Уравнения вида ах b где х

Уравнение с одним неизвестным

Уравнение вида ax = b, где x — неизвестное, a и b — числа, называется уравнением с одним неизвестным или линейным уравнением.

Число a называется коэффициентом при неизвестном, а число bсвободным членом.

Если в уравнении ax = b коэффициент не равен нулю (a ≠ 0), то, разделив обе части уравнения на a, получим Уравнения вида ах b где х. Значит, уравнение ax = b, в котором a ≠ 0, имеет единственный корень Уравнения вида ах b где х.

Если в уравнении ax = b коэффициент равен нулю (a = 0), а свободный член не равен нулю (b ≠ 0), то уравнение не имеет корней, так как равенство 0x = b, где b ≠ 0, не является верным ни при каком значении x.

Если в уравнении ax = b и коэффициент, и свободный член равны нулю (a = 0 и b = 0), то уравнение имеет бесконечное множество корней, так как равенство 0x = 0 верно при любом значении x.

Видео:11й класс; Математика; "Матричные уравнения вида АХ=В, ХА=В, АХВ=С"Скачать

11й класс; Математика; "Матричные уравнения вида АХ=В, ХА=В, АХВ=С"

Решение уравнений с одним неизвестным

Все уравнения с одним неизвестным решаются одинаково с помощью преобразований, которые могут выполняться в любом порядке. Список возможных преобразований, которые могут быть использованы для решения уравнений:

  • освобождение от дробных членов;
  • раскрытие скобок;
  • перенос всех членов, содержащих неизвестное, в одну часть, а известные — в другую (члены с неизвестными, как правило, переносят в левую часть уравнения);
  • сделать приведение подобных членов;
  • разделить обе части уравнения на коэффициент при неизвестном.

Пример 1. Решить уравнение

Уравнения вида ах b где х

    Освобождаем уравнение от дробных членов:

20x — 28 — 24 = 9x + 36.

20x — 9x = 36 + 28 + 24.

Выполняем приведение подобных членов:

Делим обе части уравнения на коэффициент при неизвестном (на 11):

Делаем проверку, подставив в данное уравнение вместо x его значение:

Уравнения вида ах b где х

Уравнение обратилось в верное равенство, следовательно, корень был найден верно.

Пример 2. Решить уравнение

    Это уравнение проще решить, не раскрывая скобок, поэтому делим обе части уравнения на 5:

Выполняем приведение подобных членов:

  • Делаем проверку, подставив в данное уравнение вместо x его значение:
    5(11 — 2) = 45;
    5 · 9 = 45;
    45 = 45.
  • Обычно все рассуждения при решении уравнения производят устно, а само решение записывается так:

    Видео:Решение биквадратных уравнений. 8 класс.Скачать

    Решение биквадратных уравнений. 8 класс.

    1. Уравнение вида ах=в, где х — переменная, а и в — некоторые числа, называется линейным уравнением с одной переменной. 1. Уравнение вида ах=в, где х. — презентация

    Презентация была опубликована 6 лет назад пользователемИгорь Самарин

    Похожие презентации

    Видео:Решение матричных уравненийСкачать

    Решение матричных уравнений

    Презентация на тему: » 1. Уравнение вида ах=в, где х — переменная, а и в — некоторые числа, называется линейным уравнением с одной переменной. 1. Уравнение вида ах=в, где х.» — Транскрипт:

    2 1. Уравнение вида ах=в, где х — переменная, а и в — некоторые числа, называется линейным уравнением с одной переменной. 1. Уравнение вида ах=в, где х — переменная, а и в — некоторые числа, называется линейным уравнением с одной переменной. Примеры: 5 х=-4; — 0,2 х=0; -х =- Примеры: 5 х=-4; — 0,2 х=0; -х =-

    3 1) Если а 0, то х= -единственный корень. 1) Если а 0, то х= -единственный корень. Например: -10 х=45; х=- ; х= -4,5. Например: -10 х=45; х=- ; х= -4,5. 2) Если а=0 и в 0,то уравнение ах = в не имеет корней, так как равенство 0 х=в не является верным ни при каком х. 2) Если а=0 и в 0,то уравнение ах = в не имеет корней, так как равенство 0 х=в не является верным ни при каком х. Например, 0 х=16; 0 х= -48,3. Например, 0 х=16; 0 х= -48,3. 3)Если а=0 и в=0, то любое значение х является корнем уравнения, так как равенство 0 х=0 верно при любом х. 3)Если а=0 и в=0, то любое значение х является корнем уравнения, так как равенство 0 х=0 верно при любом х.

    4 3. Решим уравнение 4(х+7)=3-х, раскроем скобки 3. Решим уравнение 4(х+7)=3-х, раскроем скобки 4 х+28=3-х перенесём слагаемое –х в левую часть уравнения, а 28 в правую часть, изменив при этом их знаки. 4 х+28=3-х перенесём слагаемое –х в левую часть уравнения, а 28 в правую часть, изменив при этом их знаки. 4 х+х=3-28, 4 х+х=3-28, 5 х= -25, 5 х= -25, х= -25:5, х= -25:5, х= -5. х= -5. Ответ: х=-5. Ответ: х=-5.

    5 4. Если при решении уравнения приходим к равносильному ему линейному уравнению вида 0 х=в, то в этом случае либо исходное уравнение не имеет корней,либо его корнем является любое число: а)Решим уравнение: 2 х+5=2(х+6);2 х+5=2 х+12;2 х-2 х=12-5;0 х=7. Ответ: корней нет. б) 3(х+2)+х=6+4 х; 3 х+6+х=6+4 х; 3 х+6+х=6+4 х; 3 х+х-4 х=6-6; 3 х+х-4 х=6-6; 0 х=0. 0 х=0. Ответ: любое число.

    Видео:Алгебра 8 класс (Урок№19 - Уравнение х² = а.)Скачать

    Алгебра 8 класс (Урок№19 - Уравнение х² = а.)

    Решение простых линейных уравнений

    Уравнения вида ах b где х

    О чем эта статья:

    Статья находится на проверке у методистов Skysmart.
    Если вы заметили ошибку, сообщите об этом в онлайн-чат
    (в правом нижнем углу экрана).

    Видео:Неполные квадратные уравнения. Алгебра, 8 классСкачать

    Неполные квадратные уравнения. Алгебра, 8 класс

    Понятие уравнения

    Уравнение — это математическое равенство, в котором неизвестна одна или несколько величин. Значение неизвестных нужно найти так, чтобы при их подстановке в пример получилось верное числовое равенство.

    Например, возьмем выражение 2 + 4 = 6. При вычислении левой части получается верное числовое равенство, то есть 6 = 6.

    Уравнением можно назвать выражение 2 + x = 6, с неизвестной переменной x, значение которой нужно найти. Результат должен быть таким, чтобы знак равенства был оправдан, и левая часть равнялась правой.

    Корень уравнения — то самое число, которое при подстановке на место неизвестной уравнивает выражения справа и слева.

    Решить уравнение значит найти все возможные корни или убедиться, что их нет.

    Решить уравнение с двумя, тремя и более переменными — это два, три и более значения переменных, которые обращают данное выражение в верное числовое равенство.

    Равносильные уравнения — это те, в которых совпадают множества решений. Другими словами, у них одни и те же корни.

    Видео:ЛИНЕЙНЫЕ УРАВНЕНИЯ - Как решать линейные уравнения // Подготовка к ЕГЭ по МатематикеСкачать

    ЛИНЕЙНЫЕ УРАВНЕНИЯ - Как решать линейные уравнения // Подготовка к ЕГЭ по Математике

    Какие бывают виды уравнений

    Уравнения могут быть разными, самые часто встречающиеся — линейные и квадратные.

    Особенность преобразований алгебраических уравнений в том, что в левой части должен остаться многочлен от неизвестных, а в правой — нуль.

    Линейное уравнение выглядит таках + b = 0, где a и b — действительные числа.

    Что поможет в решении:

    • если а не равно нулю, то у уравнения единственный корень: х = -b : а;
    • если а равно нулю — у уравнения нет корней;
    • если а и b равны нулю, то корень уравнения — любое число.
    Квадратное уравнение выглядит так:ax 2 + bx + c = 0, где коэффициенты a, b и c — произвольные числа, a ≠ 0.

    Числовой коэффициент — число, которое стоит при неизвестной переменной.

    Кроме линейных и квадратных есть и другие виды уравнений, с которыми мы познакомимся в следующий раз:

    Онлайн-курсы по математике за 7 класс помогут закрепить новые знания на практике с талантливым преподавателем.

    Видео:Математика 1 класс. Уравнения Решение уравнений вида а + х = bСкачать

    Математика 1 класс. Уравнения  Решение уравнений вида а + х = b

    Как решать простые уравнения

    Чтобы научиться решать простые линейные уравнения, нужно запомнить формулу и два основных правила.

    1. Правило переноса. При переносе из одной части в другую, член уравнения меняет свой знак на противоположный.

    Для примера рассмотрим простейшее уравнение: x+3=5

    Начнем с того, что в каждом уравнении есть левая и правая часть.

    Перенесем 3 из левой части в правую и меняем знак на противоположный.

    Можно проверить: 2 + 3 = 5. Все верно. Корень равен 2.

    Решим еще один пример: 6x = 5x + 10.

    Перенесем 5x из правой части в левую. Знак меняем на противоположный, то есть на минус.

    Приведем подобные и завершим решение.

    2. Правило деления. В любом уравнении можно разделить левую и правую часть на одно и то же число. Это может ускорить процесс решения. Главное — быть внимательным, чтобы не допустить глупых ошибок.

    Применим правило при решении примера: 4x=8.

    При неизвестной х стоит числовой коэффициент — 4. Их объединяет действие — умножение.

    Чтобы решить уравнение, нужно сделать так, чтобы при неизвестной x стояла единица.

    Разделим каждую часть на 4. Как это выглядит:

    Уравнения вида ах b где х

    Теперь сократим дроби, которые у нас получились и завершим решение линейного уравнения:

    Рассмотрим пример, когда неизвестная переменная стоит со знаком минус: −4x = 12

      Разделим обе части на −4, чтобы коэффициент при неизвестной стал равен единице.

    −4x = 12 | : (−4)
    x = −3

    Если знак минус стоит перед скобками, и по ходу вычислений его убрали — важно не забыть поменять знаки внутри скобок на противоположные. Этот простой факт позволит не допустить обидные ошибки, особенно в старших классах.

    Напомним, что не у каждого линейного уравнения есть решение — иногда корней просто нет. Изредка среди корней может оказаться ноль — ничего страшного, это не значит, что ход решения оказался неправильным. Ноль — такое же число, как и остальные.

    Способов решения линейных уравнений немного, нужно запомнить только один алгоритм, который будет эффективен для любой задачки.

    Алгоритм решения простого линейного уравнения
    1. Раскрываем скобки, если они есть.
    2. Группируем члены, которые содержат неизвестную переменную в одну часть уравнения, остальные члены — в другую.
    3. Приводим подобные члены в каждой части уравнения.
    4. Решаем уравнение, которое получилось: aх = b. Делим обе части на коэффициент при неизвестном.

    Чтобы быстрее запомнить ход решения и формулу линейного уравнения, скачайте или распечатайте алгоритм — храните его в телефоне, учебнике или на рабочем столе.

    Уравнения вида ах b где х

    Видео:Решение квадратных уравнений. Дискриминант. 8 класс.Скачать

    Решение квадратных уравнений. Дискриминант. 8 класс.

    Примеры линейных уравнений

    Теперь мы знаем, как решать линейные уравнения. Осталось попрактиковаться на задачках, чтобы чувствовать себя увереннее на контрольных. Давайте решать вместе!

    Пример 1. Как правильно решить уравнение: 6х + 1 = 19.

      Перенести 1 из левой части в правую со знаком минус.

    Разделить обе части на множитель, стоящий перед переменной х, то есть на 6.

    Пример 2. Как решить уравнение: 5(х − 3) + 2 = 3 (х − 4) + 2х − 1.

    5х − 15 + 2 = 3х − 12 + 2х − 1

    Сгруппировать в левой части члены с неизвестными, а в правой — свободные члены. Не забываем при переносе из одной части уравнения в другую поменять знаки на противоположные у переносимых членов.

    5х − 3х − 2х = −12 − 1 + 15 − 2

    Приведем подобные члены.

    Ответ: х — любое число.

    Пример 3. Решить: 4х = 1/8.

      Разделим обе части уравнения на множитель стоящий перед переменной х, то есть на 4.

    Пример 4. Решить: 4(х + 2) = 6 − 7х.

    1. 4х + 8 = 6 − 7х
    2. 4х + 7х = 6 − 8
    3. 11х = −2
    4. х = −2 : 11
    5. х = −2/11

    Ответ: −2/11 или −(0,18). О десятичных дробях можно почитать в другой нашей статье.

    Пример 5. Решить: Уравнения вида ах b где х

    1. Уравнения вида ах b где х
    2. 3(3х — 4) = 4 · 7х + 24
    3. 9х — 12 = 28х + 24
    4. 9х — 28х = 24 + 12
    5. -19х = 36
    6. х = 36 : (-19)
    7. х = — 36/19

    Пример 6. Как решить линейное уравнение: х + 7 = х + 4.

    5х — 15 + 2 = 3х — 2 + 2х — 1

    Сгруппировать в левой части неизвестные члены, в правой — свободные члены:

    Приведем подобные члены.

    Ответ: нет решений.

    Пример 7. Решить: 2(х + 3) = 5 − 7х.

    🔥 Видео

    Решение линейного уравнения ax=b. Сколько корней может быть у линейного уравнения. Алгебра 7 класс.Скачать

    Решение линейного уравнения ax=b. Сколько корней может быть у линейного уравнения. Алгебра 7 класс.

    Как решать уравнения? уравнение 7 класс. Линейное уравнениеСкачать

    Как решать уравнения? уравнение 7 класс. Линейное уравнение

    Линейное уравнение с двумя переменными. 7 класс.Скачать

    Линейное уравнение с двумя переменными. 7 класс.

    5 способов решения квадратного уравнения ➜ Как решать квадратные уравнения?Скачать

    5 способов решения квадратного уравнения ➜ Как решать квадратные уравнения?

    Решение уравнений вида |ax²+bx| +c=0 и ax²+b|x|+c=0Скачать

    Решение уравнений вида |ax²+bx| +c=0 и ax²+b|x|+c=0

    Тема: Квадратные уравнения. Урок: Уравнения вида y=ax^2 + bx +cСкачать

    Тема: Квадратные уравнения. Урок: Уравнения вида y=ax^2 + bx +c

    Как решить НЕПОЛНОЕ КВАДРАТНОЕ УРАВНЕНИЕ. Часть 3. Уравнение вида ax^2=0Скачать

    Как решить НЕПОЛНОЕ КВАДРАТНОЕ УРАВНЕНИЕ.  Часть 3.  Уравнение вида ax^2=0

    Уравнения от вида ax+b=0. Решаване на уравнения - математика 6 клас.Скачать

    Уравнения от вида ax+b=0. Решаване на уравнения - математика 6 клас.

    Алгебра 8. Урок 9 - Квадратные уравнения. Полные и неполныеСкачать

    Алгебра 8. Урок 9 - Квадратные уравнения. Полные и неполные

    1 Как решать уравнения всех видов Решите уравнение Виды уравнений МАТЕМАТИКА ОНЛАЙНСкачать

    1 Как решать уравнения всех видов Решите уравнение Виды уравнений МАТЕМАТИКА ОНЛАЙН

    Решение уравнений вида tg x = a и ctg x = aСкачать

    Решение уравнений вида tg x = a и ctg x = a

    Как решать уравнения с модулем или Математический торт с кремом (часть 1) | МатематикаСкачать

    Как решать уравнения с модулем или Математический торт с кремом (часть 1) | Математика
    Поделиться или сохранить к себе: