Условия сходимости метода итераций для уравнения заключается в том что

Метод итераций

Правила ввода функции

  1. Примеры
    Условия сходимости метода итераций для уравнения заключается в том что≡ x^2/(1+x)
    cos 2 (2x+π) ≡ (cos(2*x+pi))^2
    Условия сходимости метода итераций для уравнения заключается в том что≡ x+(x-1)^(2/3)

Условия сходимости метода итераций для уравнения заключается в том что

Условия сходимости метода итераций для уравнения заключается в том что

На рис.1а, 1б в окрестности корня |φ′(x)| 1, то процесс итерации может быть расходящимся (см. рис.2).

Видео:Метод простой итерации Пример РешенияСкачать

Метод простой итерации Пример Решения

Достаточные условия сходимости метода итерации

Процесс нахождения нулей функции методом итераций состоит из следующих этапов:

  1. Получить шаблон с омощью этого сервиса.
  2. Уточнить интервалы в ячейках B2 , B3 .
  3. Копировать строки итераций до требуемой точности (столбец D ).

Примечание: столбец A — номер итерации, столбец B — корень уравнения X , столбец C — значение функции F(X) , столбец D — точность eps .

Видео:Метод итерацийСкачать

Метод итераций

Метод итераций

Пусть задана функция f(x), требуется найти корни уравнения

Условия сходимости метода итераций для уравнения заключается в том что

Метод простых итераций (последовательных приближений) является наиболее общим, и многие другие методы можно представить как некоторую вариацию метода простых итераций.

Представим уравнение (2.8) в виде

Условия сходимости метода итераций для уравнения заключается в том что

Это можно сделать, например, прибавив х к обеим частям уравнения (2.9).

Рассмотрим последовательность чисел х,-, которая определяется следующим образом:

Условия сходимости метода итераций для уравнения заключается в том что

Метод простых итераций имеет следующую наглядную геометрическую интерпретацию (рис. 2.10). Решением уравнения (2.9) будет абсцисса точки пересечения прямой у = х с кривой y = v|/(x). При выполнении итераций значение функции |/(х) в точке Xj необходимо отложить по оси абсцисс. Это можно сделать, если провести горизонталь до пересечения с прямой у = х и из точки их пересечения опустить перпендикуляр на ось абсцисс. На рис. 2.10 показаны разные ситуации: а) сходимость к корню односторонняя; б) сходимость с разных сторон.

Условия сходимости метода итераций для уравнения заключается в том что

Рис. 2.10. Приближение к корню методом простой итерации

Сходимость процесса приближения к корню в значительной степени определяется видом зависимости v)/(x). На рис. 2.11 показан расходящийся процесс, при котором метод простой итерации не находит решения уравнения.

Условия сходимости метода итераций для уравнения заключается в том что

Рис. 2.11. Расходящийся процесс в методе простой итерации

На рис. 2.10 сходимость обеспечивается для медленно изменяющихся функций i|/(x), для которых выполняется условие

Можно сделать вывод, что для обеспечения сходимости метода простой итерации необходимо выполнить условие | |/'(jc)| 4 корень уравнения 5х 3 -20х + 3= 0, заключенный на отрезке [0; 1]. Решение

Для отделения корней исследовалась производная уравнения F'(x) = 15л: 2 -20, корни которой легко определились аналитически: это ±2/л/3. Определим знаки функции на интервалах Условия сходимости метода итераций для уравнения заключается в том что

Видео:Метод простых итераций пример решения нелинейных уравненийСкачать

Метод простых итераций пример решения нелинейных уравнений

Итерационные методы решения системы линейных алгебраических уравнений

В данной статье мы расскажем общие сведения об итерационных методах решения СЛАУ, познакомим с методом Зейделя и Якоби, а также приведем примеры решения систем линейных уравнений при помощи данных методов.

Видео:Алгоритмы С#. Метод простых итерацийСкачать

Алгоритмы С#. Метод простых итераций

Общие сведения об итерационных методах или методе простой итерации

Метод итерации — это численный и приближенный метод решения СЛАУ.

Суть: нахождение по приближённому значению величины следующего приближения, которое является более точным. Метод позволяет получить значения корней системы с заданной точностью в виде предела последовательности некоторых векторов (итерационный процесс). Характер сходимости и сам факт сходимости метода зависит от выбора начального приближения корня x 0 .

Рассмотрим систему A x = b .

Чтобы применить итерационный метод, необходимо привести систему к эквивалентному виду x = B x + d . Затем выбираем начальное приближение к решению СЛАУ x ( 0 ) = ( x 1 0 , x 2 0 , . . . x m 0 ) и находим последовательность приближений к корню.

Для сходимости итерационного процесса является достаточным заданное условие В 1 . Окончание итерации зависит от того, какой итерационный метод применили.

Видео:Метод итераций (последовательных приближений)Скачать

Метод итераций (последовательных приближений)

Метод Якоби

Метод Якоби — один из наиболее простых методов приведения системы матрицы к виду, удобному для итерации: из 1-го уравнения матрицы выражаем неизвестное x 1 , из 2-го выражаем неизвестное x 2 и т.д.

Результатом служит матрица В , в которой на главной диагонали находятся нулевые элементы, а все остальные вычисляются по формуле:

b i j = — a i j / a i i , i , j = 1 , 2 . . . , n

Элементы (компоненты) вектора d вычисляются по следующей формуле:

d i = b i / a i i , i = 1 , 2 , . . . , n

Расчетная формула метода простой итерации:

x ( n + 1 ) = B x ( x ) + d

Матричная запись (координатная):

x i ( n + 1 ) = b i 1 x n 1 + b i 2 x ( n ) 2 + . . . + b

Критерий окончания в методе Якоби:

x ( n + 1 ) — x ( n ) ε 1 , где ε 1 = 1 — B B ε

В случае если B 1 / 2 , то можно применить более простой критерий окончания итераций:

x ( n + 1 ) — x ( n ) ε

Решить СЛАУ методом Якоби:

10 x 1 + x 2 — x 3 = 11 x 1 + 10 x 2 — x 3 = 10 — x 1 + x 2 + 10 x 3 = 10

Необходимо решить систему с показателем точности ε = 10 — 3 .

Приводим СЛАУ к удобному виду для итерации:

x 1 = — 0 , 1 x 2 + 0 , 1 x 3 + 1 , 1 x 2 = — 0 , 1 x 1 + 0 , 1 x 3 + 1 x 3 = 0 , 1 x 1 — 0 , 1 x 2 + 1

Выбираем начальное приближение, например: x ( 0 ) = 1 , 1 1 1 — вектор правой части.

В таком случае, первая итерация имеет следующий внешний вид:

x 1 ( 1 ) = — 0 , 1 × 1 + 0 , 1 × 1 + 1 , 1 = 1 , 1 x 2 ( 1 ) = — 0 , 1 × 1 , 1 + 0 , 1 + 1 = 0 , 99 x 3 ( 1 ) = 0 , 1 × 1 , 1 — 0 , 1 × 1 + 1 = 1 , 01

Аналогичным способом вычисляются приближения к решению:

x ( 2 ) = 1 , 102 0 , 991 1 , 011 , x ( 3 ) = 1 , 102 0 , 9909 1 , 0111 , x ( 4 ) = 1 , 10202 0 , 99091 1 , 01111

Находим норму матрицы В , для этого используем норму B ∞ .

Поскольку сумма модулей элементов в каждой строке равна 0,2, то B ∞ = 0 , 2 1 / 2 , поэтому можно вычислить критерий окончания итерации:

x ( n + 1 ) — x ( n ) ε

Далее вычисляем нормы разности векторов:

x ( 3 ) — x ( 2 ) ∞ = 0 , 002 , x ( 4 ) — x ( 3 ) ∞ = 0 , 00002 .

Поскольку x ( 4 ) — x ( 3 ) ∞ ε , то можно считать, что мы достигли заданной точности на 4-ой итерации.

x 1 = 1 , 102 ; x 2 = 0 , 991 ; x 3 = 1 ,01 1 .

Видео:Решение нелинейного уравнения методом простых итераций (программа)Скачать

Решение нелинейного уравнения методом простых итераций (программа)

Метод Зейделя

Метод Зейделя — метод является модификацией метода Якоби.

Суть: при вычислении очередного ( n + 1 ) — г о приближения к неизвестному x i при i > 1 используют уже найденные ( n + 1 ) — е приближения к неизвестным x 1 , x 2 , . . . , x i — 1 , а не n — о е приближение, как в методе Якоби.

x i ( n + 1 ) = b i 1 x 1 ( n + 1 ) + b i 2 x 2 ( n + 1 ) + . . . + b i , i — 1 x i — 2 ( n + 1 ) + b i , i + 1 x i + 1 ( n ) +

+ . . . + b i m x m ( n ) + d i

За условия сходимости и критерий окончания итераций можно принять такие же значения, как и в методе Якоби.

Решить СЛАУ методом Зейделя. Пусть матрица системы уравнений А — симметричная и положительно определенная. Следовательно, если выбрать начальное приближение, метод Зейделя сойдется. Дополнительных условий на малость нормы некоторой матрицы не накладывается.

Решим 3 системы уравнений:

2 x 1 + x 2 = 3 x 1 — 2 x 2 = 1 , x 1 + 2 x 2 = 3 2 x 1 — x 2 = 1 , 2 x 1 — 0 , 5 x 2 = 3 2 x 1 + 0 , 5 x 2 = 1

Приведем системы к удобному для итерации виду:

x 1 ( n + 1 ) = — 0 , 5 x 2 ( n ) + 1 , 5 x 2 ( n + 1 ) = 0 , 5 x 1 ( n + 1 ) + 0 , 5 , x 1 ( n + 1 ) = — 2 x 2 ( n ) + 3 x 2 ( n + 1 ) = 2 x 1 ( n + 1 ) — 1 , 2 x 1 — 0 , 5 x 2 = 3 2 x 1 + 0 , 5 x 2 = 1 .

Отличительная особенность, условие сходимости выполнено только для первой системы:

Вычисляем 3 первых приближения к каждому решению:

1-ая система: x ( 0 ) = 1 , 5 — 0 , 5 , x ( 1 ) = 1 , 75 0 , 375 , x ( 2 ) = 1 , 3125 0 , 1563 , x ( 3 ) = 1 , 4219 0 , 2109

Решение: x 1 = 1 , 4 , x 2 = 0 , 2 . Итерационный процесс сходится.

2-ая система: x ( 0 ) = 3 — 1 , x ( 1 ) = 5 9 , x ( 2 ) = — 15 — 31 , x ( 3 ) = 65 129

Итерационный процесс разошелся.

Решение: x 1 = 1 , x 2 = 2

3-я система: x ( 0 ) = 1 , 5 2 , x ( 1 ) = 2 — 6 , x ( 2 ) = 0 2 , x ( 3 ) = 0 2

Итерационный процесс зациклился.

Решение: x 1 = 1 , x 1 = 2

Видео:1 3 Решение нелинейных уравнений методом простых итерацийСкачать

1 3 Решение нелинейных уравнений методом простых итераций

Метод простой итерации

Если А — симметричная и положительно определенная, то СЛАУ приводят к эквивалентному виду:

x = x — τ ( A x — b ) , τ — итерационный параметр.

Расчетная формула имеет следующий внешний вид:

x ( n + 1 ) = x ( n ) — τ ( A x n — b ) .

Здесь B = E — τ A и параметр τ > 0 выбирают таким образом, чтобы по возможности сделать максимальной величину B 2 .

Пусть λ m i n и λ m a x — максимальные и минимальные собственные значения матрицы А .

τ = 2 / ( λ m i n + λ m a x ) — оптимальный выбор параметра. В этом случае B 2 принимает минимальное значение, которое равняется ( λ m i n + λ m a x ) / ( λ m i n — λ m a x ) .

📺 Видео

2.2 Итерационные методы решения СЛАУ (Якоби, Зейделя, релаксации)Скачать

2.2 Итерационные методы решения СЛАУ (Якоби, Зейделя, релаксации)

Решение слау методом итераций. Метод простых итераций c++.Скачать

Решение слау методом итераций. Метод простых итераций c++.

Метод Зейделя Пример РешенияСкачать

Метод Зейделя Пример Решения

Решение систем линейных уравнений, урок 5/5. Итерационные методыСкачать

Решение систем линейных уравнений, урок 5/5. Итерационные методы

8 Метод простой итерации Ручной счет Решение системы линейных уравнений СЛАУСкачать

8 Метод простой итерации Ручной счет Решение системы линейных уравнений СЛАУ

10 Численные методы решения нелинейных уравненийСкачать

10 Численные методы решения нелинейных уравнений

Семинар 14. Понятия оракула, итерационных методов. Скорость сходимости. Линейный поиск. МФТИ. 2022Скачать

Семинар 14. Понятия оракула, итерационных методов. Скорость сходимости. Линейный поиск. МФТИ. 2022

Метод_Зейделя_ExcelСкачать

Метод_Зейделя_Excel

Метод простых итераций - PascalСкачать

Метод простых итераций - Pascal

ММНИ. Лекция 3. Принцип сжимающих отображений. Метод простой итерации.Скачать

ММНИ. Лекция 3. Принцип сжимающих отображений. Метод простой итерации.

Решение системы линейных уравнений методом простых итераций в MS ExcelСкачать

Решение системы линейных уравнений методом простых итераций в MS Excel

5.1 Численные методы решения уравнений F(x)=0Скачать

5.1 Численные методы решения уравнений F(x)=0

3 Метод простой итерации Блок-схема Решение системы линейных уравнений СЛАУСкачать

3 Метод простой итерации Блок-схема Решение системы линейных уравнений СЛАУ
Поделиться или сохранить к себе: