Уравнения смешанного типа егэ математика

Уравнения, часть С

Видео:Смешанные сложные уравнения. Задание 13 | Математика ЕГЭ | УмскулСкачать

Смешанные сложные уравнения. Задание 13 | Математика ЕГЭ | Умскул

Теория к заданию 13 из ЕГЭ по математике (профильной)

Уравнения, часть $С$

Равенство, содержащее неизвестное число, обозначенное буквой, называется уравнением. Выражение, стоящее слева от знака равенства, называется левой частью уравнения, а выражение, стоящее справа, — правой частью уравнения.

Схема решения сложных уравнений:

  1. Перед решением уравнения надо для него записать область допустимых значений (ОДЗ).
  2. Решить уравнение.
  3. Выбрать из полученных корней уравнения то, которые удовлетворяют ОДЗ.

ОДЗ различных выражений (под выражением будем понимать буквенно — числовую запись):

1. Выражение, стоящее в знаменателе, не должно равняться нулю.

2. Подкоренное выражение, должно быть не отрицательным.

3. Подкоренное выражение, стоящее в знаменателе, должно быть положительным.

4. У логарифма: подлогарифмическое выражение должно быть положительным; основание должно быть положительным; основание не может равняться единице.

Видео:Математика ЕГЭ: Уравнения смешанного типа. С1Скачать

Математика ЕГЭ: Уравнения смешанного типа. С1

Логарифмические уравнения

Для решения логарифмических уравнений необходимо знать свойства логарифмов: все свойства логарифмов мы будем рассматривать для $a > 0, a≠ 1, b> 0, c> 0, m$ – любое действительное число.

1. Для любых действительных чисел $m$ и $n$ справедливы равенства:

2. Логарифм произведения равен сумме логарифмов по тому же основанию от каждого множителя.

3. Логарифм частного равен разности логарифмов от числителя и знаменателя по тему же основанию

4. При умножении двух логарифмов можно поменять местами их основания

6. Формула перехода к новому основанию

7. В частности, если необходимо поменять местами основание и подлогарифмическое выражение

Можно выделить несколько основных видов логарифмических уравнений:

Представим обе части уравнения в виде логарифма по основанию $2$

Если логарифмы по одинаковому основанию равны, то подлогарифмические выражения тоже равны.

Т.к. основания одинаковые, то приравниваем подлогарифмические выражения

Перенесем все слагаемые в левую часть уравнения и приводим подобные слагаемые

Проверим найденные корни по условиям $table0; 7-2x>0;$

При подстановке во второе неравенство корень $х=4$ не удовлетворяет условию, следовательно, он посторонний корень

  • Метод замены переменной.

В данном методе надо:

Решите уравнение $log_√x+2log_2-3=0$

1. Запишем ОДЗ уравнения:

$table0,text»так как стоит под знаком корня и логарифма»; √х≠1→х≠1;$

2. Сделаем логарифмы по основанию $2$, для этого воспользуемся во втором слагаемом правилом перехода к новому основанию:

3. Далее сделаем замену переменной $log_√x=t$

4. Получим дробно — рациональное уравнение относительно переменной t

Приведем все слагаемые к общему знаменателю $t$.

Дробь равна нулю, когда числитель равен нулю, а знаменатель не равен нулю.

5. Решим полученное квадратное уравнение по теореме Виета:

6. Вернемся в п.3, сделаем обратную замену и получим два простых логарифмических уравнения:

Прологарифмируем правые части уравнений

Приравняем подлогарифмические выражения

Чтобы избавиться от корня, возведем обе части уравнения в квадрат

7. Подставим корни логарифмического уравнения в п.1 и проверим условие ОДЗ.

Первый корень удовлетворяет ОДЗ.

$

0; 16≠1;$ Второй корень тоже удовлетворяет ОДЗ.

Дробно рациональные уравнения

  • Если дробь равна нулю, то числитель равен нулю, а знаменатель не равен нулю.
  • Если хотя бы в одной части рационального уравнения содержится дробь, то уравнение называется дробно-рациональным.

Чтобы решить дробно рациональное уравнение, необходимо:

  1. Найти значения переменной, при которых уравнение не имеет смысл (ОДЗ)
  2. Найти общий знаменатель дробей, входящих в уравнение;
  3. Умножить обе части уравнения на общий знаменатель;
  4. Решить получившееся целое уравнение;
  5. Исключить из его корней те, которые не удовлетворяют условию ОДЗ.
  • Если в уравнении участвуют две дроби и числители их равные выражения, то знаменатели можно приравнять друг к другу и решить полученное уравнение, не обращая внимание на числители. НО учитывая ОДЗ всего первоначального уравнения.

Видео:Математика ЕГЭ | С1. Уравнение смешанного типаСкачать

Математика ЕГЭ | С1. Уравнение смешанного типа

Показательные уравнения

Показательными называют такие уравнения, в которых неизвестное содержится в показателе степени.

При решении показательных уравнений используются свойства степеней, вспомним некоторые из них:

1. При умножении степеней с одинаковыми основаниями основание остается прежним, а показатели складываются.

2. При делении степеней с одинаковыми основаниями основание остается прежним, а показатели вычитаются

3. При возведении степени в степень основание остается прежним, а показатели перемножаются

4. При возведении в степень произведения в эту степень возводится каждый множитель

5. При возведении в степень дроби в эту степень возводиться числитель и знаменатель

6. При возведении любого основания в нулевой показатель степени результат равен единице

7. Основание в любом отрицательном показателе степени можно представить в виде основания в таком же положительном показателе степени, изменив положение основания относительно черты дроби

8. Радикал (корень) можно представить в виде степени с дробным показателем

Виды показательных уравнений:

1. Простые показательные уравнения:

а) Вида $a^=a^$, где $а >0, a≠1, x$ — неизвестное. Для решения таких уравнений воспользуемся свойством степеней: степени с одинаковым основанием ($а >0, a≠1$) равны только тогда, когда равны их показатели.

b) Уравнение вида $a^=b, b>0$

Для решения таких уравнений надо обе части прологарифмировать по основанию $a$, получается

2. Метод уравнивания оснований.

3. Метод разложения на множители и замены переменной.

  • Для данного метода во всем уравнении по свойству степеней надо преобразовать степени к одному виду $a^$.
  • Сделать замену переменной $a^=t, t > 0$.
  • Получаем рациональное уравнение, которое необходимо решить путем разложения на множители выражения.
  • Делаем обратные замену с учетом того, что $t > 0$. Получаем простейшее показательное уравнение $a^=t$, решаем его и результат записываем в ответ.

По свойству степеней преобразуем выражение так, чтобы получилась степень 2^x.

Сделаем замену переменной $2^x=t; t>0$

Получаем кубическое уравнение вида

Умножим все уравнение на $2$, чтобы избавиться от знаменателей

Разложим левую часть уравнения методом группировки

Вынесем из первой скобки общий множитель $2$, из второй $7t$

Дополнительно в первой скобке видим формулу разность кубов

Далее скобку $(t-1)$ как общий множитель вынесем вперед

Произведение равно нулю, когда хотя бы один из множителей равен нулю

Решим первое уравнение

Решим второе уравнение через дискриминант

Получили три корня, далее делаем обратную замену и получаем три простых показательных уравнения

4. Метод преобразования в квадратное уравнение

  • Имеем уравнение вида $А·a^+В·a^+С=0$, где $А, В$ и $С$ — коэффициенты.
  • Делаем замену $a^=t, t > 0$.
  • Получается квадратное уравнение вида $A·t^2+B·t+С=0$. Решаем полученное уравнение.
  • Делаем обратную замену с учетом того, что $t > 0$. Получаем простейшее показательное уравнение $a^=t$, решаем его и результат записываем в ответ.

Способы разложения на множители:

  • Вынесение общего множителя за скобки.

Чтобы разложить многочлен на множители путем вынесения за скобки общего множителя надо:

  1. Определить общий множитель.
  2. Разделить на него данный многочлен.
  3. Записать произведение общего множителя и полученного частного (заключив это частное в скобки).

Разложить на множители многочлен: $10a^b-8a^b^2+2a$.

Общий множитель у данного многочлена $2а$, так как на $2$ и на «а» делятся все члены. Далее найдем частное от деления исходного многочлена на «2а», получаем:

Это и есть конечный результат разложения на множители.

Видео:Уравнения смешанного типа / Развернутая часть ЕГЭ профильСкачать

Уравнения смешанного типа / Развернутая часть ЕГЭ профиль

Применение формул сокращенного умножения

1. Квадрат суммы раскладывается на квадрат первого числа плюс удвоенное произведение первого числа на второе число и плюс квадрат второго числа.

2. Квадрат разности раскладывается на квадрат первого числа минус удвоенное произведение первого числа на второе и плюс квадрат второго числа.

3. Разность квадратов раскладывается на произведение разности чисел и их сумму.

4. Куб суммы равен кубу первого числа плюс утроенное произведение квадрата первого на второе число плюс утроенное произведение первого на квадрат второго числа плюс куб второго числа.

5. Куб разности равен кубу первого числа минус утроенное произведение квадрата первого на второе число плюс утроенное произведение первого на квадрат второго числа и минус куб второго числа.

6. Сумма кубов равна произведению суммы чисел на неполный квадрат разности.

7. Разность кубов равна произведению разности чисел на неполный квадрат суммы.

Видео:УРАВНЕНИЕ СМЕШАННОГО ТИПА / Тригонометрия + степень / ЕГЭ профиль #500192Скачать

УРАВНЕНИЕ СМЕШАННОГО ТИПА / Тригонометрия + степень / ЕГЭ профиль #500192

Метод группировки

Методом группировки удобно пользоваться, когда на множители необходимо разложить многочлен с четным количеством слагаемых. В данном способе необходимо собрать слагаемые по группам и вынести из каждой группы общий множитель за скобку. У нескольких групп после вынесения в скобках должны получиться одинаковые выражения, далее эту скобку как общий множитель выносим вперед и умножаем на скобку полученного частного.

Разложить многочлен на множители $2a^3-a^2+4a-2$

Для разложения данного многочлена применим метод группировки слагаемых, для этого сгруппируем первые два и последние два слагаемых, при этом важно правильно поставить знак перед второй группировкой, мы поставим знак + и поэтому в скобках запишем слагаемые со своими знаками.

Далее из каждой группы вынесем общий множитель

После вынесения общих множителей получили пару одинаковых скобок. Теперь данную скобку выносим как общий множитель.

Произведение данных скобок — это конечный результат разложения на множители.

С помощью формулы квадратного трехчлена.

Если имеется квадратный трехчлен вида $ax^2+bx+c$, то его можно разложить по формуле

$ax^2+bx+c=a(x-x_1)(x-x_2)$, где $x_1$ и $x_2$ — корни квадратного трехчлена

Видео:УРАВНЕНИЯ СМЕШАННОГО ТИПА / Уравнение из развернутой части ЕГЭ #профиль #505565Скачать

УРАВНЕНИЯ СМЕШАННОГО ТИПА / Уравнение из развернутой части ЕГЭ #профиль #505565

Уравнения смешанного типа егэ математика

а) Решите уравнение Уравнения смешанного типа егэ математика

б) Найдите все корни этого уравнения, принадлежащие отрезку Уравнения смешанного типа егэ математика

а) Решим уравнение

Уравнения смешанного типа егэ математика

б) С помощью числовой окружности отберём корни, принадлежащие отрезку Уравнения смешанного типа егэ математикаПолучим числа: Уравнения смешанного типа егэ математика

Ответ: а) Уравнения смешанного типа егэ математикаб) Уравнения смешанного типа егэ математика

Это синус вначале нужно писать Уравнения смешанного типа егэ математика

Нет. Нужно внимательно читать решение задачи, и следить за смыслом, а не бездумно механически действовать по заученным формулам.

а) Решите уравнение Уравнения смешанного типа егэ математика

б) Найдите все корни этого уравнения, принадлежащие отрезку Уравнения смешанного типа егэ математика

а) Преобразуем исходное уравнение:

Уравнения смешанного типа егэ математика

Уравнения смешанного типа егэ математика

б) С помощью числовой окружности отберем корни, принадлежащие отрезку Уравнения смешанного типа егэ математикаПолучим числа: Уравнения смешанного типа егэ математика

Ответ : а) Уравнения смешанного типа егэ математикаб) Уравнения смешанного типа егэ математика

если же tgx=1,то там рассматриваются два корня: x=п/4+2пn x=5п/4+2пn

и как раз через эти два корня я нашла корни,принадлежащие промежутку,но почему в ответе под а у вас одно решение?

эти две точки можно объединить, что у нас и сделано

почему при решении было выполнено деление на 3^cos(x), ведь тогда теряется корень 3^cos(x)=0?

такого корня нет, поэтому он не теряется

Извиняюсь, что задаю вопрос не совсем по теме, но когда вообще МОЖНО делить на неизвестное, а когда нельзя? Я не одну статью прочитал на эту тему, но все понять не могу. Одни говорят, что можно, но при этом происходит потеря корней, а другие говорят — что можно и делают это, третьи говорят, что будет потеря корней, но это МОЖНО делать.

Короче говоря. как мне кажется, это самая не разобранная тема. О ней вообще нет инфы в должном обьеме. Пожалуйста, обьсните в кратце, когда МОЖНО, а когда НЕЛЬЗЯ.

p.s. я понял, что МОЖНО, вроде как, когда не происходит изменение ОДЗ, но опять же, а когда оно проиходит?

Думаю, мне не одному этот вопрос требуется.

Подробный ответ ЗДЕСЬ невозможен. Лучше задать его, нажав ссылку «Помощь по заданию».

Если кратко, то правило простое: НЕЛЬЗЯ делить на нуль. На положительные и отрицательные числа делить можно, соблюдая правила.

Число Уравнения смешанного типа егэ математикаположительно при любом значении Уравнения смешанного типа егэ математика, поэтому на него можно делить.

В уравнении Уравнения смешанного типа егэ математика, если Вы поделите на Уравнения смешанного типа егэ математика, то потеряете корень Уравнения смешанного типа егэ математика. Поэтому делить на Уравнения смешанного типа егэ математиканельзя.

Выход может быть таким: рассмотрите два случая

1. Уравнения смешанного типа егэ математика, тогда Уравнения смешанного типа егэ математикаверное равенство. Значит Уравнения смешанного типа егэ математика− корень.

2. Уравнения смешанного типа егэ математика, тогда Уравнения смешанного типа егэ математикаи на него можно поделить. Получим Уравнения смешанного типа егэ математика.

Ответ: Уравнения смешанного типа егэ математика

А вот уравнение Уравнения смешанного типа егэ математикаможно делить на Уравнения смешанного типа егэ математика. Потому что по ОДЗ Уравнения смешанного типа егэ математика, а значит на ОДЗ Уравнения смешанного типа егэ математика

Видео:Уравнение смешанного типа. ЕГЭ 2021Скачать

Уравнение смешанного типа. ЕГЭ 2021

Репетитор по математике

Меня зовут Виктор Андреевич, — я репетитор по математике . Последние десять лет я занимаюсь только преподаванием. Я не «натаскиваю» своих учеников. Моя цель — помочь ребенку понять предмет, научить его мыслить, а не применять шаблоны, передать свои знания, а не просто «добиться результата».

Предусмотрен дистанционный формат занятий (через Skype или Zoom). На первом же уроке оцениваем уровень подготовки ребенка. Если ребенка устраивает моя подача материала, то принимаем решение о дальнейшем сотрудничестве — составляем расписание и индивидуальный план работы. После каждого занятия дается домашнее задание — оно всегда обязательно для выполнения. [в личном кабинете родители могут контролировать успеваемость ребенка]

Уравнения смешанного типа егэ математика

Стоимость занятий

Набор на 2020/2021 учебный год открыт. Предусмотрен дистанционный формат.

Видеокурсы подготовки к ЕГЭ-2021

Решения авторские, то есть мои (автор ютуб-канала mrMathlesson — Виктор Осипов). На видео подробно разобраны все задания.

Теория представлена в виде лекционного курса, для понимания методик, которые используются при решении заданий.

Видео:Задание 12. #3 Решение уравнения смешанного типа #егэ #егэ2022 #ЕгэМатематикаПрофильныйУровеньСкачать

Задание 12. #3 Решение уравнения смешанного типа #егэ #егэ2022 #ЕгэМатематикаПрофильныйУровень

Группа Вконтакте

В группу выкладываются самые свежие решения и разборы задач. Подпишитесь, чтобы быть в курсе и получать помощь от других участников.

Уравнения смешанного типа егэ математика

Видео:Уравнения смешанного типа. Задание №13. Подготовка к ЕГЭ профильный уровеньСкачать

Уравнения смешанного типа. Задание №13. Подготовка к ЕГЭ профильный уровень

Преимущества

Педагогический стаж

Сейчас существует много сайтов, где вам подберут репетитора по цене/опыту/возрасту, в зависимости от желаний. Но большинство анкет там принадлежат либо студентам, либо школьным учителям. Для них репетиторство — дополнительный временный заработок, из этого формируется отношение к деятельности. У студентов нет опыта и желания совершенствоваться, у школьных учителей — нет времени и сил после основной деятельности. Я занимаюсь только репетиторством с 2010 года. Все свои силы и знания трачу на совершенствование только в этой области.

Собственная методика

За время работы я накопил огромное количество материала для подготовки к итоговым экзаменам. Ребенку не будет даваться неадаптированная школьная программа. С каждым я разберу поэтапно специфичные примеры, темы, способы решений, необходимые для успешной сдачи ЕГЭ и ОГЭ. При этом это не будет «натаскиванием» на решение конкретных задач, но полноценная структурированная подготовка. Естественно, если таковые найдутся, устраню «пробелы» и в школьной программе.

Гарантированный результат

За время моей работы не было ни одного случая, где не прослеживалась бы четкая тенденция к улучшению знаний у ученика. Ни один откровенно не «завалил» экзамен. Каждый вырос в «понимании» математики в сравнении со своим первоначальным уровнем. Естественно, я не могу гарантировать, что двоечник за полгода подготовится на твердую «пять». Но могу с уверенностью сказать, что я подготовлю ребенка на его максимально возможный уровень за то время, что осталось до экзамена.

Индивидуальная работа

Все дети разные, поэтому способ и форма объяснения корректируются в зависимости от уровня понимания ребенком предмета. Индивидуальная работа с каждым учеником — каждому даются отдельные задания, теоретический материал.

🎬 Видео

ЕГЭ Математика Профиль Уравнения смешанного типаСкачать

ЕГЭ Математика Профиль Уравнения смешанного типа

ПОКАЗАТЕЛЬНОЕ УРАВНЕНИЕ С ЛОГАРИФМОМ ЧАСТЬ II #shorts #математика #егэ #огэ #профильныйегэСкачать

ПОКАЗАТЕЛЬНОЕ УРАВНЕНИЕ С ЛОГАРИФМОМ ЧАСТЬ II #shorts #математика #егэ #огэ #профильныйегэ

Уравнения смешанного типа ЕГЭСкачать

Уравнения смешанного типа ЕГЭ

ЕГЭ номер 13 Уравнение смешанного типа Уравнение с sin в степени Показательное уравнение с синусамиСкачать

ЕГЭ номер 13 Уравнение смешанного типа Уравнение с sin в степени Показательное уравнение с синусами

Как решать уравнения смешанного типа ЕГЭ профиль математика. 11 класс. Второй способ.Скачать

Как решать уравнения смешанного типа ЕГЭ профиль математика. 11 класс. Второй способ.

Интенсив СИРОП по математике. Профильный ЕГЭ. Сложные уравнения задача 12Скачать

Интенсив СИРОП по математике. Профильный ЕГЭ. Сложные уравнения задача 12

Профильный ЕГЭ 2024. Задача 12. Тригонометрические уравнения. 10 классСкачать

Профильный ЕГЭ 2024. Задача 12. Тригонометрические уравнения. 10 класс

Тригонометрические уравнения. ЕГЭ № 12 | Математика | TutorOnline tutor onlineСкачать

Тригонометрические уравнения. ЕГЭ № 12 | Математика | TutorOnline tutor online

Профильный ЕГЭ 2022. Сложные уравнения. Задание 12Скачать

Профильный ЕГЭ 2022. Сложные уравнения. Задание 12

Уравнения смешанного типа №12. Тригонометрия внутри логарифмаСкачать

Уравнения смешанного типа №12. Тригонометрия внутри логарифма
Поделиться или сохранить к себе: