Уравнения степенной и показательной регрессии

Уравнение нелинейной регрессии

Вместе с этим калькулятором также используют следующие:
Уравнение множественной регрессии

Видео:Эконометрика. Нелинейная регрессия. Степенная функция.Скачать

Эконометрика. Нелинейная регрессия. Степенная функция.

Виды нелинейной регрессии

ВидКласс нелинейных моделей
  1. Полиномальное уравнение регрессии:
    y = a + bx + cx 2 (см. метод выравнивания)
  2. Гиперболическое уравнение регрессии: Уравнения степенной и показательной регрессии
  3. Квадратичное уравнение регрессии: Уравнения степенной и показательной регрессии
Нелинейные относительно включенных в анализ объясняющих переменных, но линейные по оцениваемым параметрам
  1. Показательное уравнение регрессии: Уравнения степенной и показательной регрессии
  2. Экспоненциальное уравнение регрессии: Уравнения степенной и показательной регрессии
  3. Степенное уравнение регрессии: Уравнения степенной и показательной регрессии
  4. Полулогарифмическое уравнение регрессии: y = a + b lg(x)
Нелинейные по оцениваемым параметрам

Здесь ε — случайная ошибка (отклонение, возмущение), отражающая влияние всех неучтенных факторов.

Уравнению регрессии первого порядка — это уравнение парной линейной регрессии.

Уравнение регрессии второго порядка это полиномальное уравнение регрессии второго порядка: y = a + bx + cx 2 .
Уравнения степенной и показательной регрессии

Уравнение регрессии третьего порядка соответственно полиномальное уравнение регрессии третьего порядка: y = a + bx + cx 2 + dx 3 .
Уравнения степенной и показательной регрессии

Чтобы привести нелинейные зависимости к линейной используют методы линеаризации (см. метод выравнивания):

  1. Замена переменных.
  2. Логарифмирование обеих частей уравнения.
  3. Комбинированный.
y = f(x)ПреобразованиеМетод линеаризации
y = b x aY = ln(y); X = ln(x)Логарифмирование
y = b e axY = ln(y); X = xКомбинированный
y = 1/(ax+b)Y = 1/y; X = xЗамена переменных
y = x/(ax+b)Y = x/y; X = xЗамена переменных. Пример
y = aln(x)+bY = y; X = ln(x)Комбинированный
y = a + bx + cx 2x1 = x; x2 = x 2Замена переменных
y = a + bx + cx 2 + dx 3x1 = x; x2 = x 2 ; x3 = x 3Замена переменных
y = a + b/xx1 = 1/xЗамена переменных
y = a + sqrt(x)bx1 = sqrt(x)Замена переменных

Пример . По данным, взятым из соответствующей таблицы, выполнить следующие действия:

  1. Построить поле корреляции и сформулировать гипотезу о форме связи.
  2. Рассчитать параметры уравнений линейной, степенной, экспоненциальной, полулогарифмической, обратной, гиперболической парной регрессии.
  3. Оценить тесноту связи с помощью показателей корреляции и детерминации.
  4. Дать с помощью среднего (общего) коэффициента эластичности сравнительную оценку силы связи фактора с результатом.
  5. Оценить с помощью средней ошибки аппроксимации качество уравнений.
  6. Оценить с помощью F-критерия Фишера статистическую надежность результатов регрессионного моделирования. По значениям характеристик, рассчитанных в пп. 4, 5 и данном пункте, выбрать лучшее уравнение регрессии и дать его обоснование.
  7. Рассчитать прогнозное значение результата, если прогнозное значение фактора увеличится на 15% от его среднего уровня. Определить доверительный интервал прогноза для уровня значимости α=0,05 .
  8. Оценить полученные результаты, выводы оформить в аналитической записке.
ГодФактическое конечное потребление домашних хозяйств (в текущих ценах), млрд. руб. (1995 г. — трлн. руб.), yСреднедушевые денежные доходы населения (в месяц), руб. (1995 г. — тыс. руб.), х
1995872515,9
200038132281,1
200150143062
200264003947,2
200377085170,4
200498486410,3
2005124558111,9
20061528410196
20071892812602,7
20082369514940,6
20092515116856,9

Решение. В калькуляторе последовательно выбираем виды нелинейной регрессии. Получим таблицу следующего вида.
Экспоненциальное уравнение регрессии имеет вид y = a e bx
После линеаризации получим: ln(y) = ln(a) + bx
Получаем эмпирические коэффициенты регрессии: b = 0.000162, a = 7.8132
Уравнение регрессии: y = e 7.81321500 e 0.000162x = 2473.06858e 0.000162x

Степенное уравнение регрессии имеет вид y = a x b
После линеаризации получим: ln(y) = ln(a) + b ln(x)
Эмпирические коэффициенты регрессии: b = 0.9626, a = 0.7714
Уравнение регрессии: y = e 0.77143204 x 0.9626 = 2.16286x 0.9626

Гиперболическое уравнение регрессии имеет вид y = b/x + a + ε
После линеаризации получим: y=bx + a
Эмпирические коэффициенты регрессии: b = 21089190.1984, a = 4585.5706
Эмпирическое уравнение регрессии: y = 21089190.1984 / x + 4585.5706

Логарифмическое уравнение регрессии имеет вид y = b ln(x) + a + ε
Эмпирические коэффициенты регрессии: b = 7142.4505, a = -49694.9535
Уравнение регрессии: y = 7142.4505 ln(x) — 49694.9535

Видео:Эконометрика. Линейная парная регрессияСкачать

Эконометрика. Линейная парная регрессия

Рассчитайте параметры уравнений линейной, степенной, экспоненциальной, полулогарифмической, обратной, гиперболической парной регрессий

2. Рассчитайте параметры уравнений линейной, степенной, экспоненциальной, полулогарифмической, обратной, гиперболической парной регрессий.

· Рассчитаем параметры уравнений линейной парной регрессии. Для расчета параметров a и b линейной регрессии y=a+b*x решаем систему нормальных уравнений относительно a и b:

Уравнения степенной и показательной регрессии

По исходным данным рассчитываем ∑y, ∑x, ∑yx, ∑x 2 , ∑y 2 (табл. 2):

№ регионаXYXYX^2Y^2Y^cpY-Y^cpAi
12,80028,00078,4007,840784,00025,7192,2810,081
22,40021,30051,1205,760453,69022,870-1,5700,074
32,10021,00044,1004,410441,00020,7340,2660,013
42,60023,30060,5806,760542,89024,295-0,9950,043
51,70015,80026,8602,890249,64017,885-2,0850,132
62,50021,90054,7506,250479,61023,582-1,6820,077
72,40020,00048,0005,760400,00022,870-2,8700,144
82,60022,00057,2006,760484,00024,295-2,2950,104
92,80023,90066,9207,840571,21025,719-1,8190,076
102,60026,00067,6006,760676,00024,2951,7050,066
112,60024,60063,9606,760605,16024,2950,3050,012
122,50021,00052,5006,250441,00023,582-2,5820,123
132,90027,00078,3008,410729,00026,4310,5690,021
142,60021,00054,6006,760441,00024,295-3,2950,157
152,20024,00052,8004,840576,00021,4462,5540,106
162,60034,00088,4006,7601156,00024,2959,7050,285
173,30031,900105,27010,8901017,61029,2802,6200,082
193,90033,000128,70015,2101089,00033,553-0,5530,017
204,60035,400162,84021,1601253,16038,539-3,1390,089
213,70034,000125,80013,6901156,00032,1291,8710,055
223,40031,000105,40011,560961,00029,9921,0080,033
Итого58,800540,1001574,100173,32014506,970540,1000,000
сред значение2,80025,71974,9578,253690,8080,085
станд. откл0,6435,417

Система нормальных уравнений составит:

Уравнения степенной и показательной регрессии

Уравнения степенной и показательной регрессии

Уравнения степенной и показательной регрессии

Уравнения степенной и показательной регрессииУр-ие регрессии: = 5,777+7,122∙x. Данное уравнение показывает, что с увеличением среднедушевого денежного дохода в месяц на 1 тыс. руб. доля розничных продаж телевизоров повышается в среднем на 7,12%.

· Рассчитаем параметры уравнений степенной парной регрессии. Построению степенной модели Уравнения степенной и показательной регрессиипредшествует процедура линеаризации переменных. В примере линеаризация производится путем логарифмирования обеих частей уравнения:

Уравнения степенной и показательной регрессиигде Уравнения степенной и показательной регрессии

Для расчетов используем данные табл. 3:

№ регXYXYX^2Y^2Yp^cpy^cp
11,0303,3323,4311,06011,1043,24525,67072
20,8753,0592,6780,7669,3563,11622,56102
30,7423,0452,2590,5509,2693,00420,17348
40,9563,1483,0080,9139,9133,18324,12559
50,5312,7601,4650,2827,6182,82716,90081
60,9163,0862,8280,8409,5263,15023,34585
70,8752,9962,6230,7668,9743,11622,56102
80,9563,0912,9540,9139,5553,18324,12559
91,0303,1743,2681,06010,0743,24525,67072
100,9563,2583,1130,91310,6153,18324,12559
110,9563,2033,0600,91310,2583,18324,12559
120,9163,0452,7900,8409,2693,15023,34585
131,0653,2963,5091,13410,8633,27526,4365
140,9563,0452,9090,9139,2693,18324,12559
150,7883,1782,5060,62210,1003,04320,97512
160,9563,5263,3690,91312,4353,18324,12559
171,1943,4634,1341,42511,9903,38329,4585
191,3613,4974,7591,85212,2263,52333,88317
201,5263,5675,4432,32912,7213,66138,90802
211,3083,5264,6141,71212,4353,47932,42145
221,2243,4344,2021,49811,7923,40830,20445
итого21,11567,72768,92122,214219,36167,727537,270
сред зн1,0053,2253,2821,05810,4463,225
стан откл0,2160,211

Рассчитаем С и b:

Уравнения степенной и показательной регрессии

Уравнения степенной и показательной регрессии

Получим линейное уравнение: Уравнения степенной и показательной регрессии. Выполнив его потенцирование, получим: Уравнения степенной и показательной регрессии

Подставляя в данное уравнение фактические значения х, получаем теоретические значения результата y.

· Рассчитаем параметры уравнений экспоненциальной парной регрессии. Построению экспоненциальной модели Уравнения степенной и показательной регрессиипредшествует процедура линеаризации переменных. В примере линеаризация производится путем логарифмирования обеих частей уравнения:

Уравнения степенной и показательной регрессиигде Уравнения степенной и показательной регрессии

Для расчетов используем данные табл. 4:

№ регионаXYXYX^2Y^2Ypy^cp
12,8003,3329,3307,84011,1043,22525,156
22,4003,0597,3415,7609,3563,11622,552
32,1003,0456,3934,4109,2693,03420,777
42,6003,1488,1866,7609,9133,17023,818
51,7002,7604,6922,8907,6182,92518,625
62,5003,0867,7166,2509,5263,14323,176
72,4002,9967,1905,7608,9743,11622,552
82,6003,0918,0376,7609,5553,17023,818
92,8003,1748,8877,84010,0743,22525,156
102,6003,2588,4716,76010,6153,17023,818
112,6003,2038,3276,76010,2583,17023,818
122,5003,0457,6116,2509,2693,14323,176
132,9003,2969,5588,41010,8633,25225,853
142,6003,0457,9166,7609,2693,17023,818
152,2003,1786,9924,84010,1003,06121,352
162,6003,5269,1696,76012,4353,17023,818
173,3003,46311,42710,89011,9903,36228,839
193,9003,49713,63615,21012,2263,52633,978
204,6003,56716,40721,16012,7213,71741,140
213,7003,52613,04813,69012,4353,47132,170
223,4003,43411,67611,56011,7923,38929,638
Итого58,80067,727192,008173,320219,36167,727537,053
сред зн2,8003,2259,1438,25310,446
стан откл0,6430,211

Рассчитаем С и b:

Уравнения степенной и показательной регрессии

Уравнения степенной и показательной регрессии

Получим линейное уравнение: Уравнения степенной и показательной регрессии. Выполнив его потенцирование, получим: Уравнения степенной и показательной регрессии

Для расчета теоретических значений y подставим в уравнение Уравнения степенной и показательной регрессиизначения x.

· Рассчитаем параметры уравнений полулогарифмической парной регрессии. Построению полулогарифмической модели Уравнения степенной и показательной регрессиипредшествует процедура линеаризации переменных. В примере линеаризация производится путем замены:

Уравнения степенной и показательной регрессиигде Уравнения степенной и показательной регрессии

Для расчетов используем данные табл. 5:

№ регионаXYXYX^2Y^2y^cp
11,03028,00028,8291,060784,00026,238
20,87521,30018,6470,766453,69022,928
30,74221,00015,5810,550441,00020,062
40,95623,30022,2630,913542,89024,647
50,53115,8008,3840,282249,64015,525
60,91621,90020,0670,840479,61023,805
70,87520,00017,5090,766400,00022,928
80,95622,00021,0210,913484,00024,647
91,03023,90024,6081,060571,21026,238
100,95626,00024,8430,913676,00024,647
110,95624,60023,5060,913605,16024,647
120,91621,00019,2420,840441,00023,805
131,06527,00028,7471,134729,00026,991
140,95621,00020,0660,913441,00024,647
150,78824,00018,9230,622576,00021,060
160,95634,00032,4870,9131156,00024,647
171,19431,90038,0861,4251017,61029,765
191,36133,00044,9121,8521089,00033,351
201,52635,40054,0222,3291253,16036,895
211,30834,00044,4831,7121156,00032,221
221,22431,00037,9371,498961,00030,406
Итого21,115540,100564,16622,21414506,970540,100
сред зн1,00525,71926,8651,058690,808
стан откл0,2165,417

Рассчитаем a и b:

Уравнения степенной и показательной регрессии

Уравнения степенной и показательной регрессии

Получим линейное уравнение: Уравнения степенной и показательной регрессии.

· Рассчитаем параметры уравнений обратной парной регрессии. Для оценки параметров приведем обратную модель Уравнения степенной и показательной регрессиик линейному виду, заменив Уравнения степенной и показательной регрессии, тогда Уравнения степенной и показательной регрессии

Для расчетов используем данные табл. 6:

№ регионаXYXYX^2Y^2Y^cp
12,8000,0360,1007,8400,00124,605
22,4000,0470,1135,7600,00222,230
32,1000,0480,1004,4100,00220,729
42,6000,0430,1126,7600,00223,357
51,7000,0630,1082,8900,00419,017
62,5000,0460,1146,2500,00222,780
72,4000,0500,1205,7600,00322,230
82,6000,0450,1186,7600,00223,357
92,8000,0420,1177,8400,00224,605
102,6000,0380,1006,7600,00123,357
112,6000,0410,1066,7600,00223,357
122,5000,0480,1196,2500,00222,780
132,9000,0370,1078,4100,00125,280
142,6000,0480,1246,7600,00223,357
152,2000,0420,0924,8400,00221,206
162,6000,0290,0766,7600,00123,357
173,3000,0310,10310,8900,00128,398
193,9000,0300,11815,2100,00134,844
204,6000,0280,13021,1600,00147,393
213,7000,0290,10913,6900,00132,393
223,4000,0320,11011,5600,00129,301
Итого58,8000,8532,296173,3200,036537,933
сред знач2,8000,0410,1098,2530,002
стан отклон0,6430,009

Рассчитаем a и b:

Уравнения степенной и показательной регрессии

Уравнения степенной и показательной регрессии

Получим линейное уравнение: Уравнения степенной и показательной регрессии. Выполнив его потенцирование, получим: Уравнения степенной и показательной регрессии

Для расчета теоретических значений y подставим в уравнение Уравнения степенной и показательной регрессиизначения x.

· Рассчитаем параметры уравнений равносторонней гиперболы парной регрессии. Для оценки параметров приведем модель равносторонней гиперболы Уравнения степенной и показательной регрессиик линейному виду, заменив Уравнения степенной и показательной регрессии, тогда Уравнения степенной и показательной регрессии

Для расчетов используем данные табл. 7:

№ регионаX=1/zYXYX^2Y^2Y^cp
10,35728,00010,0000,128784,00026,715
20,41721,3008,8750,174453,69023,259
30,47621,00010,0000,227441,00019,804
40,38523,3008,9620,148542,89025,120
50,58815,8009,2940,346249,64013,298
60,40021,9008,7600,160479,61024,227
70,41720,0008,3330,174400,00023,259
80,38522,0008,4620,148484,00025,120
90,35723,9008,5360,128571,21026,715
100,38526,00010,0000,148676,00025,120
110,38524,6009,4620,148605,16025,120
120,40021,0008,4000,160441,00024,227
130,34527,0009,3100,119729,00027,430
140,38521,0008,0770,148441,00025,120
150,45524,00010,9090,207576,00021,060
160,38534,00013,0770,1481156,00025,120
170,30331,9009,6670,0921017,61029,857
190,25633,0008,4620,0661089,00032,564
200,21735,4007,6960,0471253,16034,829
210,27034,0009,1890,0731156,00031,759
220,29431,0009,1180,087961,00030,374
Итого7,860540,100194,5873,07314506,970540,100
сред знач0,37425,7199,2660,1461318,815
стан отклон0,07925,639

Рассчитаем a и b:

Уравнения степенной и показательной регрессии

Уравнения степенной и показательной регрессии

Получим линейное уравнение: Уравнения степенной и показательной регрессии. Получим уравнение регрессии: Уравнения степенной и показательной регрессии.

3. Оценка тесноты связи с помощью показателей корреляции и детерминации:

· Линейная модель. Тесноту линейной связи оценит коэффициент корреляции. Был получен следующий коэффициент корреляции rxy=bУравнения степенной и показательной регрессии=7,122*Уравнения степенной и показательной регрессии, что говорит о прямой сильной связи фактора и результата. Коэффициент детерминации r²xy=(0,845)²=0,715. Это означает, что 71,5% вариации результативного признака (розничная продажа телевизоров, у) объясняется вариацией фактора х – среднедушевой денежный доход в месяц.

· Степенная модель. Тесноту нелинейной связи оценит индекс корреляции. Был получен следующий индекс корреляции Уравнения степенной и показательной регрессии=Уравнения степенной и показательной регрессии, что говорит о очень сильной тесной связи, но немного больше чем в линейной модели. Коэффициент детерминации r²xy=0,7175. Это означает, что 71,75% вариации результативного признака (розничная продажа телевизоров, у) объясняется вариацией фактора х – среднедушевой денежный доход в месяц.

· Экспоненциальная модель. Был получен следующий индекс корреляции ρxy=0,8124, что говорит о том, что связь прямая и очень сильная, но немного слабее, чем в линейной и степенной моделях. Коэффициент детерминации r²xy=0,66. Это означает, что 66% вариации результативного признака (розничная продажа телевизоров, у) объясняется вариацией фактора х – среднедушевой денежный доход в месяц.

· Полулогарифмическая модель. Был получен следующий индекс корреляции ρxy=0,8578, что говорит о том, что связь прямая и очень сильная, но немного больше чем в предыдущих моделях. Коэффициент детерминации r²xy=0,7358. Это означает, что 73,58% вариации результативного признака (розничная продажа телевизоров, у) объясняется вариацией фактора х – среднедушевой денежный доход в месяц.

· Гиперболическая модель. Был получен следующий индекс корреляции ρxy=0,8448 и коэффициент корреляции rxy=-0,1784 что говорит о том, что связь обратная очень сильная. Коэффициент детерминации r²xy=0,7358. Это означает, что 73,5% вариации результативного признака (розничная продажа телевизоров, у) объясняется вариацией фактора х – среднедушевой денежный доход в месяц.

· Обратная модель. Был получен следующий индекс корреляции ρxy=0,8114 и коэффициент корреляции rxy=-0,8120, что говорит о том, что связь обратная очень сильная. Коэффициент детерминации r²xy=0,6584. Это означает, что 65,84% вариации результативного признака (розничная продажа телевизоров, у) объясняется вариацией фактора х – среднедушевой денежный доход в месяц.

Вывод: по полулогарифмическому уравнению получена наибольшая оценка тесноты связи: ρxy=0,8578 (по сравнению с линейной, степенной, экспоненциальной, гиперболической, обратной регрессиями).

Видео:СТЕПЕННАЯ ФУНКЦИЯ график степенной функцииСкачать

СТЕПЕННАЯ ФУНКЦИЯ график степенной функции

Задача №1 Построение уравнения регрессии

Имеются следующие данные разных стран об индексе розничных цен на продукты питания (х) и об индексе промышленного производства (у).

Индекс розничных цен на продукты питания (х)Индекс промышленного производства (у)
110070
210579
310885
411384
511885
611885
711096
811599
9119100
1011898
1112099
12124102
13129105
14132112

Требуется:

1. Для характеристики зависимости у от х рассчитать параметры следующих функций:

В) равносторонней гиперболы.

2. Для каждой модели рассчитать показатели: тесноты связи и среднюю ошибку аппроксимации.

3. Оценить статистическую значимость параметров регрессии и корреляции.

4. Выполнить прогноз значения индекса промышленного производства у при прогнозном значении индекса розничных цен на продукты питания х=138.

Решение:

1. Для расчёта параметров линейной регрессии

Уравнения степенной и показательной регрессии

Решаем систему нормальных уравнений относительно a и b:

Уравнения степенной и показательной регрессии

Построим таблицу расчётных данных, как показано в таблице 1.

Таблица 1 Расчетные данные для оценки линейной регрессии

№ п/пхухуx 2y 2Уравнения степенной и показательной регрессииУравнения степенной и показательной регрессии
110070700010000490074,263400,060906
210579829511025624179,925270,011712
310885918011664722583,322380,019737
411384949212769705688,984250,059336
5118851003013924722594,646110,113484
6118851003013924722594,646110,113484
7110961056012100921685,587130,108467
8115991138513225980191,249000,078293
911910011900141611000095,778490,042215
10118981156413924960494,646110,034223
11120991188014400980196,910860,021102
12124102126481537610404101,44040,005487
13129105135451664111025107,10220,020021
14132112147841742412544110,49930,013399
Итого:162912991522931905571222671299,0010,701866
Среднее значение:116,357192,7857110878,0713611,218733,357хх
Уравнения степенной и показательной регрессии8,498811,1431ххххх
Уравнения степенной и показательной регрессии72,23124,17ххххх

Среднее значение определим по формуле:

Уравнения степенной и показательной регрессии

Cреднее квадратическое отклонение рассчитаем по формуле:

Уравнения степенной и показательной регрессии

и занесём полученный результат в таблицу 1.

Возведя в квадрат полученное значение получим дисперсию:

Уравнения степенной и показательной регрессии

Параметры уравнения можно определить также и по формулам:

Уравнения степенной и показательной регрессии

Уравнения степенной и показательной регрессии

Таким образом, уравнение регрессии:

Уравнения степенной и показательной регрессии

Следовательно, с увеличением индекса розничных цен на продукты питания на 1, индекс промышленного производства увеличивается в среднем на 1,13.

Рассчитаем линейный коэффициент парной корреляции:

Уравнения степенной и показательной регрессии

Связь прямая, достаточно тесная.

Определим коэффициент детерминации:

Уравнения степенной и показательной регрессии

Вариация результата на 74,59% объясняется вариацией фактора х.

Подставляя в уравнение регрессии фактические значения х, определим теоретические (расчётные) значения Уравнения степенной и показательной регрессии.

Уравнения степенной и показательной регрессии,

следовательно, параметры уравнения определены правильно.

Рассчитаем среднюю ошибку аппроксимации – среднее отклонение расчётных значений от фактических:

Уравнения степенной и показательной регрессии

В среднем расчётные значения отклоняются от фактических на 5,01%.

Оценку качества уравнения регрессии проведём с помощью F-теста.

F-тест состоит в проверке гипотезы Н0 о статистической незначимости уравнения регрессии и показателя тесноты связи. Для этого выполняется сравнение фактического Fфакт и критического (табличного) Fтабл значений F-критерия Фишера.

Fфакт определяется по формуле:

Уравнения степенной и показательной регрессии

где n – число единиц совокупности;

m – число параметров при переменных х.

Уравнения степенной и показательной регрессии

Уравнения степенной и показательной регрессии

Таким образом, Н0 – гипотеза о случайной природе оцениваемых характеристик отклоняется и признаётся их статистическая значимость и надёжность.

Полученные оценки уравнения регрессии позволяют использовать его для прогноза.

Если прогнозное значение индекса розничных цен на продукты питания х = 138, тогда прогнозное значение индекса промышленного производства составит:

Уравнения степенной и показательной регрессии

2. Степенная регрессия имеет вид:

Уравнения степенной и показательной регрессии

Для определения параметров производят логарифмиро­вание степенной функции:

Уравнения степенной и показательной регрессии

Для определения параметров логарифмической функции строят систему нормальных уравнений по способу наи­меньших квадратов:

Уравнения степенной и показательной регрессии

Построим таблицу расчётных данных, как показано в таблице 2.

Таблица 2 Расчетные данные для оценки степенной регрессии

№п/пхуlg xlg ylg x*lg y(lg x) 2(lg y) 2
1100702,0000001,8450983,6901964,0000003,404387
2105792,0211891,8976273,8354644,0852063,600989
3108852,0334241,9294193,9233264,1348123,722657
4113842,0530781,9242793,9506964,2151313,702851
5118852,0718821,9294193,9975284,2926953,722657
6118852,0718821,9294193,9975284,2926953,722657
7110962,0413931,9822714,0465944,1672843,929399
8115992,0606981,9956354,1124014,2464763,982560
91191002,0755472,0000004,1510944,3078954,000000
10118982,0718821,9912264,1255854,2926953,964981
11120992,0791811,9956354,1492874,3229953,982560
121241022,0934222,0086004,2048474,3824144,034475
131291052,1105902,0211894,2659014,4545894,085206
141321122,1205742,0492184,3455184,4968344,199295
Итого1629129928,9047427,4990456,7959759,6917254,05467
Среднее значение116,357192,785712,0646241,9642174,0568554,2636943,861048
Уравнения степенной и показательной регрессии8,498811,14310,0319450,053853ххх
Уравнения степенной и показательной регрессии72,23124,170,0010210,0029ххх

Продолжение таблицы 2 Расчетные данные для оценки степенной регрессии

№п/пхуУравнения степенной и показательной регрессииУравнения степенной и показательной регрессииУравнения степенной и показательной регрессииУравнения степенной и показательной регрессии
11007074,1644817,342920,059493519,1886
21057979,620570,3851120,007855190,0458
31088582,951804,1951330,02409660,61728
41138488,5976821,138660,05473477,1887
51188594,3584087,579610,11009960,61728
61188594,3584087,579610,11009960,61728
71109685,19619116,72230,1125410,33166
81159990,8883465,799010,08193638,6174
911910095,5240820,033840,04475952,04598
101189894,3584013,261270,03715927,18882
111209996,694235,3165630,02329138,6174
12124102101,41910,3374670,00569584,90314
13129105107,42325,8720990,023078149,1889
14132112111,07720,851630,00824369,1889
Итого162912991296,632446,41520,7030741738,357
Среднее значение116,357192,78571хххх
Уравнения степенной и показательной регрессии8,498811,1431хххх
Уравнения степенной и показательной регрессии72,23124,17хххх

Решая систему нормальных уравнений, определяем параметры логарифмической функции.

Уравнения степенной и показательной регрессии

Уравнения степенной и показательной регрессии

Получим линейное уравнение:

Уравнения степенной и показательной регрессии

Выполнив его потенцирование, получим:

Уравнения степенной и показательной регрессии

Подставляя в данное уравнение фактические значения х, получаем теоретические значения результата Уравнения степенной и показательной регрессии. По ним рассчитаем показатели: тесноты связи – индекс корреляции и среднюю ошибку аппроксимации.

Уравнения степенной и показательной регрессии

Связь достаточно тесная.

Уравнения степенной и показательной регрессии

В среднем расчётные значения отклоняются от фактических на 5,02%.

Уравнения степенной и показательной регрессии

Уравнения степенной и показательной регрессии

Таким образом, Н0 – гипотеза о случайной природе оцениваемых характеристик отклоняется и признаётся их статистическая значимость и надёжность.

Полученные оценки уравнения регрессии позволяют использовать его для прогноза. Если прогнозное значение индекса розничных цен на продукты питания х = 138, тогда прогнозное значение индекса промышленного производства составит:

Уравнения степенной и показательной регрессии

3. Уравнение равносторонней гиперболы

Уравнения степенной и показательной регрессии

Для определения параметров этого уравнения используется система нормальных уравнений:

Уравнения степенной и показательной регрессии

Произведем замену переменных

Уравнения степенной и показательной регрессии

и получим следующую систему нормальных уравнений:

Уравнения степенной и показательной регрессии

Решая систему нормальных уравнений, определяем параметры гиперболы.

Составим таблицу расчётных данных, как показано в таблице 3.

Таблица 3 Расчетные данные для оценки гиперболической зависимости

№п/пхуzyzУравнения степенной и показательной регрессииУравнения степенной и показательной регрессии
1100700,0100000000,7000000,00010004900
2105790,0095238100,7523810,00009076241
3108850,0092592590,7870370,00008577225
4113840,0088495580,7433630,00007837056
5118850,0084745760,7203390,00007187225
6118850,0084745760,7203390,00007187225
7110960,0090909090,8727270,00008269216
8115990,0086956520,8608700,00007569801
91191000,0084033610,8403360,000070610000
10118980,0084745760,8305080,00007189604
11120990,0083333330,8250000,00006949801
121241020,0080645160,8225810,000065010404
131291050,0077519380,8139530,000060111025
141321120,0075757580,8484850,000057412544
Итого:162912990,12097182311,137920,0010510122267
Среднее значение:116,357192,785710,0086408440,7955660,00007518733,357
Уравнения степенной и показательной регрессии8,498811,14310,000640820ххх
Уравнения степенной и показательной регрессии72,23124,170,000000411ххх

Продолжение таблицы 3 Расчетные данные для оценки гиперболической зависимости

№п/пхуУравнения степенной и показательной регрессииУравнения степенной и показательной регрессииУравнения степенной и показательной регрессииУравнения степенной и показательной регрессии
11007072,32620,0332315,411206519,1886
21057979,494050,0062540,244083190,0458
31088583,476190,0179272,32201260,61728
41138489,643210,06718131,8458577,1887
51188595,287610,121031105,834960,61728
61188595,287610,121031105,834960,61728
71109686,010270,1040699,7946510,33166
81159991,959870,07111249,5634438,6174
911910096,359570,03640413,2527252,04598
101189895,287610,0276777,35705927,18882
111209997,413670,0160242,51645338,6174
12124102101,460,0052940,29156584,90314
13129105106,16510,0110961,357478149,1889
14132112108,81710,02841910,1311369,1889
Итого:162912991298,9880,666742435,75751738,357
Среднее значение:116,357192,78571хххх
Уравнения степенной и показательной регрессии8,498811,1431хххх
Уравнения степенной и показательной регрессии72,23124,17хххх

Значения параметров регрессии a и b составили:

Уравнения степенной и показательной регрессии

Уравнения степенной и показательной регрессии

Уравнения степенной и показательной регрессии

Уравнения степенной и показательной регрессии

Связь достаточно тесная.

Уравнения степенной и показательной регрессии

В среднем расчётные значения отклоняются от фактических на 4,76%.

Уравнения степенной и показательной регрессии

Уравнения степенной и показательной регрессии

Таким образом, Н0 – гипотеза о случайной природе оцениваемых характеристик отклоняется и признаётся их статистическая значимость и надёжность.

Полученные оценки уравнения регрессии позволяют использовать его для прогноза. Если прогнозное значение индекса розничных цен на продукты питания х = 138, тогда прогнозное значение индекса промышленного производства составит:

Уравнения степенной и показательной регрессии

По уравнению равносторонней гиперболы получена наибольшая оценка тесноты связи по сравнению с линейной и степенной регрессиями. Средняя ошибка аппроксимации остаётся на допустимом уровне.

🔍 Видео

Нелинейная регрессияСкачать

Нелинейная регрессия

Множественная степенная регрессияСкачать

Множественная степенная регрессия

Степенная функция и ее свойства. 11 класс.Скачать

Степенная функция и ее свойства. 11 класс.

Множественная регрессияСкачать

Множественная регрессия

Парная регрессия: линейная зависимостьСкачать

Парная регрессия: линейная зависимость

Эконометрика. Нелинейная регрессия. Гипербола.Скачать

Эконометрика. Нелинейная регрессия. Гипербола.

Эконометрика Линейная регрессия и корреляцияСкачать

Эконометрика  Линейная регрессия и корреляция

Эконометрика. Множественная регрессия и корреляция.Скачать

Эконометрика. Множественная регрессия и корреляция.

Парная регрессия: степенная зависимостьСкачать

Парная регрессия: степенная зависимость

Множественная регрессия в ExcelСкачать

Множественная регрессия в Excel

Уравнение линейной регрессии. Интерпретация стандартной табличкиСкачать

Уравнение линейной регрессии. Интерпретация стандартной таблички

Степень числа с рациональным показателем. 11 класс.Скачать

Степень числа с рациональным показателем. 11 класс.

Уравнение парной линейной регрессии с помощью Анализа ДанныхСкачать

Уравнение парной линейной регрессии с помощью Анализа Данных

Нелинейная регрессия в MS Excel. Как подобрать уравнение регрессии? Некорректное значение R^2Скачать

Нелинейная регрессия в MS Excel. Как подобрать уравнение регрессии? Некорректное значение R^2

Метод наименьших квадратов. Линейная аппроксимацияСкачать

Метод наименьших квадратов. Линейная аппроксимация

Математика| СтепениСкачать

Математика| Степени

Метод наименьших квадратов. Регрессионный анализ.Скачать

Метод наименьших квадратов. Регрессионный анализ.
Поделиться или сохранить к себе: