамера.

Математика Без Ху!ни. Система линейных уравнений. Метод Крамера.Скачать

Математика Без Ху!ни. Система линейных уравнений. Метод Крамера.
Поделиться или сохранить к себе: