Уравнения высших степеней с параметром

Алгебраические уравнения высших степеней с параметрами

Разделы: Математика

1.1. Общая методическая концепция решения уравнений с параметрами

Пусть дано уравнение F(x, a) = 0, (1)

если ставится задача для каждого значения а Уравнения высших степеней с параметромА решить уравнение (1) относительно х, т.е. получить уравнение

то уравнение (1) называется уравнением с неизвестным х и параметром а. А – область изменения параметра. Принято считать, что А – множество действительных чисел. Решить уравнение (1) – значит решить множество уравнений, которые получаются из уравнения (1) при а Уравнения высших степеней с параметромR. Сделать это можно, если по некоторому признаку разбить множество А на подмножества и решить заданное уравнение на каждом из них. Значения а называются контрольными.

1.2. Использование параметра как равноправной переменной

Некоторые уравнения бывает целесообразно решать, рассматривая их как уравнение именно относительно параметра, который фигурирует в условии, а не относительно искомой переменной. Этот путь эффективен, в частности, в тех случаях, когда степень переменной относительно высока, а степень параметра равна двум.

Пример 1. Решить уравнение с параметром.

2x 3 – (а+2)х 2 – ах + а 2 = 0 (1)

Решение: Данное уравнение можно рассматривать как квадратное относительно параметра а, переписав его в виде:

а 2 – х(х+1)а – 2х 2 + 2х 3 = 0 (2)

Найдем дискриминант D.

D = х 2 (х+1) 2 – 8(х 3 – х 2 ) = х 4 — 6х 3 + 9х 2 = х 2 (х 2 — 6х + 9) = х 2 (х — 3) 2 .

Найдем корни уравнения (2).

Уравнения высших степеней с параметром; а2 = 2х.

Получим уравнение (а – х 2 + х)(а – 2х) = 0 равносильное исходному уравнению, которое ещё в свою очередь равносильно совокупности

Уравнения высших степеней с параметром

Рассмотрим уравнение х 2 – х – а = 0, D = 1 – 4а.

D = 0 при а = -1/4 один корень х = 1/2

D 0 при а > -1/4 два корня Уравнения высших степеней с параметром

Рассмотрим уравнение х = а/2, при а = -1/4, х = -1/8.

Уравнения высших степеней с параметром

Ответ: при а > -1/4 три корня: х1 = а/2, Уравнения высших степеней с параметром

при а = -1/4 два корня: х1 = -1/8; х 2 = ½

при а 4 – (а+2)х 3 – (а – 1)х 2 + (а 2 – 1) = 0;

  • x 4 + 6х 3 + (4 – 2а)х 2 – (6а + 1)х + а 2 + а = 0;
  • х 3 + (2а – 3)х 2 + (а 2 – 4а + 2)х – а 2 + 2а = 0;
  • х 3 — (2а + 3)х 2 + (а 2 + 4а + 2)х – а 2 – 2а = 0.
  • 1.3. Графический способ решения уравнений с параметрами

    Взгляд на параметр как на равноправную переменную находит свое отражение в графических методах. В самом деле, поскольку параметр «равен в правах» с переменной, то ему, естественно можно выделить и свою координатную ось. Таким образом, возникает координатная плоскость (х; а). Рассмотрим примеры.

    Пример 1. В зависимости от параметра а определить число корней уравнения.

    x 4 – 10х 3 – 2(а — 11)х 2 + 2(5а + 6)х + 2а + а 2 = 0;

    Решение. Рассмотрим это уравнение как квадратное относительно а.

    а 2 + 2а(1 + 5х – х 2 ) + (х 4 – 10х 3 + 22х 2 + 12х) = 0;

    D/4 = 1 + 25х 2 + х 4 + 10х – 10х 3 – 2х 2 – х 4 + 10х 3 – 22х 2 – 12х = х 2 – 2х +1 = = (х – 1) 2

    Найдем а1 и а2 ; а1 = х 2 -5х – 1 + х – 1 = х 2 — 4х – 2;

    а2 = х 2 -5х – 1 — х + 1 = = х 2 – 6х.

    Уравнения высших степеней с параметром

    Теперь обращаемся к координатной плоскости (х; а).

    х 2 — 4х – 2 = х 2 – 6х, 2х = 2, х = 1, а(1) = -5.

    Уравнения высших степеней с параметром

    Ответ: если а -5, то четыре решения.

    Упражнения

    Найти все значения параметра а, при каждом из которых уравнение имеет три решения.

    1. (х 2 – 12а) 2 – 24х 2 + 32х + 96а = 0;
    2. (2х 2 – а) 2 – 24х 2 + 16х + 4а = 0;
    3. (2х 2 – а) 2 = 13х 2 + 6х – 2а = 0.

    1.4. Использование свойств функций для решения алгебраических уравнений

    На выпускных экзаменах за курс средней школы встречаются уравнения с параметром, решение которых связано с использованием четности функций. Напомним определение четности функции.

    Определение. Функция f(x) называется четной, если f(-x) = f(x) для любого х из области определения этой функции. График четной функции симметричен относительно оси ординат. У четной функции область определения симметрична относительно начала координат.

    Пример 1. Может ли при каком-нибудь значении а уравнение

    2х 8 – 3ах 6 + 4х 4 – ах 2 = 5 иметь 5 корней?

    Решение. Обозначим f(x) = 2х 8 – 3ах 6 + 4х 4 – ах 2 . f(x) – функция четная, поэтому, если х0 – корень данного уравнения, то – х0 – тоже, х = 0 не является корнем данного уравнения (0 ≠ 5). Следовательно, число корней у этого уравнения при любом действительном а четно, поэтому 5 корней оно иметь не может.

    Пример 2. При каком значении а уравнение х 10 – а|х| + a 2 – а = 0 имеет единственное решение?

    Решение. Обозначим f(x) = х 10 – а|х| + a 2 – а, f(x) – функция четная, поэтому, если х0 – корень данного уравнения, то – х0 – тоже. Значит для единственности решения необходимо, чтобы х0 = 0. В этом случае из уравнения получим: a 2 – а = 0, а = 0 или а = 1. Проверим достаточность каждого из полученных значений параметра а,

    при а = 0, х 10 = 0, т.е. х = 0 единственное решение.

    при а = 1, х 10 — |x| = 0. Корнями являются числа ± 1, 0.

    Ответ: при а = 0 уравнение имеет единственное решение.

    Упражнения

    1. Может ли при каком-нибудь а уравнение 2х 6 – х 4 – ах 2 = 1 иметь три корня?
    2. Может ли при каком-нибудь а уравнение 2х 6 – 2ах 4 + 3х 2 = 4 иметь пять корней?
    3. При каком значении а уравнение Уравнения высших степеней с параметромимеет единственное решение?

    1.5. Метод замены

    Как мы уже знаем, что рациональное и быстрое решение уравнения зависит от замены переменной. Рассмотрим примеры, для решения которых нужны специальные замены, которые приводят как раз к быстрому решению уравнений.

    Пример 1. Решить уравнение (х + 2а)(х +3а)(х + 8а)(х + 12а) = 4а 2 х 2 ,

    где а – параметр.

    Решение. Данное уравнение относится к уравнению вида

    (х + а)(х +b)(х + c)(х + d) = Eх 2 (см. п. 2.5 (3))

    Используя специфику решения такого уравнения, будем иметь:

    (х 2 + 14ах +24а 2 )( х 2 + 11ах +24а 2 ) = 4а 2 х 2

    Если а = 0, то х = 0.

    Обратно, если а ≠ 0, то х ≠ 0.

    Разделим обе части этого уравнения на а 2 х 2 , будем иметь

    Уравнения высших степеней с параметром

    В полученном уравнении сделаем подстановку Уравнения высших степеней с параметроми получим уравнение (у + 14)(у + 11) = 4, у 2 + 25у + 150 = 0, у1 = — 15, у2 = — 10.

    Таким образом, получим два уравнения

    Уравнения высших степеней с параметроми Уравнения высших степеней с параметром

    Решим первое уравнение х 2 + 15ах + 24а 2 = 0, D = 129a 2 , х1,2Уравнения высших степеней с параметром

    Решим второе уравнение х 2 + 10ах + 24а 2 = 0, D = 4a 2

    х 3 = -6а, х 4 = -4а

    Ответ: если а = 0, то х = 0
    если а ≠ 0, то х1,2Уравнения высших степеней с параметром, х 3 = -6а, х 4 = -4а

    Упражнения

    1. Найдите все действительные значения величины а, при которых уравнение х(х +1)(х + а)(х + 1 + а) = а 2 имеет четыре действительных корня.
    2. Решить уравнение х 4 + а 4 – 3ах 3 + 3а 2 х = 0.
    3. При каких значениях а уравнение (х 2 – 2х) 2 — (а + 2)(х 2 – 2х) + 3а – 3 = 0 имеет четыре корня?
    4. Решить уравнение (х + а)(х + 2а)(х + 3а)(х + 4а) = 3а 4

    Видео:11 класс, 3 урок, Уравнения высших степенейСкачать

    11 класс, 3 урок, Уравнения высших степеней

    Об уравнениях высших степеней

    Уравнения высших степеней с параметром

    Как правило в физике, информатике и экономике мы сталкиваемся с простейшими линейными, или дробно-рациональными уравнениями, реже с квадратными. А что до уравнений третьей и четвёртой степени? Если вам интересно, то прошу под кат.

    Для начала рассмотрим понятие уравнения высшей степени. Уравнением высшей степени, называется уравнение вида:

    Уравнения высших степеней с параметром
    В этой статье я рассмотрю:

    1. Кубические уравнения.
    2. Возвратные кубические.
    3. Применение схемы Горнера и теоремы Безу.
    4. Возвратные биквадратные уравнения.

    Видео:Вспоминаем схему Горнера и уравнения высших степенейСкачать

    Вспоминаем схему Горнера и уравнения высших степеней

    Кубические уравнения

    Кубические уравнения, это уравнения, в которых у неизвестной при старшем члене степень равна 3. Кубические уравнения имеют следующий вид:

    Уравнения высших степеней с параметром

    Решать такие уравнения можно по разному, однако мы воспользуемся знаниями базовой школы, и решим кубическое уравнение методом группировки:

    Уравнения высших степеней с параметром

    В данном примере используется метод группировки, группируем первые два и последние два члена, получая равные скобки, снова выносим, получая уравнение из двух скобок.

    Произведение равно нулю тогда, и только тогда, если хотя бы один из множителей равен нулю, на основании этого мы каждый множитель (скобку) приравниваем к нулю, получая неполное квадратное и линейное уравнения.

    Также стоит отметить, что максимальное количество корней уравнения, равно степени неизвестной при главном члене, так в кубическом уравнении может быть не более трёх корней, в биквадратном (4-ой степени) не более четырёх корней и. т. д.

    Видео:Как решать уравнения высших степеней, очень лёгкий способ!!!Скачать

    Как решать уравнения высших степеней, очень лёгкий способ!!!

    Возвратные кубические уравнения

    Возвратные кубические уравнения имеют вид:

    Уравнения высших степеней с параметром

    Возвратными они называются потому что коэффициенты будут зеркально повторяться. Подобные уравнения тоже решаются школьными методами, но чуть хитрее:

    Уравнения высших степеней с параметром

    Сначала производится группировка, потом при помощи формул сокращённого умножения мы раскладываем получаемое на множители. Снова получаем 2 равные скобки, «выносим их». Получаем два множителя (скобки) и решаем их как два различных уравнения.

    Видео:Можно ли решить уравнение 5-й степени? – математик Алексей Савватеев | НаучпопСкачать

    Можно ли решить уравнение 5-й степени? – математик Алексей Савватеев | Научпоп

    Теорема Безу и схема Горнера

    Теорема Безу была открыта, как ни удивительно, Этьеном Безу, французским математиком, занимавшимся в основном алгеброй. Теорему Безу, можно сформулировать следующим образом:

    Уравнения высших степеней с параметром

    Давайте разберёмся. P(x) — это какой-либо многочлен от x, (x — a) — это двучлен в котором a — это один из целых корней уравнения, который мы находим среди делителей свободного члена.

    Три точки, это оператор обозначающий что одно выражение делится на другое. Из этого следует что найдя хотя бы один корень данного уравнения, мы сможем применить к нему эту теорему. Но зачем нужна эта теорема, каково её действие? Теорема Безу — это универсальный инструмент, если вы хотите понизить степень многочлена. Например, при её помощи, кубическое уравнение, можно превратить в квадратное, биквадратное, в кубическое и т. д.

    Но одно дело понять, а как поделить? Можно конечно, делить и в столбик, однако этот метод доступен далеко не всем, да и вероятность ошибиться очень высока. Поэтому есть и иной путь, это схема Горнера. Её работу я поясню на примере. Предположим:

    Уравнения высших степеней с параметром

    И так, нам дан многочлен, и мы возможно заранее нашли один из корней. Теперь мы рисуем небольшую табличку из 6 столбцов и 2 строк, в каждый столбец первой строки (кроме первого), мы вносим коэффициенты уравнения. А в первый столбец 2 строки мы вносим значение a (найденный корень). Потом первый коэффициент, в нашем случае 5, мы просто сносим вниз. Значения последующих столбиков мы рассчитываем так:

    Уравнения высших степеней с параметром

    (Картинка позаимствована здесь)
    Далее поступаем точно так же и с остальными столбцами. Значение последнего столбца (2 строки) будет остатком от деления, в нашем случае 0, если получается число отличное от 0, значит надо избрать другой подход. Пример для кубического уравнения:

    Уравнения высших степеней с параметром

    Видео:Что такое параметр? Уравнения и неравенства с параметром. 7-11 класс. Вебинар | МатематикаСкачать

    Что такое параметр? Уравнения и неравенства с параметром. 7-11 класс. Вебинар | Математика

    Возвратные биквадратные уравнения

    Выше мы так же рассматривали возвратные кубические уравнения, а теперь разберём биквадратные. Их общий вид:

    Уравнения высших степеней с параметром

    В отличие от кубического возвратного уравнения, в биквадратном пары, относительно коэффициентов, есть не у всех, однако в остальном они очень схожи. Вот алгоритм решения таких уравнений:

    Уравнения высших степеней с параметром

    Как видно, решать такие уравнения совсем не просто. Но я всё равно разберу и этот случай. Начинается решение с деления всего уравнения на x^2. Далее мы группируем, здесь я специально ввёл дополнительную строку для ясности. После этого мы совершаем хитрость, и вводим в первую скобку 2, которую мы сначала прибавляем, а после вычитаем, сумма всё равно не изменится, зато теперь мы можем свернуть эту скобку в квадрат суммы.

    Уберём -2 из скобки, предварительно домножив его на a, после чего вводим новую переменную, t и получаем квадратное уравнение.

    А теперь перейдём к примеру:

    Уравнения высших степеней с параметром

    Основная часть так же как и в обобщённом алгоритме, делим на x^2, группируем, сворачиваем в полный квадрат, выполняем подстановку переменной и решаем квадратное уравнение. После этого полученные корни подставляем обратно, и решаем ещё 2 квадратных уравнения (с умножением на x).

    Видео:✓ Теорема Безу. Рациональные нули многочленов | Ботай со мной #119 | Борис ТрушинСкачать

    ✓ Теорема Безу. Рациональные нули многочленов | Ботай со мной #119 | Борис Трушин

    Область применения

    В виду своей громоздкости и специфичности уравнения высших степеней редко находят себе применение. Однако примеры всё же есть, уравнение Пуассона для адиабатических процессов в Физике.

    Видео:Уравнения высших степеней 1 часть (старший коэффициент равен 1)Скачать

    Уравнения высших степеней 1 часть (старший коэффициент равен 1)

    Уравнения высших степеней

    Вы будете перенаправлены на Автор24

    Уравнения высших степеней — это уравнения, в которых старшая степень при переменной больше либо равна трём. На данный момент не существует какой-либо единой схемы для решения уравнений высших степеней.

    Наиболее известными схемами для решения являются:

    • Формула Кардано, он подходит только для уравнений 3-ьей степени;
    • Метод Феррари для уравнений 4-ой степени;
    • Теорема Виета для степени больше двух;
    • Теорема Безу;
    • Схема Горнера.

    Ниже рассмотрены основные методы решения уравнений высших степеней с целыми и рациональными коэффициентами, справедливые для разных степеней.

    Видео:8 класс, 35 урок, Уравнения высших степенейСкачать

    8 класс, 35 урок, Уравнения высших степеней

    Теорема Виета

    Рассмотрим уравнение вида $ax^3+bx^2+cx+d=0$.

    Данное уравнение обладает тремя корнями и для того чтобы его решить в общем виде, необходимо решить следующую систему:

    Иначе эти системы уравнений также называют формулами Виета.

    Решите уравнение: $x^3+x^2-4x-4=0$.

    Решение:

    Составим систему уравнений:

    $begin x_1+ x_2+x_3=-frac \ x_1 cdot x_2 + x_2 cdot x_3 + x_1 cdot x_3=-frac=-4 \ x_1 cdot x_2 cdot x_3= -frac\ end$

    Решив её, получим следующие корни:

    Видео:Теорема Виета для уравнений высших степеней. Рациональные уравнения Часть 4 из 4Скачать

    Теорема Виета для уравнений высших степеней. Рациональные уравнения Часть 4 из 4

    Теорема Безу

    Суть этой теоремы в том, что если уравнение вида $a_0x^n + a_1x^+a_2x^+. +a_x+a_n=0$ с ненулевым свободным членом имеет некий корень $α$, принадлежащий к множеству целых чисел, то этот корень будет делителем свободного члена.

    Алгоритм при решении уравнения с использованием теоремы Безу следующий:

    1. Найти и выписать все делители свободного члена.
    2. Проверять эти делители до тех пор, пока не будет найден хотя бы один, являющийся корнем уравнения.
    3. Разделить всё уравнение на $(x-α)$ и записать само уравнение как произведение $(x-α)$ и результата выполненного деления.
    4. Решить полученное после разложения уравнение.

    Готовые работы на аналогичную тему

    Решение:

    Делители члена не при переменной: $±1;±2;±3;±6$

    Подставим $1$ в корень уравнения и получим, что наше равенство выполняется:

    Следовательно, $x_1=1$ — один из корней уравнения. Теперь необходимо выполнить деление многочлена столбиком:

    Рисунок 1. Схема деления многочлена столбиком. Автор24 — интернет-биржа студенческих работ

    После этого исходное уравнение можно записать разложив на множители:

    Решаем полученное квадратное уравнение и получаем ещё 2 корня: $x_=-3;-2$.

    Видео:Урок 10. Сложные уравнения и неравенства. Решение уравнений высоких степеней. Вебинар | МатематикаСкачать

    Урок 10. Сложные уравнения и неравенства. Решение уравнений высоких степеней. Вебинар | Математика

    Схема Горнера

    Схема Горнера состоит в том, чтобы также сначала найти какой-либо корень уравнения вида $a_0x^n + a_1x^+a_2x^+. +a_x+a_n=0$ через делители свободного члена.

    После этого составляется специальная таблица с результатами деления на $(x-α)$, в которой каждый член зависим от предыдущего. Коэффициенты из данной таблицы используются как коэффициенты в полученном от деления частного многочлене, они вычисляются по формулам:

    $b_0=a_0; b_1=αb_0+a_1; b_2=αb_1+a_2. b_= αb_+a_;b_n=αb_+a_n$.

    Рисунок 2. Таблица для вычисления коэффициентов по схеме Горнера. Автор24 — интернет-биржа студенческих работ

    Решение:

    Делители свободного члена — $±1;±2;±3;±6$

    Запишем таблицу со коэффициентами:

    Рисунок 3. Схема Горнера: пример. Автор24 — интернет-биржа студенческих работ

    Отсюда получаем, что многочлен, полученный от деления на $(x-α)$ при $α=1$, равен $x^2+5x+6$.Получается, что исходное уравнение принимает вид:

    Корни же второго многочлена будут $x_=-2;-3$.

    Видео:Теорема БезуСкачать

    Теорема Безу

    Метод одновременного подбора по коэффициенту при старшей степени и при свободном члене

    Данный метод основан на следующем условии:

    Несократимая дробь $frac

    $ будет корнем уравнения, если числитель этой дроби является делителем свободного члена, а знаменатель — делителем коэффициента, стоящего при члене со старшей степенью.

    Алгоритм этого метода:

    1. Поиск делителей свободного члена.
    2. Поиск делителей коэффициента, стоящего при члене со старшей степенью.
    3. Составление дробей и подбор решения.

    Решение:

    Делители свободного члена: $±1; ±2; ±3; ±6$.

    Делители коэффициента при старшем члене: $1; 2$.

    Следовательно, как корни нужно проверить следующие значения: $1;-1;2;-2;3;-3;6;-6;frac; -frac; frac; -frac$.

    Подставив эти числа в уравнения, получим, что корнями уравнения являются $x_1=1;x_2= frac$.

    Это значит, что многочлен можно разделить на $2(x-1)(x-frac)=2x^2-3x+1$. При выполнении деления получаем частное $x^2+10x+6$.

    Приравниваем этот многочлен к нулю и находим его корни через дискриминант, они равны $x_=-5±sqrt$.

    Получи деньги за свои студенческие работы

    Курсовые, рефераты или другие работы

    Автор этой статьи Дата последнего обновления статьи: 14 03 2021

    📸 Видео

    КАК РЕШАТЬ КУБИЧЕСКИЕ УРАВНЕНИЯ | Разбираем на конкретном примереСкачать

    КАК РЕШАТЬ КУБИЧЕСКИЕ УРАВНЕНИЯ | Разбираем на конкретном примере

    8 класс, 39 урок, Задачи с параметрамиСкачать

    8 класс, 39 урок, Задачи с параметрами

    Дробно-рациональные уравнения. 8 класс.Скачать

    Дробно-рациональные уравнения. 8 класс.

    Уравнения высших степеней. Решение уравнений с помощью деления в столбикСкачать

    Уравнения высших степеней. Решение уравнений с помощью деления в столбик

    Теорема Виета для многочлена 3 порядка. 10 класс.Скачать

    Теорема Виета для многочлена 3 порядка. 10 класс.

    Математика это не ИсламСкачать

    Математика это не Ислам

    Уравнение четвертой степениСкачать

    Уравнение четвертой степени

    Метод неопределенных коэффициентовСкачать

    Метод неопределенных коэффициентов
    Поделиться или сохранить к себе: