Уравнение вида ax = b, где x — неизвестное, a и b — числа, называется уравнением с одним неизвестным или линейным уравнением.
Число a называется коэффициентом при неизвестном, а число b — свободным членом.
Если в уравнении ax = b коэффициент не равен нулю (a ≠ 0), то, разделив обе части уравнения на a, получим . Значит, уравнение ax = b, в котором a ≠ 0, имеет единственный корень .
Если в уравнении ax = b коэффициент равен нулю (a = 0), а свободный член не равен нулю (b ≠ 0), то уравнение не имеет корней, так как равенство 0x = b, где b ≠ 0, не является верным ни при каком значении x.
Если в уравнении ax = b и коэффициент, и свободный член равны нулю (a = 0 и b = 0), то уравнение имеет бесконечное множество корней, так как равенство 0x = 0 верно при любом значении x.
- Решение уравнений с одним неизвестным
- 1. Уравнение вида ах=в, где х — переменная, а и в — некоторые числа, называется линейным уравнением с одной переменной. 1. Уравнение вида ах=в, где х. — презентация
- Похожие презентации
- Презентация на тему: » 1. Уравнение вида ах=в, где х — переменная, а и в — некоторые числа, называется линейным уравнением с одной переменной. 1. Уравнение вида ах=в, где х.» — Транскрипт:
- Решение простых линейных уравнений
- Понятие уравнения
- Какие бывают виды уравнений
- Как решать простые уравнения
- Примеры линейных уравнений
- 🌟 Видео
Видео:Решение матричных уравненийСкачать
Решение уравнений с одним неизвестным
Все уравнения с одним неизвестным решаются одинаково с помощью преобразований, которые могут выполняться в любом порядке. Список возможных преобразований, которые могут быть использованы для решения уравнений:
- освобождение от дробных членов;
- раскрытие скобок;
- перенос всех членов, содержащих неизвестное, в одну часть, а известные — в другую (члены с неизвестными, как правило, переносят в левую часть уравнения);
- сделать приведение подобных членов;
- разделить обе части уравнения на коэффициент при неизвестном.
Пример 1. Решить уравнение
- Освобождаем уравнение от дробных членов:
20x — 28 — 24 = 9x + 36.
20x — 9x = 36 + 28 + 24.
Выполняем приведение подобных членов:
Делим обе части уравнения на коэффициент при неизвестном (на 11):
Делаем проверку, подставив в данное уравнение вместо x его значение:
Уравнение обратилось в верное равенство, следовательно, корень был найден верно.
Пример 2. Решить уравнение
- Это уравнение проще решить, не раскрывая скобок, поэтому делим обе части уравнения на 5:
Выполняем приведение подобных членов:
5(11 — 2) = 45; 5 · 9 = 45; 45 = 45. |
Обычно все рассуждения при решении уравнения производят устно, а само решение записывается так:
Видео:Решение биквадратных уравнений. 8 класс.Скачать
1. Уравнение вида ах=в, где х — переменная, а и в — некоторые числа, называется линейным уравнением с одной переменной. 1. Уравнение вида ах=в, где х. — презентация
Презентация была опубликована 6 лет назад пользователемИгорь Самарин
Похожие презентации
Видео:11й класс; Математика; "Матричные уравнения вида АХ=В, ХА=В, АХВ=С"Скачать
Презентация на тему: » 1. Уравнение вида ах=в, где х — переменная, а и в — некоторые числа, называется линейным уравнением с одной переменной. 1. Уравнение вида ах=в, где х.» — Транскрипт:
2 1. Уравнение вида ах=в, где х — переменная, а и в — некоторые числа, называется линейным уравнением с одной переменной. 1. Уравнение вида ах=в, где х — переменная, а и в — некоторые числа, называется линейным уравнением с одной переменной. Примеры: 5 х=-4; — 0,2 х=0; -х =- Примеры: 5 х=-4; — 0,2 х=0; -х =-
3 1) Если а 0, то х= -единственный корень. 1) Если а 0, то х= -единственный корень. Например: -10 х=45; х=- ; х= -4,5. Например: -10 х=45; х=- ; х= -4,5. 2) Если а=0 и в 0,то уравнение ах = в не имеет корней, так как равенство 0 х=в не является верным ни при каком х. 2) Если а=0 и в 0,то уравнение ах = в не имеет корней, так как равенство 0 х=в не является верным ни при каком х. Например, 0 х=16; 0 х= -48,3. Например, 0 х=16; 0 х= -48,3. 3)Если а=0 и в=0, то любое значение х является корнем уравнения, так как равенство 0 х=0 верно при любом х. 3)Если а=0 и в=0, то любое значение х является корнем уравнения, так как равенство 0 х=0 верно при любом х.
4 3. Решим уравнение 4(х+7)=3-х, раскроем скобки 3. Решим уравнение 4(х+7)=3-х, раскроем скобки 4 х+28=3-х перенесём слагаемое –х в левую часть уравнения, а 28 в правую часть, изменив при этом их знаки. 4 х+28=3-х перенесём слагаемое –х в левую часть уравнения, а 28 в правую часть, изменив при этом их знаки. 4 х+х=3-28, 4 х+х=3-28, 5 х= -25, 5 х= -25, х= -25:5, х= -25:5, х= -5. х= -5. Ответ: х=-5. Ответ: х=-5.
5 4. Если при решении уравнения приходим к равносильному ему линейному уравнению вида 0 х=в, то в этом случае либо исходное уравнение не имеет корней,либо его корнем является любое число: а)Решим уравнение: 2 х+5=2(х+6);2 х+5=2 х+12;2 х-2 х=12-5;0 х=7. Ответ: корней нет. б) 3(х+2)+х=6+4 х; 3 х+6+х=6+4 х; 3 х+6+х=6+4 х; 3 х+х-4 х=6-6; 3 х+х-4 х=6-6; 0 х=0. 0 х=0. Ответ: любое число.
Видео:Алгебра 8 класс (Урок№19 - Уравнение х² = а.)Скачать
Решение простых линейных уравнений
О чем эта статья:
Статья находится на проверке у методистов Skysmart.
Если вы заметили ошибку, сообщите об этом в онлайн-чат
(в правом нижнем углу экрана).
Видео:ЛИНЕЙНЫЕ УРАВНЕНИЯ - Как решать линейные уравнения // Подготовка к ЕГЭ по МатематикеСкачать
Понятие уравнения
Уравнение — это математическое равенство, в котором неизвестна одна или несколько величин. Значение неизвестных нужно найти так, чтобы при их подстановке в пример получилось верное числовое равенство.
Например, возьмем выражение 2 + 4 = 6. При вычислении левой части получается верное числовое равенство, то есть 6 = 6.
Уравнением можно назвать выражение 2 + x = 6, с неизвестной переменной x, значение которой нужно найти. Результат должен быть таким, чтобы знак равенства был оправдан, и левая часть равнялась правой.
Корень уравнения — то самое число, которое при подстановке на место неизвестной уравнивает выражения справа и слева.
Решить уравнение значит найти все возможные корни или убедиться, что их нет.
Решить уравнение с двумя, тремя и более переменными — это два, три и более значения переменных, которые обращают данное выражение в верное числовое равенство.
Равносильные уравнения — это те, в которых совпадают множества решений. Другими словами, у них одни и те же корни.
Видео:Неполные квадратные уравнения. Алгебра, 8 классСкачать
Какие бывают виды уравнений
Уравнения могут быть разными, самые часто встречающиеся — линейные и квадратные.
Особенность преобразований алгебраических уравнений в том, что в левой части должен остаться многочлен от неизвестных, а в правой — нуль.
Линейное уравнение выглядит так | ах + b = 0, где a и b — действительные числа. Что поможет в решении:
|
---|---|
Квадратное уравнение выглядит так: | ax 2 + bx + c = 0, где коэффициенты a, b и c — произвольные числа, a ≠ 0. |
Числовой коэффициент — число, которое стоит при неизвестной переменной.
Кроме линейных и квадратных есть и другие виды уравнений, с которыми мы познакомимся в следующий раз:
Онлайн-курсы по математике за 7 класс помогут закрепить новые знания на практике с талантливым преподавателем.
Видео:Решение квадратных уравнений. Дискриминант. 8 класс.Скачать
Как решать простые уравнения
Чтобы научиться решать простые линейные уравнения, нужно запомнить формулу и два основных правила.
1. Правило переноса. При переносе из одной части в другую, член уравнения меняет свой знак на противоположный.
Для примера рассмотрим простейшее уравнение: x+3=5
Начнем с того, что в каждом уравнении есть левая и правая часть.
Перенесем 3 из левой части в правую и меняем знак на противоположный.
Можно проверить: 2 + 3 = 5. Все верно. Корень равен 2.
Решим еще один пример: 6x = 5x + 10.
Перенесем 5x из правой части в левую. Знак меняем на противоположный, то есть на минус.
Приведем подобные и завершим решение.
2. Правило деления. В любом уравнении можно разделить левую и правую часть на одно и то же число. Это может ускорить процесс решения. Главное — быть внимательным, чтобы не допустить глупых ошибок.
Применим правило при решении примера: 4x=8.
При неизвестной х стоит числовой коэффициент — 4. Их объединяет действие — умножение.
Чтобы решить уравнение, нужно сделать так, чтобы при неизвестной x стояла единица.
Разделим каждую часть на 4. Как это выглядит:
Теперь сократим дроби, которые у нас получились и завершим решение линейного уравнения:
Рассмотрим пример, когда неизвестная переменная стоит со знаком минус: −4x = 12
- Разделим обе части на −4, чтобы коэффициент при неизвестной стал равен единице.
−4x = 12 | : (−4)
x = −3
Если знак минус стоит перед скобками, и по ходу вычислений его убрали — важно не забыть поменять знаки внутри скобок на противоположные. Этот простой факт позволит не допустить обидные ошибки, особенно в старших классах.
Напомним, что не у каждого линейного уравнения есть решение — иногда корней просто нет. Изредка среди корней может оказаться ноль — ничего страшного, это не значит, что ход решения оказался неправильным. Ноль — такое же число, как и остальные.
Способов решения линейных уравнений немного, нужно запомнить только один алгоритм, который будет эффективен для любой задачки.
Алгоритм решения простого линейного уравнения |
---|
|
Чтобы быстрее запомнить ход решения и формулу линейного уравнения, скачайте или распечатайте алгоритм — храните его в телефоне, учебнике или на рабочем столе.
Видео:Математика 1 класс. Уравнения Решение уравнений вида а + х = bСкачать
Примеры линейных уравнений
Теперь мы знаем, как решать линейные уравнения. Осталось попрактиковаться на задачках, чтобы чувствовать себя увереннее на контрольных. Давайте решать вместе!
Пример 1. Как правильно решить уравнение: 6х + 1 = 19.
- Перенести 1 из левой части в правую со знаком минус.
Разделить обе части на множитель, стоящий перед переменной х, то есть на 6.
Пример 2. Как решить уравнение: 5(х − 3) + 2 = 3 (х − 4) + 2х − 1.
5х − 15 + 2 = 3х − 12 + 2х − 1
Сгруппировать в левой части члены с неизвестными, а в правой — свободные члены. Не забываем при переносе из одной части уравнения в другую поменять знаки на противоположные у переносимых членов.
5х − 3х − 2х = −12 − 1 + 15 − 2
Приведем подобные члены.
Ответ: х — любое число.
Пример 3. Решить: 4х = 1/8.
- Разделим обе части уравнения на множитель стоящий перед переменной х, то есть на 4.
Пример 4. Решить: 4(х + 2) = 6 − 7х.
- 4х + 8 = 6 − 7х
- 4х + 7х = 6 − 8
- 11х = −2
- х = −2 : 11
- х = −2/11
Ответ: −2/11 или −(0,18). О десятичных дробях можно почитать в другой нашей статье.
Пример 5. Решить:
- 3(3х — 4) = 4 · 7х + 24
- 9х — 12 = 28х + 24
- 9х — 28х = 24 + 12
- -19х = 36
- х = 36 : (-19)
- х = — 36/19
Пример 6. Как решить линейное уравнение: х + 7 = х + 4.
5х — 15 + 2 = 3х — 2 + 2х — 1
Сгруппировать в левой части неизвестные члены, в правой — свободные члены:
Приведем подобные члены.
Ответ: нет решений.
Пример 7. Решить: 2(х + 3) = 5 − 7х.
🌟 Видео
5 способов решения квадратного уравнения ➜ Как решать квадратные уравнения?Скачать
Решение линейного уравнения ax=b. Сколько корней может быть у линейного уравнения. Алгебра 7 класс.Скачать
Линейное уравнение с двумя переменными. 7 класс.Скачать
Как решать уравнения? уравнение 7 класс. Линейное уравнениеСкачать
Решение уравнений вида |ax²+bx| +c=0 и ax²+b|x|+c=0Скачать
Тема: Квадратные уравнения. Урок: Уравнения вида y=ax^2 + bx +cСкачать
Как решить НЕПОЛНОЕ КВАДРАТНОЕ УРАВНЕНИЕ. Часть 3. Уравнение вида ax^2=0Скачать
Алгебра 8. Урок 9 - Квадратные уравнения. Полные и неполныеСкачать
1 Как решать уравнения всех видов Решите уравнение Виды уравнений МАТЕМАТИКА ОНЛАЙНСкачать
Уравнения от вида ax+b=0. Решаване на уравнения - математика 6 клас.Скачать
Как решать уравнения с модулем или Математический торт с кремом (часть 1) | МатематикаСкачать
Решение уравнений вида tg x = a и ctg x = aСкачать