Уравнения высших степеней все виды

Видео:Теорема БезуСкачать

Теорема Безу

Об уравнениях высших степеней

Уравнения высших степеней все виды

Как правило в физике, информатике и экономике мы сталкиваемся с простейшими линейными, или дробно-рациональными уравнениями, реже с квадратными. А что до уравнений третьей и четвёртой степени? Если вам интересно, то прошу под кат.

Для начала рассмотрим понятие уравнения высшей степени. Уравнением высшей степени, называется уравнение вида:

Уравнения высших степеней все виды
В этой статье я рассмотрю:

1. Кубические уравнения.
2. Возвратные кубические.
3. Применение схемы Горнера и теоремы Безу.
4. Возвратные биквадратные уравнения.

Видео:Вспоминаем схему Горнера и уравнения высших степенейСкачать

Вспоминаем схему Горнера и уравнения высших степеней

Кубические уравнения

Кубические уравнения, это уравнения, в которых у неизвестной при старшем члене степень равна 3. Кубические уравнения имеют следующий вид:

Уравнения высших степеней все виды

Решать такие уравнения можно по разному, однако мы воспользуемся знаниями базовой школы, и решим кубическое уравнение методом группировки:

Уравнения высших степеней все виды

В данном примере используется метод группировки, группируем первые два и последние два члена, получая равные скобки, снова выносим, получая уравнение из двух скобок.

Произведение равно нулю тогда, и только тогда, если хотя бы один из множителей равен нулю, на основании этого мы каждый множитель (скобку) приравниваем к нулю, получая неполное квадратное и линейное уравнения.

Также стоит отметить, что максимальное количество корней уравнения, равно степени неизвестной при главном члене, так в кубическом уравнении может быть не более трёх корней, в биквадратном (4-ой степени) не более четырёх корней и. т. д.

Видео:11 класс, 3 урок, Уравнения высших степенейСкачать

11 класс, 3 урок, Уравнения высших степеней

Возвратные кубические уравнения

Возвратные кубические уравнения имеют вид:

Уравнения высших степеней все виды

Возвратными они называются потому что коэффициенты будут зеркально повторяться. Подобные уравнения тоже решаются школьными методами, но чуть хитрее:

Уравнения высших степеней все виды

Сначала производится группировка, потом при помощи формул сокращённого умножения мы раскладываем получаемое на множители. Снова получаем 2 равные скобки, «выносим их». Получаем два множителя (скобки) и решаем их как два различных уравнения.

Видео:✓ Теорема Безу. Рациональные нули многочленов | Ботай со мной #119 | Борис ТрушинСкачать

✓ Теорема Безу. Рациональные нули многочленов | Ботай со мной #119 | Борис Трушин

Теорема Безу и схема Горнера

Теорема Безу была открыта, как ни удивительно, Этьеном Безу, французским математиком, занимавшимся в основном алгеброй. Теорему Безу, можно сформулировать следующим образом:

Уравнения высших степеней все виды

Давайте разберёмся. P(x) — это какой-либо многочлен от x, (x — a) — это двучлен в котором a — это один из целых корней уравнения, который мы находим среди делителей свободного члена.

Три точки, это оператор обозначающий что одно выражение делится на другое. Из этого следует что найдя хотя бы один корень данного уравнения, мы сможем применить к нему эту теорему. Но зачем нужна эта теорема, каково её действие? Теорема Безу — это универсальный инструмент, если вы хотите понизить степень многочлена. Например, при её помощи, кубическое уравнение, можно превратить в квадратное, биквадратное, в кубическое и т. д.

Но одно дело понять, а как поделить? Можно конечно, делить и в столбик, однако этот метод доступен далеко не всем, да и вероятность ошибиться очень высока. Поэтому есть и иной путь, это схема Горнера. Её работу я поясню на примере. Предположим:

Уравнения высших степеней все виды

И так, нам дан многочлен, и мы возможно заранее нашли один из корней. Теперь мы рисуем небольшую табличку из 6 столбцов и 2 строк, в каждый столбец первой строки (кроме первого), мы вносим коэффициенты уравнения. А в первый столбец 2 строки мы вносим значение a (найденный корень). Потом первый коэффициент, в нашем случае 5, мы просто сносим вниз. Значения последующих столбиков мы рассчитываем так:

Уравнения высших степеней все виды

(Картинка позаимствована здесь)
Далее поступаем точно так же и с остальными столбцами. Значение последнего столбца (2 строки) будет остатком от деления, в нашем случае 0, если получается число отличное от 0, значит надо избрать другой подход. Пример для кубического уравнения:

Уравнения высших степеней все виды

Видео:8 класс, 35 урок, Уравнения высших степенейСкачать

8 класс, 35 урок, Уравнения высших степеней

Возвратные биквадратные уравнения

Выше мы так же рассматривали возвратные кубические уравнения, а теперь разберём биквадратные. Их общий вид:

Уравнения высших степеней все виды

В отличие от кубического возвратного уравнения, в биквадратном пары, относительно коэффициентов, есть не у всех, однако в остальном они очень схожи. Вот алгоритм решения таких уравнений:

Уравнения высших степеней все виды

Как видно, решать такие уравнения совсем не просто. Но я всё равно разберу и этот случай. Начинается решение с деления всего уравнения на x^2. Далее мы группируем, здесь я специально ввёл дополнительную строку для ясности. После этого мы совершаем хитрость, и вводим в первую скобку 2, которую мы сначала прибавляем, а после вычитаем, сумма всё равно не изменится, зато теперь мы можем свернуть эту скобку в квадрат суммы.

Уберём -2 из скобки, предварительно домножив его на a, после чего вводим новую переменную, t и получаем квадратное уравнение.

А теперь перейдём к примеру:

Уравнения высших степеней все виды

Основная часть так же как и в обобщённом алгоритме, делим на x^2, группируем, сворачиваем в полный квадрат, выполняем подстановку переменной и решаем квадратное уравнение. После этого полученные корни подставляем обратно, и решаем ещё 2 квадратных уравнения (с умножением на x).

Видео:Уравнение четвертой степениСкачать

Уравнение четвертой степени

Область применения

В виду своей громоздкости и специфичности уравнения высших степеней редко находят себе применение. Однако примеры всё же есть, уравнение Пуассона для адиабатических процессов в Физике.

Видео:Как решать уравнения высших степеней, очень лёгкий способ!!!Скачать

Как решать уравнения высших степеней, очень лёгкий способ!!!

Уравнения высших степеней

Вы будете перенаправлены на Автор24

Уравнения высших степеней — это уравнения, в которых старшая степень при переменной больше либо равна трём. На данный момент не существует какой-либо единой схемы для решения уравнений высших степеней.

Наиболее известными схемами для решения являются:

  • Формула Кардано, он подходит только для уравнений 3-ьей степени;
  • Метод Феррари для уравнений 4-ой степени;
  • Теорема Виета для степени больше двух;
  • Теорема Безу;
  • Схема Горнера.

Ниже рассмотрены основные методы решения уравнений высших степеней с целыми и рациональными коэффициентами, справедливые для разных степеней.

Видео:Уравнения высших степеней 1 часть (старший коэффициент равен 1)Скачать

Уравнения высших степеней 1 часть (старший коэффициент равен 1)

Теорема Виета

Рассмотрим уравнение вида $ax^3+bx^2+cx+d=0$.

Данное уравнение обладает тремя корнями и для того чтобы его решить в общем виде, необходимо решить следующую систему:

Иначе эти системы уравнений также называют формулами Виета.

Решите уравнение: $x^3+x^2-4x-4=0$.

Решение:

Составим систему уравнений:

$begin x_1+ x_2+x_3=-frac \ x_1 cdot x_2 + x_2 cdot x_3 + x_1 cdot x_3=-frac=-4 \ x_1 cdot x_2 cdot x_3= -frac\ end$

Решив её, получим следующие корни:

Видео:Теорема Виета для уравнений высших степеней. Рациональные уравнения Часть 4 из 4Скачать

Теорема Виета для уравнений высших степеней. Рациональные уравнения Часть 4 из 4

Теорема Безу

Суть этой теоремы в том, что если уравнение вида $a_0x^n + a_1x^+a_2x^+. +a_x+a_n=0$ с ненулевым свободным членом имеет некий корень $α$, принадлежащий к множеству целых чисел, то этот корень будет делителем свободного члена.

Алгоритм при решении уравнения с использованием теоремы Безу следующий:

  1. Найти и выписать все делители свободного члена.
  2. Проверять эти делители до тех пор, пока не будет найден хотя бы один, являющийся корнем уравнения.
  3. Разделить всё уравнение на $(x-α)$ и записать само уравнение как произведение $(x-α)$ и результата выполненного деления.
  4. Решить полученное после разложения уравнение.

Готовые работы на аналогичную тему

Решение:

Делители члена не при переменной: $±1;±2;±3;±6$

Подставим $1$ в корень уравнения и получим, что наше равенство выполняется:

Следовательно, $x_1=1$ — один из корней уравнения. Теперь необходимо выполнить деление многочлена столбиком:

Рисунок 1. Схема деления многочлена столбиком. Автор24 — интернет-биржа студенческих работ

После этого исходное уравнение можно записать разложив на множители:

Решаем полученное квадратное уравнение и получаем ещё 2 корня: $x_=-3;-2$.

Видео:Урок 10. Сложные уравнения и неравенства. Решение уравнений высоких степеней. Вебинар | МатематикаСкачать

Урок 10. Сложные уравнения и неравенства. Решение уравнений высоких степеней. Вебинар | Математика

Схема Горнера

Схема Горнера состоит в том, чтобы также сначала найти какой-либо корень уравнения вида $a_0x^n + a_1x^+a_2x^+. +a_x+a_n=0$ через делители свободного члена.

После этого составляется специальная таблица с результатами деления на $(x-α)$, в которой каждый член зависим от предыдущего. Коэффициенты из данной таблицы используются как коэффициенты в полученном от деления частного многочлене, они вычисляются по формулам:

$b_0=a_0; b_1=αb_0+a_1; b_2=αb_1+a_2. b_= αb_+a_;b_n=αb_+a_n$.

Рисунок 2. Таблица для вычисления коэффициентов по схеме Горнера. Автор24 — интернет-биржа студенческих работ

Решение:

Делители свободного члена — $±1;±2;±3;±6$

Запишем таблицу со коэффициентами:

Рисунок 3. Схема Горнера: пример. Автор24 — интернет-биржа студенческих работ

Отсюда получаем, что многочлен, полученный от деления на $(x-α)$ при $α=1$, равен $x^2+5x+6$.Получается, что исходное уравнение принимает вид:

Корни же второго многочлена будут $x_=-2;-3$.

Видео:КАК РЕШАТЬ КУБИЧЕСКИЕ УРАВНЕНИЯ | Разбираем на конкретном примереСкачать

КАК РЕШАТЬ КУБИЧЕСКИЕ УРАВНЕНИЯ | Разбираем на конкретном примере

Метод одновременного подбора по коэффициенту при старшей степени и при свободном члене

Данный метод основан на следующем условии:

Несократимая дробь $frac

$ будет корнем уравнения, если числитель этой дроби является делителем свободного члена, а знаменатель — делителем коэффициента, стоящего при члене со старшей степенью.

Алгоритм этого метода:

  1. Поиск делителей свободного члена.
  2. Поиск делителей коэффициента, стоящего при члене со старшей степенью.
  3. Составление дробей и подбор решения.

Решение:

Делители свободного члена: $±1; ±2; ±3; ±6$.

Делители коэффициента при старшем члене: $1; 2$.

Следовательно, как корни нужно проверить следующие значения: $1;-1;2;-2;3;-3;6;-6;frac; -frac; frac; -frac$.

Подставив эти числа в уравнения, получим, что корнями уравнения являются $x_1=1;x_2= frac$.

Это значит, что многочлен можно разделить на $2(x-1)(x-frac)=2x^2-3x+1$. При выполнении деления получаем частное $x^2+10x+6$.

Приравниваем этот многочлен к нулю и находим его корни через дискриминант, они равны $x_=-5±sqrt$.

Получи деньги за свои студенческие работы

Курсовые, рефераты или другие работы

Автор этой статьи Дата последнего обновления статьи: 14 03 2021

Видео:Уравнения высших степеней. Решение уравнений с помощью деления в столбикСкачать

Уравнения высших степеней. Решение уравнений с помощью деления в столбик

Решение уравнений высших степеней

В общем случае уравнение, имеющее степень выше 4 , нельзя разрешить в радикалах. Но иногда мы все же можем найти корни многочлена, стоящего слева в уравнении высшей степени, если представим его в виде произведения многочленов в степени не более 4 -х. Решение таких уравнений базируется на разложении многочлена на множители, поэтому советуем вам повторить эту тему перед изучением данной статьи.

Чаще всего приходится иметь дело с уравнениями высших степеней с целыми коэффициентами. В этих случаях мы можем попробовать найти рациональные корни, а потом разложить многочлен на множители, чтобы потом преобразовать его в уравнение более низкой степени, которое будет просто решить. В рамках этого материала мы рассмотрим как раз такие примеры.

Видео:Можно ли решить уравнение 5-й степени? – математик Алексей Савватеев | НаучпопСкачать

Можно ли решить уравнение 5-й степени? – математик Алексей Савватеев | Научпоп

Уравнения высшей степени с целыми коэффициентами

Все уравнения, имеющие вид a n x n + a n — 1 x n — 1 + . . . + a 1 x + a 0 = 0 , мы можем привести к уравнению той же степени с помощью умножения обеих частей на a n n — 1 и осуществив замену переменной вида y = a n x :

a n x n + a n — 1 x n — 1 + . . . + a 1 x + a 0 = 0 a n n · x n + a n — 1 · a n n — 1 · x n — 1 + … + a 1 · ( a n ) n — 1 · x + a 0 · ( a n ) n — 1 = 0 y = a n x ⇒ y n + b n — 1 y n — 1 + … + b 1 y + b 0 = 0

Те коэффициенты, что получились в итоге, также будут целыми. Таким образом, нам нужно будет решить приведенное уравнение n-ной степени с целыми коэффициентами, имеющее вид x n + a n x n — 1 + … + a 1 x + a 0 = 0 .

Видео:Как решают уравнения в России и СШАСкачать

Как решают уравнения в России и США

Схема решения уравнения

Вычисляем целые корни уравнения. Если уравнение имеет целые корни, нужно искать их среди делителей свободного члена a 0 . Выпишем их и будем подставлять в исходное равенство по очереди, проверяя результат. Как только мы получили тождество и нашли один из корней уравнения, то можем записать его в виде x — x 1 · P n — 1 ( x ) = 0 . Здесь x 1 является корнем уравнения, а P n — 1 ( x ) представляет собой частное от деления x n + a n x n — 1 + … + a 1 x + a 0 на x — x 1 .

Подставляем остальные выписанные делители в P n — 1 ( x ) = 0 , начав с x 1 , поскольку корни могут повторяться. После получения тождества корень x 2 считается найденным, а уравнение может быть записано в виде ( x — x 1 ) ( x — x 2 ) · P n — 2 ( x ) = 0 .Здесь P n — 2 ( x ) будет частным от деления P n — 1 ( x ) на x — x 2 .

Продолжаем и дальше перебирать делители. Найдем все целые корни и обозначим их количество как m . После этого исходное уравнение можно представить как x — x 1 x — x 2 · … · x — x m · P n — m ( x ) = 0 . Здесь P n — m ( x ) является многочленом n — m -ной степени. Для подсчета удобно использовать схему Горнера.

Если у нас исходное уравнение имеет целые коэффициенты, мы не можем получить в итоге дробные корни.

У нас в итоге получилось уравнение P n — m ( x ) = 0 , корни которого могут быть найдены любым удобным способом. Они могут быть иррациональными или комплексными.

Покажем на конкретном примере, как применяется такая схема решения.

Условие: найдите решение уравнения x 4 + x 3 + 2 x 2 — x — 3 = 0 .

Решение

Начнем с нахождений целых корней.

У нас есть свободный член, равный минус трем. У него есть делители, равные 1 , — 1 , 3 и — 3 . Подставим их в исходное уравнение и посмотрим, какие из них дадут в итоге тождества.

При x , равном единице, мы получим 1 4 + 1 3 + 2 · 1 2 — 1 — 3 = 0 , значит, единица будет корнем данного уравнения.

Теперь выполним деления многочлена x 4 + x 3 + 2 x 2 — x — 3 на ( х — 1 ) в столбик:

Уравнения высших степеней все виды

Значит, x 4 + x 3 + 2 x 2 — x — 3 = x — 1 x 3 + 2 x 2 + 4 x + 3 .

Перебираем возможные делители дальше, но подставляем их в равенство x 3 + 2 x 2 + 4 x + 3 = 0 :

1 3 + 2 · 1 2 + 4 · 1 + 3 = 10 ≠ 0 ( — 1 ) 3 + 2 · ( — 1 ) 2 + 4 · — 1 + 3 = 0

У нас получилось тождество, значит, мы нашли еще один корень уравнения, равный — 1 .

Делим многочлен x 3 + 2 x 2 + 4 x + 3 на ( х + 1 ) в столбик:

Уравнения высших степеней все виды

x 4 + x 3 + 2 x 2 — x — 3 = ( x — 1 ) ( x 3 + 2 x 2 + 4 x + 3 ) = = ( x — 1 ) ( x + 1 ) ( x 2 + x + 3 )

Подставляем очередной делитель в равенство x 2 + x + 3 = 0 , начиная с — 1 :

— 1 2 + ( — 1 ) + 3 = 3 ≠ 0 3 2 + 3 + 3 = 15 ≠ 0 ( — 3 ) 2 + ( — 3 ) + 3 = 9 ≠ 0

Равенства, полученные в итоге, будут неверными, значит, у уравнения больше нет целых корней.

Оставшиеся корни будут корнями выражения x 2 + x + 3 .

D = 1 2 — 4 · 1 · 3 = — 11 0

Из этого следует, что у данного квадратного трехчлена нет действительных корней, но есть комплексно сопряженные: x = — 1 2 ± i 11 2 .

Уточним, что вместо деления в столбик можно применять схему Горнера. Это делается так: после того, как мы определили первый корень уравнения, заполняем таблицу.

x iкоэффициенты многочлена
112— 1— 3
111 + 1 · 1 = 22 + 2 · 1 = 4— 1 + 4 · 1 = 3— 3 + 3 · 1 = 0

В таблице коэффициентов мы сразу можем увидеть коэффициенты частного от деления многочленов, значит, x 4 + x 3 + 2 x 2 — x — 3 = x — 1 x 3 + 2 x 2 + 4 x + 3 .

После нахождения следующего корня, равного — 1 , мы получаем следующее:

x iкоэффициенты многочлена
1243
112 + 1 · ( — 1 ) = 14 + 1 · ( — 1 ) = 33 + 3 · ( — 1 ) = 0

Далее мы приходим к разложению x — 1 x + 1 x 2 + x + 3 = 0 . Потом, проверив оставшиеся делители равенства x 2 + x + 3 = 0 , вычисляем оставшиеся корни.

Ответ: х = — 1 , х = 1 , x = — 1 2 ± i 11 2 .

Условие: решите уравнение x 4 — x 3 — 5 x 2 + 12 = 0 .

Решение

У свободного члена есть делители 1 , — 1 , 2 , — 2 , 3 , — 3 , 4 , — 4 , 6 , — 6 , 12 , — 12 .

Проверяем их по порядку:

1 4 — 1 3 — 5 · 1 2 + 12 = 7 ≠ 0 ( — 1 ) 4 — ( — 1 ) 3 — 5 · ( — 1 ) 2 + 12 = 9 ≠ 0 2 4 · 2 3 — 5 · 2 2 + 12 = 0

Значит, x = 2 будет корнем уравнения. Разделим x 4 — x 3 — 5 x 2 + 12 на х — 2 , воспользовавшись схемой Горнера:

x iкоэффициенты многочлена
1— 1— 5012
21— 1 + 1 · 2 = 1— 5 + 1 · 2 = — 30 — 3 · 2 = 312 — 6 · 2 = 0

В итоге мы получим x — 2 ( x 3 + x 2 — 3 x — 6 ) = 0 .

Проверяем делители дальше, но уже для равенства x 3 + x 2 — 3 x — 6 = 0 , начиная с двойки.

2 3 + 2 2 — 3 · 2 — 6 = 0

Значит, 2 опять будет корнем. Разделим x 3 + x 2 — 3 x — 6 = 0 на x — 2 :

x iкоэффициенты многочлена
11— 3— 6
211 + 1 · 2 = 3— 3 + 3 · 2 = 3— 6 + 3 · 2 = 0

В итоге получим ( x — 2 ) 2 · ( x 2 + 3 x + 3 ) = 0 .

Проверка оставшихся делителей смысла не имеет, поскольку равенство x 2 + 3 x + 3 = 0 быстрее и удобнее решить с помощью дискриминанта.

Решим квадратное уравнение:

x 2 + 3 x + 3 = 0 D = 3 2 — 4 · 1 · 3 = — 3 0

Получаем комплексно сопряженную пару корней: x = — 3 2 ± i 3 2 .

Ответ: x = — 3 2 ± i 3 2 .

Условие: найдите для уравнения x 4 + 1 2 x 3 — 5 2 x — 3 = 0 действительные корни.

Решение

x 4 + 1 2 x 3 — 5 2 x — 3 = 0 2 x 4 + x 3 — 5 x — 6 = 0

Выполняем домножение 2 3 обеих частей уравнения:

2 x 4 + x 3 — 5 x — 6 = 0 2 4 · x 4 + 2 3 x 3 — 20 · 2 · x — 48 = 0

Заменяем переменные y = 2 x :

2 4 · x 4 + 2 3 x 3 — 20 · 2 · x — 48 = 0 y 4 + y 3 — 20 y — 48 = 0

В итоге у нас получилось стандартное уравнение 4 -й степени, которое можно решить по стандартной схеме. Проверим делители, разделим и получим в итоге, что оно имеет 2 действительных корня y = — 2 , y = 3 и два комплексных. Решение целиком здесь мы не будем приводить. В силу замены действительными корнями данного уравнения будут x = y 2 = — 2 2 = — 1 и x = y 2 = 3 2 .

Ответ: x 1 = — 1 , x 2 = 3 2

Советуем также ознакомиться с материалами, посвященными решению кубических уравнений и уравнений четвертой степени.

📽️ Видео

Системы уравнений методы решения. Системы уравнений высших степеней.Скачать

Системы уравнений методы решения.  Системы уравнений высших степеней.

Схема Горнера. 10 класс.Скачать

Схема Горнера. 10 класс.

Решение биквадратных уравнений. 8 класс.Скачать

Решение биквадратных уравнений. 8 класс.

✓ Как решать кубические уравнения. Формула Кардано | Ботай со мной #025 | Борис ТрушинСкачать

✓ Как решать кубические уравнения. Формула Кардано | Ботай со мной #025 | Борис Трушин

Теорема Виета для многочлена 3 порядка. 10 класс.Скачать

Теорема Виета для многочлена 3 порядка. 10 класс.

Метод неопределенных коэффициентовСкачать

Метод неопределенных коэффициентов
Поделиться или сохранить к себе: