Логарифмическими уравнениями называют уравнения, в котором представлены неизвестные величины под знаком логарифма.
Логарифмические уравнения, так же как и показательные, относятся к трансцендентным.
Самым простым логарифмическим уравнением представлено уравнение следующее непосредственно из формулировки логарифма:
где а и b — заданные числа,
х — неизвестная переменная.
Если а – не отрицательное и не равное единице число, то у такого уравнения существует единственный корень:
При решении более трудных логарифмических уравнений, обыкновенно, приводим их или к решению алгебраических уравнений, или к решению уравнений типа Logаx=b.
Проанализируем это на нескольких отдельных уравнениях.
Найдем корни уравнения:
Отталкиваясь от формулировки логарифма из вышеприведенного уравнения получаем, что:
решив его имеем х = 2.
х= 2 — решение указанного уравнения.
Для нахождения ответа аналогичных уравнений применяем нижеследующее свойство логарифмов: если логарифмы двух чисел по одному и тому же основанию равны, то равны и сами эти числа.
И соответственно имеем, что если только у данного уравнения есть корни, то они будут удовлетворять уравнению:
Осуществим подстановку для проверки при х = 5
Следовательно, х= 5 — корень выбранного уравнения.
При х = -4 левая и правая части данного уравнения не существуют, поскольку x 2 — 17= — 1 2 x — 3log3x — 10 = 0.
Если log3x приравнять к у, то уравнение станет квадратным:
решив его получим:
Выполнив проверку видим, что эти две величины будут решением выбранного уравнения.
Отдельные уравнения решаются методом почленного логарифмирования. Так же в случае необходимости применяют формулу для перехода от одного основания логарифмов к другому.
- Алгебра
- Уравнения вида logaf(x) = logag(x)
- Уравнения, требующие предварительных преобразований
- Логарифмические уравнения с заменой переменных
- Логарифмирование уравнений
- Переход от логарифмических неравенств к нелогарифмическим
- Методическая разработка «Методы решение логарифмических уравнений»
- Выберите документ из архива для просмотра:
- 🎥 Видео
Видео:Логарифмы с нуля за 20 МИНУТ! Introduction to logarithms.Скачать
Алгебра
План урока:
Задание. Укажите корень логарифмического уравнения
Задание. Решите урав-ние
В чуть более сложных случаях под знаком логарифма может стоять не сама переменная х, а выражение с переменной. То есть урав-ние имеет вид
Задание. Найдите решение логарифмического уравнения
Задание. Решите урав-ние
Задание. Решите урав-ние
Получили показательное уравнение. Показатели степеней можно приравнять, если равны их основания:
Видео:Задание13 ЕГЭ профиль логарифмическое квадратное уравнение 〖6〖log〗_8^2 (x)-5log〗_8 (x)+1=0Скачать
Уравнения вида logaf(x) = logag(x)
Порою логарифм стоит в обеих частях равенства, то есть и слева, и справа от знака «равно». Если основания логарифмов совпадают, то должны совпадать и аргументы логарифмов.
Задание. Решите урав-ние
Задание. Найдите корень урав-ния
Ситуация несколько усложняется в том случае, когда, под знаком логарифма в обоих частях равенства стоят выражения с переменными, то есть оно имеет вид
С одной стороны, очевидно, что должно выполняться равенство f(x) = g(x). Но этого мало, ведь под знаком логарифма не должно стоять отрицательное число. Поэтому после получения корней следует подставить их в урав-ние и убедиться, что они не являются посторонними корнями.
Задание. Решите урав-ние
Получили квадратное уравнение, которое решаем с помощью дискриминанта:
Получили два корня, (– 3) и 4. Однако теперь подставим их в исходное урав-ние и посмотрим, что у нас получится. При х = – 3 имеем:
Это верное равенство, поэтому х = – 3 действительно является корнем урав-ния. Теперь проверяем х = 4:
Хотя выражения и справа, и слева одинаковы, равенство верным считать нельзя, ведь выражение log3 (– 1) не имеет смысла! Действительно, нельзя вычислять логарифм от отрицательного числа. Поэтому корень х = 4 оказывается посторонним, и у нас остается только один настоящий корень – число (– 3).
Видео:Нестандартное уравнение от подписчика ★ log_(1/5)(x-1)+7/(x+1)=log_3(x-3)-6/xСкачать
Уравнения, требующие предварительных преобразований
Естественно, не всегда в обоих частях логарифмических уравнений и неравенств стоят только логарифмы с совпадающими основаниями. Часто требуется выполнить некоторые предварительные преобразования, чтобы привести урав-ние к виду logaf(x) = logag(x).
Задание. Решите урав-ние
с помощью которой любой множитель можно внести под знак логарифма. Сделаем это и в нашем случае:
Теперь в обеих частях равенства не стоит ничего, кроме логарифмов с одинаковыми основаниями. Поэтому мы можем приравнять их аргументы:
Задание. Решите урав-ние
Снова проверяем каждый из корней, подставляя его в исходное ур-ние. Прих = –1 получаем
Задание. Решите урав-ние
Решение. В правой части снова стоит сумма, но на этот раз не логарифмов. Однако число 1 можно представить как log5 5. Тогда урав-ние можно преобразовать:
Задание. Решите урав-ние
Решение. Данный пример похож на простейшее логарифмическое уравнение, однако переменная находится в основании логарифма, а не в аргументе. По определению логарифма мы можем записать, что
Первый вариант придется отбросить, так как основание логарифма, (а в данном случае это выражение х – 5) не может быть отрицательным числом. Получается, что
Задание. Решите урав-ние
Решение. Здесь ситуация осложняется тем, что основания логарифмов разные. Поэтому один из них необходимо привести к новому основанию. Попробуем привести log25x 4 к основанию 5, используя известную нам формулу
Мы добились того, что у логарифмов одинаковые основания, а потому мы можем приравнять их аргументы:
Видео:логарифмические уравнения 〖log〗_5 (5-x)=〖log〗_5 (3) ; 〖log〗_2 (4-x)=7Скачать
Логарифмические уравнения с заменой переменных
Иногда приходится делать некоторые замены, чтобы уравнение приняло более привычный вид.
Задание. Решите уравнение методом замены переменной
Задание. Найдите решение уравнения методом замены переменной
Решение. Для начала напомним, что символ lg означает десятичный логарифм. Отдельно знаменатель дроби в правой части:
Видео:ЕГЭ база #7 / Логарифмические уравнения / Свойства, определение логарифма / решу егэСкачать
Логарифмирование уравнений
Ясно, что если от равных величин взять логарифмы по одному и тому же основанию, то тогда эти логарифмы окажутся также равными. Если подобный прием применяют при решении урав-ния, то, говорят, что производится логарифмирование уравнения. Иногда оно позволяет решить некоторые особо сложные примеры.
Задание. Укажите корни урав-ния
Здесь переменная величина находится одновременно и в основании степени, и в ее показателе. Возьмем от правой и левой части урав-ния логарифм по основанию 5:
Возвращаемся от переменной t к переменной х:
Видео:Как решают уравнения в России и СШАСкачать
Переход от логарифмических неравенств к нелогарифмическим
Рассмотрим график логарифмической функции у = logax при условии а > 1. Она является возрастающей функцией. Если на оси Ох отложить два числа tи s так, чтобы t располагалось левее s (то есть t 1). Но это не совсем так. Дело в том, что надо учесть ещё и тот факт, что под знаком логарифма может стоять исключительно положительное число. Получается, что от простейшего логарифмического неравенства
Естественно, вместо величин t и s могут стоять как числа, так и выражения с переменными.
Задание. Найдите решение логарифмического неравенства
Ответ можно оставить и в такой форме, однако всё же принято записывать его в виде промежутка. Очевидно, что нерав-во 0 logas:
Но, снова-таки, мы должны учесть, числа t может быть лишь положительным (тогда s, которое больше t, автоматически также окажется положительным). Получается, что при 0 loga s можно перейти к двойному нерав-ву 0 2 – 45х + 200 имеет решение
Однако в системе (5) есть ещё два неравенства, х > 0 и 45 >x. Их решениями являются промежутки (0; + ∞) и (– ∞; 45). Чтобы определить решение всей системы, отметим на одной прямой решения каждого отдельного нерав-ва и найдем область их пересечения:
Видно, что решениями нерав-ва будут являться промежутки (0; 5) и (40; 45), на которых справедливы все три нерав-ва, входящих в систему (5).
Видео:Задание 9 на ОГЭ по математике 2023 / Разбираем все типы уравнений за 5 минут!Скачать
Методическая разработка «Методы решение логарифмических уравнений»
Обращаем Ваше внимание, что в соответствии с Федеральным законом N 273-ФЗ «Об образовании в Российской Федерации» в организациях, осуществляющих образовательную деятельность, организовывается обучение и воспитание обучающихся с ОВЗ как совместно с другими обучающимися, так и в отдельных классах или группах.
Выберите документ из архива для просмотра:
Выбранный для просмотра документ Методы решения логарифмических уравнений.docx
Процесс решения любого логарифмического уравнения заключается в переходе от уравнения с логарифмами к уравнению без них
И это решение состоит из двух равноценных частей:
1) нахождение области допустимых значений (ОДЗ),
2) решение самого уравнения.
Эти части решаются независимо друг от друга. Главное — в самом конце не забыть результаты сопоставить, лишнее выбросить.
ОДЗ — это те значения х , которые разрешены для исходного примера . А как искать ОДЗ? Внимательно осматриваем пример и ищем опасные места. Места, в которых возможны запретные действия . Таких запретных действий в математике очень мало. ( Нельзя делить на ноль, в корнях чётной степени подкоренное выражение должно быть неотрицательным, выражение стоящее под логарифмом должно быть неотрицательным и основание логарифма а >0 и а ≠1.)
П ростейшие логарифмические уравнения
Умение решать простейшие логарифмические уравнения — это очень важно. Дело в том, что даже самые злые и замороченные уравнения обязательно сводятся к простейшим! Собственно, простейшие уравнения — это финишная часть решения любых уравнений.
Уравнения вида log а f(х) = log а g(х)
Простейшее уравнение log а f(х) = log а g(х) решается методом потенцирования. Под потенцированием понимается переход от равенства, содержащего логарифмы, к равенству, не содержащему их:
log а f(х) = log а g(х) f(х) = g(х) , при f(х)>0, g(х)>0 , а > 0, а≠ 1. т.е. если равны логарифмы по одному и тому же основанию, то и равны логарифмируемые выражения. В виде равносильного перехода:
Ликвидировать логарифмы безо всяких опасений можно, если у них:
а) одинаковые числовые основания
в) логарифмы слева-справа чистые (безо всяких коэффициентов) и находятся в гордом одиночестве
-В уравнении log 3 х = 2log 3 (3х-1) убирать логарифмы нельзя. Двойка справа не позволяет . Коэффициент.
— В примере log 3 х+log 3 (х+1) = log 3 (3+х) тоже нельзя потенцировать уравнение. В левой части нет одинокого логарифма. Их там два .
Короче, убирать логарифмы можно, если уравнение выглядит так и только так: log а (. ) = log а (. )
В скобках, где многоточие, могут быть какие угодно выражения. Простые, суперсложные, всякие. Какие угодно. Важно то, что после ликвидации логарифмов у нас остаётся более простое уравнение
Пример 1. Решите уравнение:
Решение: способ 1 . В область допустимых значений (ОДЗ) входят только те x , при которых выражение, находящееся под знаком логарифма, больше нуля. Эти значения определяются следующей системой неравенств:
Видим логарифмы по одному и тому же основанию равны, значит, равны и логарифмируемые выражения .
В область допустимых значений входит только первый корень. Ответ: 7. ОДЗ можно было не решать, а просто записать. В конце каждый корень подставить в ОДЗ. Если с каждым неравенством ОДЗ получится верное числовое неравенство, то он идет в Решение: способ 2 . Если это уравнение решим путем равносильных переходов , то ОДЗ нашли бы без всяких квадратных неравенств и пересечений. Итак
Уравнение х 2 — 5х – 14 = 0 имеет корни х 1 = 7, х 2 = -2. В область допустимых значений входит только первый корень. Ответ: x = 7.
Пример 2 . Решите уравнение
Решение. Решим методом равносильных переходов . Тогда уравнение равносильно системе
Корни уравнения -2 и 5. Только -2 ϵ ОДЗ . Ответ: -2
Итак уравнения такого вида решили 2-мя способами: 1) отдельно найдя ОДЗ и отдельно решив само уравнение; 2) используя равносильные переходы. Какой способ вам по душе?
Уравнение log a f ( x ) = b — п ростейшее логарифмическое уравнение, где а и b — числа; а >0, a ≠1. Переменная х присутствует только внутри аргумента.
1 ) Применение определения логарифма
Решение уравнений применением определения логарифма
Решение уравнения
основано на применении определения логарифма и в решении равносильного уравнения
Для уравнений log a f ( x ) = b записывать область определения не нужно ( f ( x ) >0 ) , потому что она будет выполняться автоматически . Так как в какую бы степень мы бы не возводили положительное число а , на выходе мы все равно получим положительное число, т.е. если а > 0, то a b > 0 всегда => f ( x ) = a b > 0.
Пример 1 . Решите уравнение log 5 ( x – 2) = 1
Решение: Переменная х встречается лишь в одном log и стоит в его аргументе, значит находить ОДЗ не надо. log 5 ( x – 2) = 1 x – 2 = 5 1 x – 2 = 5 x = 7. Ответ: 7.
Пример 2 . Решите уравнение
Решение: Три раза выполним переход: log a f ( x ) = b f ( x ) = a b
2). Решение простейшего логарифмического уравнения log a f ( x ) = b представлением числа в виде логарифма b = log a a b (методом потенцирования).
Пример 3 . Решите уравнение:
Решение: Это простейшее логарифмическое уравнение, поэтому нет необходимости найти ОДЗ, потому что 3х – 1>0 будет выполняться автоматически. Слева у нас стоит выражение с логарифмом, а справа – число . Что делать? Нужно сделать так, чтобы справа тоже было выражение с логарифмом по основанию 0,5 а затем просто сбросить логарифмы. Так как −3 = −3*1 = -3* log 0,5 0,5= log 0,5 0,5 −3 тогда уравнение примет вид: log 0,5 (3 x − 1) = log 0,5 0,5 −3
Все десятичные дроби переводите в обычные, когда вы решаете логарифмическое уравнение.
Заметим что 0,5 -3 = (1/2) −3 = (2 -1 ) -3 = 2 3 = 8 и получим
Пример 4 . Решите уравнение
Решение: Это простое логарифмическое уравнение, поэтому можно не найти ОДЗ. Первый шаг- дробь справа представим в виде логарифма. Получим:
Учитывая, что 16 1/4 = (2 4 ) 1/4 = 2
избавляемся от знака логарифма и получаем обычное иррациональное уравнение: где надо будет учесть ОДЗ.
, решим равносильным переходом к системе:
Из полученных корней нас устраивает только первый, так как второй корень меньше нуля. Единственным ответом будет число 9. Ответ: 9 .
Уравнения, решаемые применением свойств логарифмов
Схема решения не простых логарифмических уравнений
1. Привести уравнение с помощью свойств логарифмов к виду:
2. Решить равносильное уравнение
f ( x ) = a b или f ( x ) = g ( x ) по их алгоритму .
Пример 1. Решите уравнение
Если lg ( x – 1) переведем в правую часть уравнения, то получим уравнение вида log а f(х) = log а g(х).
Если неравенства неудобные, ОДЗ можно не решать. Достаточно подставить результаты уравнения в записанные условия ОДЗ и проверить, какие решения проходят. Их и взять за ответы
Пример 2 . Решите уравнение
Если в уравнении содержатся логарифмы с разными основаниями, то, прежде всего, следует свести все логарифмы к одному основанию, используя формулы перехода , и
Пример 3 . Решите уравнение
Решение. ОДЗ: х > 0. Сразу видно, что у логарифмов основания разные. Используя формулу придем к одинаковому основанию
Уравнения, решаемые введением новой переменной
Если, в уравнение неоднократно, встречается некоторое определенное выражение, то оно решается введением новой переменной
Пример 1 . Решите уравнение
ОДЗ: x > 0. Введем новую переменную тогда получим квадратное уравнение:
Пример 2 . Решите уравнение
Оба корня удовлетворяют ОДЗ нашего уравнения.
Пример 3. Решите уравнение 4 log 25 5x + log 2 5 x – 5 = 0; ОДЗ: x > 0.
Тут 2 основания, выполним переход к основанию 5, используя формулу
2(log 5 5 + log 5 x) + log 2 5 x – 5 = 0.
2(1 + log 5 x) + log 2 5 x – 5 = 0.
Пусть log 5 x = t, тогда 2(1 + t) + t 2 – 5 = 0;
t = – 3 или t = 1; Обратно переходим на обозначение log 5 x = t:
x = 1/125. Оба корня удовлетворяют ОДЗ. Ответ:
Пример 4. Решите уравнение Решение: Область допустимых значений:
Решать систему необходимости нет. Пусть log 2 (5x – 1) = t, тогда
Уравнения, содержащие неизвестное и в основании и в аргументе.
Уравнение log f ( x ) g ( x ) = b похож е простейшему у равнению log a f ( x ) = b Сходство: в обеих уравнениях в левой части log , в правой число b . Отличие в том, что в первой переменная х присутствует не только внутри аргумента, но и в основании логарифма .
Но мы должны учесть определенные требования. 1) аргумент каждого из логарифмов должен быть больше 0: 2) осн о вание должно быть не только больше 0, но и отлично от 1
1 ) Применение определения логарифма
2 )Представление числа в виде логарифма
По определению логарифма х 2 – 5х + 10 = (х — 1) 2 х 2 – 5х + 10 = :х 2 – 2х + 1, -3х = -9 х = 3
Проверим принадлежность х = 3 ОДЗ: 3 2 – 5*3 + 10 > 0 верно, 3 – 1 > 0 верно 3 – 1 ≠ 1 верно
Пример 2 . Решите уравнение log х+1 (2 x 2 +1)=2 Решение: Решим методом равносильных переходов. Заменяем 2 на так как 2=2*1=2* log х + 1 (х+1)= log х + 1 (х+1) 2 тогда получим: log х+1 (2x 2 +1)= log х+1 (x+1) 2
Наше уравнение содержит неизвестное и в основании и в аргументе. Поэтому 1) аргумент каждого из логарифмов должен быть больше 0. 2) основание должно быть не только больше 0, но и ≠ 1 . В итоге получим систему:
Решим уравнение 2х 2 +1=(х+1) 2 , 2х 2 + 1 = х 2 + 2х + 1 х 2 — 2x = 0 x ( x — 2) = 0 x=2 или x=0. х=0 не соответствует системе. Ответ: 2.
Способ 2. ОДЗ: по определению логарифма получим : 2х 2 +1 = (х+1) 2 , 2х 2 +1 = х 2 + 2х + 1, х 2 – 2х = 0 x ( x – 2) = 0 x = 0, x = 2. Корень х = 0 не удовлетворяет третьему неравенству ОДЗ.
Показательно – логарифмические уравнения
При решении уравнений, содержащих переменную и в основании, и в показателе степени, используется метод логарифмирования. Если при этом в показателе степени содержится логарифм, то обе части уравнения надо прологарифмировать по основанию этого логарифма.
Пример 1. Решить уравнение : х 1 – lgx = 0.01. Решение: ОДЗ: x > 0, x ≠ 1. Прологарифмировав обе части уравнения по основанию 10, получим уравнение:
Положив t = lg x , придем к уравнению t 2 – t – 2 = 0 , откуда t 1 = -1, t 2 = 2. Таким образом, задача свелась к решению следующей совокупности уравнений:
Оба найденных значения входят в ОДЗ. Ответ: 0,1; 100
Пример 2 . Решить уравнение 3 2log 4 x +2 =16 x 2 .
Решение . Область определения x >0. Прологарифмируем обе части по основанию 4.
Используя свойства логарифмов, получим
Функционально – графический метод .
В одной и той же системе координат строим графики функции у= log 2 x и у = 3 – x
Ответ: 2.
Обычно графически метод применяется, если трудно найти других методов. Графически метод менее точный . Целесообразно его использовать, если стоит вопрос «Сколько корней имеет уравнение».
Метод использования монотонности функции
Есть способ, позволяющий не строить графики. Он заключается в следующем: если одна из функции y = f ( x ) возрастает, а другая y = g ( x ) убывает на промежутке Х, то уравнение f ( x ) = g ( x ) имеет не более одного корня на промежутке Х.
Если корень имеется, то его можно угадать.
Пример 1. Решить уравнение: l og 3 x = 4- x Решение: ОДЗ х > 0. Так как функция у= log 3 х возрастающая, а функция у = 4-х убывающая на (0; + ∞ ), то заданное уравнение на этом интервале имеет один корень. Подбором определяем х = 3. Ответ: 3 .
Пример 2 . Решите уравнение : log 3 ( x + 1) + log 4 (5 x + 6) = 3. ОДЗ: х > -1
Решение: у = log 3 ( x + 1) – возрастающая функция, y = log 3 ( x + 1) – тоже возрастающая. Сумма двух возрастающих функции дает возрастающую функцию. В правой части постоянная функция у = 3. Значит уравнение имеет не более одного корня. Подбором определяем х = 2. Ответ: 2.
🎥 Видео
Уравнение с X и Y #shortsСкачать
Я теряю корни ★ 99 ошиблись ★ Решите уравнение ★ x^x=(1/2)^(1/2)Скачать
Решите уравнение ★ √(lg(-x))=lg√(x^2)Скачать
Как решить уравнение с логарифмом log2 5 Линейное уравнение Простое уравнение Как решать логарифмСкачать
Такая математика ум в порядок приводит ★ Решите уравнение ★ [x]^[x]=256Скачать
Решение логарифмических уравнений #shortsСкачать
Как решать уравнения с модулем или Математический торт с кремом (часть 1) | МатематикаСкачать
Как решать Диофантовы уравнения ★ 9x+13y=-1 ★ Решите уравнение в целых числахСкачать
Сложные уравнения. Как решить сложное уравнение?Скачать
Быстрый способ ➜ Решите уравнение: ∛(x+1)+∛(6-x)=1Скачать
Решите систему уравнений ★ x^y=4^6; y=1+logx ★ Как решать такие системы?Скачать
Никто не решил ➜ Удобная подстановка ➜ Решите уравнение ➜ x^3-3x+1=0Скачать
Логарифмирование не поможет ★ Сделано в СССР ★ Показательно-степенное уравнение 10^(x-x^2 )=x^xСкачать