Уравнения свободных затухающих колебаний в критическом режиме имеет вид

Уравнение затухающих колебаний и его решение. Коэффициент затухания

Если в колебательной системе на осциллятор действуют диссипативные силы (сопротивления среды, вязкого трения), то с течением времени происходят потери энергии и такие колебания называются затухающими. Закон затухания колебаний определяется свойствами колебательных систем.

Система является линейной, если в ходе процесса не изменяются параметры, которые характеризуют существенные для рассматриваемого процесса физические свойства системы.

Пусть в системе действует сила трения, модуль которой прямо пропорционален скорости колеблющегося тела. Тогда в проекции на ось X можно записать Уравнения свободных затухающих колебаний в критическом режиме имеет вид

где г — постоянная величина, называемая коэффициентом трения. Знак минус указывает на то, что сила трения и скорость направлены противоположно. Запишем уравнение движения в соответствии со вторым законом Ньютона (3.3):

Уравнения свободных затухающих колебаний в критическом режиме имеет вид

Обозначим — = со0, — = 2(3. Тогда последнее уравнение можно пере- т т

Уравнения свободных затухающих колебаний в критическом режиме имеет вид

где х — колеблющаяся величина; (3 — коэффициент затухания, определяющий скорость затухания; о)0 — циклическая частота (собственная частота) свободных незатухающих колебаний той же колебательной системы (при (3 = 0).

Уравнение (7.21) есть дифференциальное уравнение свободных затухающих колебаний линейной системы. В случае малых затуханий ([3 2 — циклическая частота за

Уравнения свободных затухающих колебаний в критическом режиме имеет вид

Рис. 7.8. Затухающие гармонические колебания при ф0 = 0

тухающих колебаний; A(t) — AQe

^’ — амплитуда затухающих колебаний, изменяющаяся со временем по экспоненциальному закону. Такое уменьшение амплитуды называют релаксацией (ослаблением) колебаний. Для затухающих колебаний механическая энергия убивает пропорционально квадрату амплитуды Е

)e _,>, ) 2 ? Ее изменение (уменьшение) равно работе диссипативных сил сопротивления среды.

График затухающих колебаний при условии, что начальная фаза равна нулю, приведен на рис. 7.8. Затухание нарушает периодичность колебаний, поэтому затухающие колебания, строго говоря, не являются периодическими. Временем релакса-

ции называется промежуток времени т = —, в течение которого амплитуда

затухающих колебаний уменьшается в е раз.

В случае малых затуханий можно условно использовать понятие периода затухающих колебаний как промежутка времени между двумя последующими максимумами колеблющейся физической величины:

Уравнения свободных затухающих колебаний в критическом режиме имеет вид

Поэтому период затухающих колебаний всегда больше периода незатухающих гармонических колебаний (см. формулу (7.2)).

Видео:Уравнения и графики механических гармонических колебаний. 11 класс.Скачать

Уравнения и графики механических гармонических колебаний. 11 класс.

Затухающие колебания

4.2 Затухающие колебания

4.2.1 Дифференциальное уравнение затухающих колебаний

Если кроме возвращающей силы на систему действует ещё и сила сопротивления (например, сила трения в механической системе или сопротивление проводника в контуре), то энергия колебательной системы будет расходоваться на преодоление этого сопротивления. Вследствие этого амплитуда колебаний будет уменьшаться и колебания будут затухать. Простейшим механизмом уменьшения энергии колебаний является ее превращение в теплоту вследствие трения в механических системах, а также омических потерь и излучения электромагнитной энергии в электрических колебательных системах.

Рассмотрим затухание на примере пружинного маятника с коэффициентом упругости k, массой m, колеблющегося в среде, например, в жидкости, с коэффициентом сопротивления r. Предположим, что колебания малы и что маятник испытывает вязкое трение. В этом случае можно считать, что сила сопротивления пропорциональна скорости:

Знак минус указывает на противоположные напра­вления силы трения и скорости. Закон движения маятника при данных условиях будет иметь вид:

Преобразуем это выражение:

Уравнения свободных затухающих колебаний в критическом режиме имеет вид(51)

Обозначим: w02 = Уравнения свободных затухающих колебаний в критическом режиме имеет вид Уравнения свободных затухающих колебаний в критическом режиме имеет вид= d, где w0 — циклическая частота собственных колебаний пружинного маятника при отсутствии сил сопротивления, d — коэффициент затухания. Дифференциальное уравнение затухающих коле­баний маятника примет вид:

Уравнения свободных затухающих колебаний в критическом режиме имеет вид(52)

Получили однородное дифференциальное уравнение, второго порядка, описывающее малые затухающие колебания в системе с вязким трением. Его решение имеет вид:

где ω — частота затухающих колебаний:

w = Уравнения свободных затухающих колебаний в критическом режиме имеет вид. (54)

Уравнение (52) справедливо для любой системы, как механической, так и немеханической, например, для электромагнитного контура. Действительно, для колебательного контура с сопротивлением R второе правило Кирхгофа имеет вид уравнения (29), которое после преобразований принимает вид:

Уравнения свободных затухающих колебаний в критическом режиме имеет вид.

Из сравнения с уравнением (52) следует:

Уравнения свободных затухающих колебаний в критическом режиме имеет вид

Таким образом, дифференциальное уравнение затухающих колебаний

любой линейной системы в общем виде задается уравнением:

Уравнения свободных затухающих колебаний в критическом режиме имеет вид+ 2dУравнения свободных затухающих колебаний в критическом режиме имеет вид+w02S = 0. (55)

где S — колеблющаяся величина, описывающая тот или иной физический процесс, d = const – коэффициент затухания, w0 — собственная циклическая частота колебательной системы, т. е. частота свободных незатуха­ющих колебаний той же колебательной системы (при отсутствии потерь энергии) Решение уравнения (55) имеет вид:

амплитуда затухающих колебаний; A0 — начальная амплитуда.

Уравнения свободных затухающих колебаний в критическом режиме имеет видТаким образом, затухающие колебания описываются функцией с экспоненциально убывающей амплитудой, т. е. затухающие колебания не являются гармоническими.

Зависимость (56) показана на рисунке 10 сплошной линией, а зависимость (57) — штриховыми линиями. Если пропорциональность силы трения и скорости не выполняются, то и закон убывания амплитуды будет другим. Например при сухом трении Fтр ≠ ƒ(t), Fтр = const и амплитуда убывает согласно геометрической прогрессии. Во многих измерительных приборах наряду с вязким трением (наличие смазки) присутствует и сухое трение (напр. в подшипниках). Пока амплитуды колебаний велики, в затухании доминирует вязкое трение. При малых амплитудах преобладает влияние сухого трения.

4.2.2 Параметры затухающих колебаний

1) Период затухающих колебаний:

Т = Уравнения свободных затухающих колебаний в критическом режиме имеет вид(58)

При δ β2 , согласно формуле (58) Т → 2π/ ωo. Такой режим затухания называют периодическим или колебательным (рисунок 10). В этом случае для характеристики процессов в системе можно использовать параметры гармонических колебаний.

2) При ωo2 ≈ β2 наступает критический режим колебаний. В формуле (58) ω → 0, Т → ∞. Наличие большого затухания в системе приводит к большим потерям энергии, поэтому, перейдя положение равновесия, система не в состоянии отойти от него на сколь-нибудь заметное расстояние и возвращается к равновесию (рисунок 11). Условие наблюдения критического режима можно получить из соотношений:

а) для механической системы

Уравнения свободных затухающих колебаний в критическом режиме имеет видrk = 2 Уравнения свободных затухающих колебаний в критическом режиме имеет вид(67)

в) по аналоги для электрической системы

Уравнения свободных затухающих колебаний в критическом режиме имеет вид. (68)

3) При ωo2 wо2) выражение для резонансной частоты становится мнимым. Это означает, что при этих условиях резонанс не наблюдается — с увеличением частоты амплитуда вынужденных колебаний монотонно убывает. Изображенная на рисунке 13 совокупность графиков функции (79), соответствующих различным значениям параметра d, называется резонансными кривыми.

Уравнения свободных затухающих колебаний в критическом режиме имеет видУравнения свободных затухающих колебаний в критическом режиме имеет видУравнения свободных затухающих колебаний в критическом режиме имеет видУравнения свободных затухающих колебаний в критическом режиме имеет видПо поводу резонансных кривых можно сделать еще следующие замечания. При стремлении wо к нулю все кривые приходят к одному и тому же, отличному от нуля, предельному значению, равному fо/wо2, т. е. Fo/k. Это значение представляет собой смещение из положения равновесия, которое получает система под действием постоянной силы величины Fo. При w → ∞ все кривые асимптотически стремятся к нулю, так как при большой частоте сила так быстро изменяет свое направление, что система не успевает заметно сместиться из положения равновесия. Наконец, отметим, что чем меньше d, тем сильнее изменяется с частотой амплитуда вблизи резонанса, тем «острее» по­лучается максимум. Из формулы (79) вытекает, что при малом зату­хании (т. е. при d > w 0, tgj = -2δ/ω и сдвиг фаз становится равным p. Зависимость j от w при разных значениях d показана графически на рисунке 14.

При слабом затухании wрез» w0, и значение j при резонансе можно считать равным p/2.Сдвиг фаз на p/2 при резонансе означает, что вынуждающая сила опережает смещение на Т/4. При этом условии работа вынуждающей силы всегда положительна и приток энергии к колебательной системе максимален.

С явлением резонанса приходится считаться при конструировании машин и различного рода сооружений. Собственная частота колебаний этих устройств ни в коем случае не должна быть близка к частоте возможных внешних воздействий. В противном случае возникают вибра­ции, которые могут вызвать катастрофу. Известны слу­чаи, когда обрушивались мосты при прохождении по ним марширующих колонн солдат. Это происходило потому, что собственная частота колебаний моста оказывалась близкой к частоте, с которой шагала колонна.

Вместе с тем явление резонанса часто оказывается весьма полезным, особенно в акустике, радиотехнике и т. д.

4.4 Автоколебания

Огромный интерес для техники представляет возможность поддерживать колебания незатухающими. Для этого необходимо восполнять потери энергии реальной колебательной системы. Особенно важны и широко применимы так называемые автоколебания — незатухающие колебания, поддерживаемые в диссипативной системе за счет постоянного внешнего источника энергии, причем свойства этих колебаний определяются самой системой.

Автоколебания принципиально отличаются от свободных незатухающих колебаний, происходящих без действия сил, а также от вынужденных колебаний, происходящих под действием периодической силы. Автоколебательная система сама управляет внешними воздействиями, обеспечивая согласованность поступления энергии определенными порциями в нужный момент времени (в такт с ее колебаниями).

Примером автоколебательной системы могут служить часы. Храповой механизм подталкивает маятник в такт с его колебаниями. Энергия, передаваемая при этом маятнику, берется либо за счет раскручивающейся пружины, либо за счет опускающегося груза. Колебания воздуха в духовых инструментах и органных трубах также возникают вследствие автоколебаний, поддерживаемых воздушной струёй.

Автоколебательными системами являются также двигатели внутреннего сгорания, паровые турбины, ламповый генератор и т. д.

4.5 Переменный ток

4.5.1 Вынужденные электромагнитные колебания. Закон Ома для переменного тока.

Переменный ток можно рассматривать как установившиеся вынужденные электромагнитные колебания в цепи, содержащей резистор, катушку индуктивности и конденсатор. Мы будем рассматривать квазистационарные токи, для которых мгновенные значения силы тока во всех сечениях цепи практически одинаковы. Для мгновенных значений квазистационарных токов выполняются закон Ома и вытекающие из него правила Кирхгофа.

Уравнения свободных затухающих колебаний в критическом режиме имеет видРассмотрим процессы, происходящие в цепи, содержащей последовательно включённые резистор, катушку индуктивности, конденсатор и источник переменной Э. Д.С., изменяющейся по гармоническому закону:

где εo — амплитуда электродвижущей силы.

В цепи возникнет переменный ток, который вызовет на всех элементах цепи соответствующие падения напряжения UR, UL, UC . Будем считать, что внутреннее сопротивление источника э. д.с. пренебрежимо мало по сравнению с R. По закону Ома для участка цепи 1- LR-2 имеем:

где φ2 — φ1 = q/C — мгновенное значение разности потенциалов обкладок

конденсатора, q — его заряд в этот же момент времени, — L(dI/dt) — э. д.с. самоиндукции в контуре. Возьмём производную по времени от обеих частей равенства (145). Учитывая, что dq/dt = I — ток в контуре, получим:

Уравнения свободных затухающих колебаний в критическом режиме имеет вид

Учитывая, что R/L = 2δ, 1/ (ωC) = ωo2 и введя обозначение — εoω/L = еo уравнение (84) запишем в виде:

Уравнения свободных затухающих колебаний в критическом режиме имеет вид

Решение уравнения (85) аналогично решению ранее рассмотренного уравнения (71). Ищем решение уравнения (84) для установившегося режима в виде:

где Iо — амплитуда переменного тока в контуре, j сдвиг фаз между э. д.с. источника тока и силой тока. По аналогии с определением формул (74) и (75) найдём выражения для Iо и j :

Уравнения свободных затухающих колебаний в критическом режиме имеет вид(86)

Уравнения свободных затухающих колебаний в критическом режиме имеет вид(87)

Соотношение (86) называется законом Ома для переменного тока. Величина

Уравнения свободных затухающих колебаний в критическом режиме имеет вид(88)

называется полным сопротивлением цепи.

RL = ωL — индуктивное сопротивление;

RC = 1/ (ωC) — ёмкостное сопротивление;

Уравнения свободных затухающих колебаний в критическом режиме имеет видреактивное сопротивление. Реактивное сопротивление не вызывает тепловых потерь в цепи переменного тока. Оно создаёт сдвиг фаз между током и вынуждающей э. д.с.

R — активное сопротивление; за счёт него возникают тепловые потери в контуре.

Падение напряжения на отдельных участках цепи, представленной на рис. 15, можно получить, используя выражение (85):

UC = q/ С = Уравнения свободных затухающих колебаний в критическом режиме имеет видU0C cos(ωt — φ — π/2);

По второму правилу Кирхгофа:

Уравнения свободных затухающих колебаний в критическом режиме имеет вид

Уравнения свободных затухающих колебаний в критическом режиме имеет видНа рисунке 16 представлена векторная диаграмма амплитуд колебаний на всех элементах рассматриваемой цепи (см. рис. 15).

Из выражения (86) следует, что амплитуда тока зависит от частоты вынуждающей э. д.с. (рисунок 18). Максимального значения I0 достигает при частоте ωрез, равной:

Уравнения свободных затухающих колебаний в критическом режиме имеет вид Уравнения свободных затухающих колебаний в критическом режиме имеет вид(89)

Явление достижения током максимального значения I0рез при ω = ωрез называется резонансом напряжений. Это вызвано тем, что при ω = ωрез падения напряжений на индуктивном и ёмкостном сопротивлениях достигают максимальных значений равных по модулю и противоположных по фазе, поэтому суммарное падение напряжение на реактивном сопротивлении равно нулю. Падение напряжения на активном сопротивлении максимально, его амплитудное значение

Векторная диаграмма для резонанса напряжений при­ведена на рис.17.

Подставив в формулу (91) значения резонансной частоты и амплитуды напряжений на катушке индуктивности и конденсаторе, получим:

( UL )рез= ( UС )рез= Уравнения свободных затухающих колебаний в критическом режиме имеет видI0 = Уравнения свободных затухающих колебаний в критическом режиме имеет вид Уравнения свободных затухающих колебаний в критическом режиме имеет видU0 = Q U0, (92)

где Q добротность контура.

Так как доброт­ность обычных колебательных контуров больше единицы, то напряжение как на катушке индуктивности, так и на конденсаторе превышает напряжение, приложенное к цепи. Поэтому явление резонанса напряжений используется в технике для усиления колебания напряжения какой-либо определенной частоты. Например, в случае резонан­са на конденсаторе, можно получить напряжение с амплитудой QUm ( в данном случае Q — добротность контура, которая может быть значительно больше Um. Это усиление напряжения возможно только для узкого интервала частот вблизи резонанс­ной частоты контура, что позволяет выделить из многих сигналов одно колебание определенной частоты, т. е. на радиоприемнике настроиться на нужную длину волны. Явление резонанса напряжений необходимо учитывать при расчете изоляции элект­рических линий, содержащих конденсаторы и катушки индуктивности, так как иначе может наблюдаться их пробой.

4.5.2 Мощность, выделяемая в цепи переменного тока

Полное мгновенное значение мощности переменного тока равно произведению мгновенных значений э. д.с. и силы тока. P(t) = ε(t) I(t), где

Практический интерес представляет не мгновенное значение мощности, а ее среднее значение за период колебания. Учитывая, что =1/2, sinw t.cosw t = 0, получим

= Уравнения свободных затухающих колебаний в критическом режиме имеет видI0 ε0 cosj (93)

Из векторной диаграммы (см. рис. 16) следует, что ε0 cosj = RI0. Поэтому

Уравнения свободных затухающих колебаний в критическом режиме имеет вид.

Такую же мощность развивает постоянный ток Уравнения свободных затухающих колебаний в критическом режиме имеет вид. Величины Iэф = I0 /Уравнения свободных затухающих колебаний в критическом режиме имеет вид, Uэф = U0 / Уравнения свободных затухающих колебаний в критическом режиме имеет видназываются соответственно действующими (или эффективными) значениями тока и на­пряжения. Все амперметры и вольтметры градуируются по действующим значениям тока и напряжения. Учитывая действующие значения тока и напряжения, выражение средней мощности можно записать в виде:

Уравнения свободных затухающих колебаний в критическом режиме имеет вид(94)

где множитель cosj называется коэффициентом мощности,

Формула (94) показывает, что мощность, выделяемая в цепи переменного тока, в общем случае зависит не только от силы тока и напряжения, но и от сдвига фаз между ними. Если в цепи реактивное сопротивление отсутствует, то cosj =1 и P = Iэф εэф. Если цепь содержит только реактивное сопротивление (R=0), то cosj = 0 и средняя мощ­ность равна нулю, какими бы большими ни были ток и напряжение. Если cosj имеет значения, существенно меньшие единицы, то для передачи заданной мощности при данном напряжении генератора нужно увеличивать силу тока I, что приведет либо к выделению джоулевой теплоты, либо потребует увеличения сечения проводов, что повышает стоимость линий электропередачи. Поэтому на практике всегда стремятся увеличить cosj, наименьшее допустимое значение которого для промышленных уста­новок составляет примерно 0,85.

Видео:70. Затухающие колебанияСкачать

70. Затухающие колебания

Затухающие колебания в контуре и их уравнение

Существуют колебания в системе без источника энергии, называемые затухающими. Рассмотрим реальный контур с сопротивлением не равным нулю. Для примера используют контур с включенным сопротивлением R , с емкостью конденсатора C , с катушкой индуктивности L , изображенный на рисунке 1 . Колебания, происходящие в нем, — затухающие.

Уравнения свободных затухающих колебаний в критическом режиме имеет вид

Именно наличие сопротивления становится главной причиной их затухания. Данный процесс возможен посредствам потерь энергии на выделение джоулева тепла. Аналог сопротивления в механике – действие сил трения.

Видео:Урок 343. Затухающие колебания (часть 1)Скачать

Урок 343. Затухающие колебания (часть 1)

Характеристики затухающих колебаний

Затухающие колебания характеризуют коэффициентом затухания β . Применив второй закон Ньютона, получим:

m a = — k x — y v , d 2 x d t 2 + r m d x d t + k m x = 0 , ω 0 2 = k m , β = r 2 m .

Из записи видно, что β действительно является характеристикой контура. Реже вместо β применяют декремент затухания δ ,

Значение a ( t ) является амплитудой заряда, силы тока и так далее, δ равняется количеству колебаний, а N e — период времени уменьшения амплитуды в e раз.

Для R L C контура применима формула с ω частотой.

При небольшой δ ≪ 1 говорят, что β ≪ ω 0 ω 0 = 1 L C — собственная частота, отсюда ω ≈ ω 0 .

При рассмотрении затухающих колебаний последовательного контура колебательный контур характеризуется добротностью Q :

Q = 1 R L C = ω 0 L R , где R , L и C — сопротивление, индуктивность, емкость, а ω 0 — частота резонанса. Выражение L C называют характеристическим или волновым сопротивлением. Для параллельного контура формула примет вид:

Q = R L C = R ω 0 L .

R является входным сопротивлением параллельного контура.

Эквивалентное определение добротности применяется при слабых затуханиях. Его выражают через отношение энергий:

Q = ω 0 W P d = 2 π f 0 W P d , называемое общей формулой.

Видео:Затухающие колебания. Вынужденные колебания | Физика 9 класс #26 | ИнфоурокСкачать

Затухающие колебания. Вынужденные колебания | Физика 9 класс #26 | Инфоурок

Уравнения затухающих колебаний

Рассмотрим рисунок 1 . Изменение заряда q на конденсаторе в таком контуре описывается дифференциальным уравнением:

q ( t ) = q 0 e ( — β t ) cos ω t + a ‘ 0 = q 0 e — β t cos ( ω t ) .

Если t = 0 , то заряд конденсатора становится равным q 0 , и ток в цепи отсутствует.

Если R > 2 L C изменения заряда не относят к колебаниям, разряд называют апериодическим.

Значение сопротивления, при котором колебания превращаются в апериодический разряд конденсатора, критическое R k .

Функция изображается аналогично рисунку 2 .

Уравнения свободных затухающих колебаний в критическом режиме имеет вид

Записать закон убывания энергии, запасенной в контуре W ( t ) при W ( t = 0 ) = W 0 с затухающими колебаниями. Обозначить коэффициент затухания в контуре β , а собственную частоту — ω 0 .

Решение

Отправная точка решения – это применение формулы изменения заряда на конденсаторе в R L C — контуре:

q ( t ) = q 0 e ( — β t ) cos ω t + a ‘ 0 = q 0 e — β t cos ( ω t ) .

Предположим, что при t = 0 , a ‘ 0 = 0 . Тогда применим выражение

Для нахождения I ( t ) :

I ( t ) = — ω 0 q 0 e ( — 2 β t ) sin ( ω t + α ) , где t g α = β ω .

Очевидно, что электрическая энергия W q запишется как:

W q = q 2 2 C = q 0 2 2 C e ( — 2 β t ) cos 2 ( ω t ) = W 0 e ( — 2 β t ) cos 2 ( ω t ) .

Тогда значение магнитной энергии контура W m равняется:

W m = L 2 ω 0 2 q 0 2 e ( — 2 β t ) sin 2 ω t + a = W 0 e — 2 β t sin 2 ω t + a .

Запись полной энергии будет иметь вид:

W = W q + W m = W 0 e ( — 2 β t ) ( cos 2 ( ω t ) + sin 2 ( ω t + a ) ) = = W 0 e ( — 2 β t ) 1 + β ω 0 sin ( 2 ω t + α ) .

Где sin α = β ω 0 .

Ответ: W ( t ) = W 0 e ( — 2 β t ) 1 + β ω 0 sin ( 2 ω t + a ) .

Применив результат предыдущего примера, записать выражение для энергии, запасенной в контуре W ( t ) , при медленно затухающих колебаниях. Начертить график убывания энергии.

Решение

Если колебания в контуре затухают медленно, то:

Очевидно, выражение энергии, запасенной в контуре, вычислим из

W ( t ) = W 0 e ( — 2 β t ) 1 + β ω 0 sin ( 2 ω t + a ) , предварительно преобразовав до W ( t ) = W 0 e ( — 2 β t ) .

Такое упрощение возможно по причине выполнения условия β ω 0 ≪ 1 , sin ( 2 ω t + a ) ≤ 1 , что означает β ω 0 sin ( 2 ω t + a ) ≪ 1 .

Уравнения свободных затухающих колебаний в критическом режиме имеет вид

Ответ: W ( t ) = W 0 e ( — 2 β t ) . Энергия в контуре убывает по экспоненте.

🎥 Видео

МЕХАНИЧЕСКИЕ КОЛЕБАНИЯ период колебаний частота колебанийСкачать

МЕХАНИЧЕСКИЕ КОЛЕБАНИЯ период колебаний частота колебаний

Физика 9 класс (Урок№11 - Гармонические колебания. Затухающие колебания. Резонанс.)Скачать

Физика 9 класс (Урок№11 - Гармонические колебания. Затухающие колебания. Резонанс.)

Урок 344. Затухающие колебания (часть 2)Скачать

Урок 344. Затухающие колебания (часть 2)

Уравнения и графики механических гармонических колебаний. Практ. часть - решение задачи. 11 класс.Скачать

Уравнения и графики механических гармонических колебаний. Практ. часть - решение задачи. 11 класс.

5.4 Уравнение гармонических колебанийСкачать

5.4 Уравнение гармонических колебаний

ЧК_МИФ КРИТИЧЕСКИЙ РЕЖИМ КОЛЕБАТЕЛЬНОЙ ЛИНЕЙНОЙ СИСТЕМЫСкачать

ЧК_МИФ         КРИТИЧЕСКИЙ РЕЖИМ КОЛЕБАТЕЛЬНОЙ  ЛИНЕЙНОЙ СИСТЕМЫ

Лекция №14 "Свободные и затухающие колебания в электрических цепях"Скачать

Лекция №14 "Свободные и затухающие колебания в электрических цепях"

ЧК_МИФ ЗАТУХАЮЩИЕ КОЛЕБАНИЯСкачать

ЧК_МИФ    ЗАТУХАЮЩИЕ КОЛЕБАНИЯ

ЧК_МИФ_1_2_3_3_(L3)__ ЛИНЕЙНЫЕ КОЛЕБАТЕЛЬНЫЕ СИСТЕМЫ. КРИТИЧЕСКИЙ РЕЖИМСкачать

ЧК_МИФ_1_2_3_3_(L3)__  ЛИНЕЙНЫЕ КОЛЕБАТЕЛЬНЫЕ СИСТЕМЫ. КРИТИЧЕСКИЙ РЕЖИМ

Физика 9 класс (Урок№9 - Механические колебания.)Скачать

Физика 9 класс (Урок№9 - Механические колебания.)

71. Вынужденные колебанияСкачать

71. Вынужденные колебания

Урок 327. Гармонические колебанияСкачать

Урок 327. Гармонические колебания

Якута А. А. - Механика - Вынужденные колебания. АЧХ. ФЧХСкачать

Якута А. А. - Механика - Вынужденные колебания. АЧХ. ФЧХ

Лекция №11 "Вынужденные колебания" (Попов П.В.)Скачать

Лекция №11 "Вынужденные колебания" (Попов П.В.)

Лекция 9. Вынужденные и затухающие колебанияСкачать

Лекция 9. Вынужденные и затухающие колебания
Поделиться или сохранить к себе: