Уравнения скорости брошенных под углом к горизонту

Движение тела, брошенного под углом к горизонту

теория по физике 🧲 кинематика

Когда тело бросают вверх под углом к горизонту, оно сначала равнозамедленно поднимается, а затем равноускорено падает. При этом оно перемещается относительно земли с постоянной скоростью.

Важные факты! График движения тела, брошенного под углом к горизонту:

Уравнения скорости брошенных под углом к горизонту

α — угол, под которым было брошено тело

  1. Вектор скорости тела, брошенного под углом к горизонту, направлен по касательной к траектории его движения.
  2. Так как начальная скорость направлена не вдоль горизонтальной линии, обе ее проекции отличны от нуля. Проекция начальной скорости на ось ОХ равна v0x = v0cosα. Ее проекция на ось ОУ равна v0y = v0sinα.
  3. Проекция мгновенной скорости на ось ОХ равна: vx = v0 cosα. Ее проекция на ось ОУ равна нулю: vy = v0 sinα – gt.
  4. Проекция ускорения свободного падения на ось ОХ равна нулю: gx = 0. Ее проекция на ось ОУ равна –g: gy = –g.

Видео:Движение тела, брошенного под углом к горизонтуСкачать

Движение тела, брошенного под углом к горизонту

Кинематические характеристики

Модуль мгновенной скорости в момент времени t можно вычислить по теореме Пифагора:

Уравнения скорости брошенных под углом к горизонту

Минимальной скорости тело достигает в верхней точке траектории. Она выражается формулой:

Максимальной скоростью тело обладает в момент начала движения и в момент падения на землю. Начальная и конечная скорости движения тела равны:

Время подъема — время, которое требуется телу, чтобы достигнуть верхней точки траектории. В этой точке проекция скорости на ось ОУ равна нулю: vy = 0. Время подъема определяется следующей формулой:

Уравнения скорости брошенных под углом к горизонту

Полное время — это время всего полета тела от момента бросания до момента приземления. Так как время падения равно времени подъема, формула для определения полного времени полета принимает

Вид — группа особей, сходных по морфолого-анатомическим, физиолого-экологическим, биохимическим и генетическим признакам, занимающих естественный ареал, способных свободно скрещиваться между собой и давать плодовитое потомство.

Уравнения скорости брошенных под углом к горизонту

Дальность полета — перемещение тела относительно ОХ. Обозначается буквой l. Так как относительно ОХ тело движется с постоянной скоростью, для вычисления дальности полета можно использовать формулу перемещения при равномерном прямолинейном движении:

Подставляя в выражение формулу полного времени полета, получаем:

Уравнения скорости брошенных под углом к горизонту

Горизонтальное смещение тела — смещение тела вдоль оси ОХ. Вычислить горизонтальное смещение тела в любой момент времени t можно по формуле координаты x:

Уравнения скорости брошенных под углом к горизонту

Учитывая, что x0 = 0, и проекция ускорения свободного падения на ось ОХ тоже равна нулю, а проекция начальной скорости на эту ось равна v0 cosα, данная формула принимает вид:

Мгновенная высота — высота, на которой находится тело в выбранный момент времени t. Она вычисляется по формуле координаты y:

Уравнения скорости брошенных под углом к горизонту

Учитывая, что начальная координата равна 0, проекция начальной скорости на ось ОУ равна v0 sinα, а проекция ускорения свободного падения на эту ось равна –g, эта формула принимает вид:

Уравнения скорости брошенных под углом к горизонту

Наибольшая высота подъема — расстояние от земли до верхней точки траектории. Наибольшая высота подъема обозначается h и вычисляется по формуле:

Уравнения скорости брошенных под углом к горизонту

Пример №1. Небольшой камень бросили с ровной горизонтальной поверхности под углом к горизонту. На какую максимальную высоту поднялся камень, если ровно через 1 с после броска его скорость была направлена горизонтально?

Скорость направляется горизонтально в верхней точке полета. Значит, время подъема равно 1 с. Из формулы времени подъема выразим произведение начальной скорости на синус угла, под которым было брошено тело:

Подставим полученное выражение в формулу для определения наибольшей высоты подъема и сделаем вычисления:

Уравнения скорости брошенных под углом к горизонту

Видео:Кинематика: Тело, брошенное под углом к горизонтуСкачать

Кинематика: Тело, брошенное под углом к горизонту

Тело, брошенное под углом к горизонту с некоторой высоты

Когда тело бросают под углом к горизонту с некоторой высоты, характер его движения остается прежним. Но приземлится оно дальше по сравнению со случаем, если бы тело бросали с ровной поверхности.

График движения тела, брошенного под углом к горизонту с некоторой высоты:

Уравнения скорости брошенных под углом к горизонту

Время падения тела больше времени его подъема: tпад > tпод.

Полное время полета равно:

Уравнение координаты x:

Уравнение координаты y:

Уравнения скорости брошенных под углом к горизонту

Пример №2. С балкона бросили мяч под углом 60 градусов к горизонту, придав ему начальную скорость 2 м/с. До приземления мяч летел 3 с. Определить дальность полета мяча.

Косинус 60 градусов равен 0,5. Подставляем известные данные в формулу:

x = v0 cosα t = 2 ∙ 0,5 ∙ 3 = 3 м.

Алгоритм решения

Решение

Запишем исходные данные:

Построим чертеж и укажем на нем все необходимое:

Уравнения скорости брошенных под углом к горизонту

Нулевой уровень — точка D.

Закон сохранения энергии:

Потенциальная энергия шарика в точке А равна:

Кинетическая энергия шарика в точке А равна нулю, так как скорость в начале свободного падения нулевая.

В момент перед упругим ударом с плитой в точке В потенциальная энергия шарика минимальна. Она равна:

Перед ударом кинетическая энергия шарика равна:

Согласно закону сохранения энергии:

E p A = E p B + E k B

m g H = m g l 1 + m v 2 2 . .

Отсюда высота H равна:

H = m g l 1 m g . . + m v 2 2 m g . . = l 1 + v 2 2 g . .

Относительно точки В шарик поднимется на высоту h – l1. Но данный участок движения можно рассматривать как движение тела, брошенного под углом к горизонту. В таком случае высота полета определяется формулой:

h − l 1 = v 2 sin 2 . β 2 g . . = v 2 sin 2 . ( 90 − 2 α ) o 2 g . .

l 1 = h − v 2 sin 2 . ( 90 − 2 α ) o 2 g . .

Шарик падал в течение времени t, поэтому мы можем рассчитать высоту шарика над плитой и его скорость в точке В:

H = l 1 + v 2 2 g . . = h − ( g t ) 2 sin 2 . ( 90 − 2 α ) o 2 g . . + ( g t ) 2 2 g . .

H = h − g t 2 sin 2 . ( 90 − 2 α ) 2 . . + g t 2 2 . . = h − g t 2 2 . . ( sin 2 . ( 90 − 2 α ) o − 1 )

H = 1 , 4 − 10 · 0 , 4 2 2 . . ( sin 2 . ( 90 − 6 0 ) o − 1 )

H = 1 , 4 − 5 · 0 , 16 ( sin 2 . 3 0 o − 1 )

H = 1 , 4 − 0 , 8 ( ( 1 2 . . ) 2 − 1 ) = 1 , 4 − 0 , 8 ( 1 4 . . − 1 )

H = 1 , 4 + 0 , 6 = 2 ( м )

pазбирался: Алиса Никитина | обсудить разбор | оценить

В момент t=0 мячик бросают с начальной скоростью v0 под углом α к горизонту с балкона высотой h (см. рисунок).

Графики А и Б представляют собой зависимости физических величин, характеризующих движение мячика в процессе полёта, от времени t. Установите соответствие между графиками и физическими величинами, зависимости которых от времени эти графики могут представлять. (Сопротивлением воздуха пренебречь. Потенциальная энергия мячика отсчитывается от уровня y=0).

К каждой позиции графика подберите соответствующую позицию утверждения и запишите выбранные цифры в порядке АБ.

Уравнения скорости брошенных под углом к горизонту

Алгоритм решения

Вид — группа особей, сходных по морфолого-анатомическим, физиолого-экологическим, биохимическим и генетическим признакам, занимающих естественный ареал, способных свободно скрещиваться между собой и давать плодовитое потомство.

Решение

Исходя из условия задачи, мячик движется неравномерно. Этот случай соответствует движению тела, брошенного под углом к горизонту.

Записываем формулы для физических величин из таблицы, учитывая, что речь идет о движении тела, брошенного под углом к горизонту.

Координата x меняется согласно уравнению координаты x:

Уравнения скорости брошенных под углом к горизонту

Так как начальная координата нулевая, а проекция ускорения свободного падения тоже равна нулю, это уравнение принимает вид:

Уравнения скорости брошенных под углом к горизонту

Проекция скорости мячика на ось ОХ равна произведению начальной скорости на время и косинус угла, под которым мячик был брошен. Поэтому уравнение координаты x принимает вид:

Уравнения скорости брошенных под углом к горизонту

В этом уравнении начальная скорость и угол α — постоянные величины. Меняется только время. И оно может только расти. Поэтому и координата x может только расти. В этом случае ей может соответствовать график, представляющий собой прямую линии, не параллельную оси времени. Но графики А и Б не могут описывать изменение этой координаты.

Формула проекции скорости мячика на ось ОХ:

Уравнения скорости брошенных под углом к горизонту

Начальная скорость и угол α — постоянные величины. И больше ни от чего проекция скорости на ось ОХ не зависит. Поэтому ее может охарактеризовать график в виде прямой линии, параллельной оси времени. Такой график у нас есть — это Б.

Кинетическая энергия мячика равна половине произведения массы мячика на квадрат его мгновенной скорости. По мере приближения к верхней точке полета скорость тела уменьшается, а затем растет. Поэтому кинетическая энергия также сначала уменьшается, а затем растет. Но на графике А величина наоборот — сначала увеличивается, потом уменьшается. Поэтому он не может быть графиком зависимости кинетической энергии мячика от времени.

Остается последний вариант — координата y. Уравнение этой координаты имеет вид:

Уравнения скорости брошенных под углом к горизонту

Это квадратическая зависимость, поэтому графиком зависимости координаты y от времени может быть только парабола. Так как мячик сначала движется вверх, а потом — вниз, то и график должен сначала расти, а затем — убывать. График А полностью соответствует этому описанию.

Теперь записываем установленные соответствия в порядке АБ: 42.

pазбирался: Алиса Никитина | обсудить разбор | оценить

Мальчик бросил стальной шарик вверх под углом к горизонту. Пренебрегая сопротивлением воздуха, определите, как меняются по мере приближения к Земле модуль ускорения шарика и горизонтальная составляющая его скорости?

Для каждой величины определите соответствующий характер изменения:

  1. увеличивается
  2. уменьшается
  3. не изменяется

Запишите в таблицу выбранные цифры для каждой физической величины. Цифры в ответе могут повторяться.

Уравнения скорости брошенных под углом к горизонту

Алгоритм решения

  1. Сделать чертеж, иллюстрирующий ситуацию.
  2. Записать формулы, определяющие указанные в условии задачи величины.
  3. Определить характер изменения физических величин, опираясь на сделанный чертеж и формулы.

Решение

Уравнения скорости брошенных под углом к горизонту

Модуль ускорения шарика |g| — величина постоянная, так как ускорение свободного падения не меняет ни направления, ни модуля. Поэтому модуль ускорения не меняется (выбор «3»).

Горизонтальная составляющая скорости шарика определяется формулой:

Угол, под которым было брошено тело, поменяться не может. Начальная скорость броска тоже. Больше ни от каких величин горизонтальная составляющая скорости не зависит. Поэтому проекция скорости на ось ОХ тоже не меняется (выбор «3»).

Ответом будет следующая последовательность цифр — 33.

pазбирался: Алиса Никитина | обсудить разбор | оценить

Видео:Урок 37. Движение тела, брошенного под углом к горизонту (начало)Скачать

Урок 37. Движение тела, брошенного под углом к горизонту (начало)

Движение тела, брошенного горизонтально или под углом к горизонту.

Так как мы пренебрегаем сопротивлением воздуха, то ускорение направлено только к поверхности Земли ( g ) – вдоль вертикальной оси ( y ), вдоль оси х движение равномерное и прямолинейное.

Движение тела, брошенного горизонтально.

Выразим проекции скорости и координаты через модули векторов.

Уравнения скорости брошенных под углом к горизонту
Уравнения скорости брошенных под углом к горизонту

Для того чтобы получить уравнение траектории, выразим время tиз уравнения координаты x и подставим в уравнение для y:

Движение тела, брошенного под углом к горизонту.

Порядок решения задачи аналогичен предыдущей.

Уравнения скорости брошенных под углом к горизонту

Уравнения скорости брошенных под углом к горизонту

Докажем, что траекторией движения и в этом случае будет парабола. Для этого выразим координату Y через X (получим уравнение траектории):

Уравнения скорости брошенных под углом к горизонту.

Мы получили квадратичную зависимость между координатами. Значит траектория — парабола.

Найдем время полета тела от начальной точки до точки падения. В точке падения координата по вертикальной оси у=0.

Уравнения скорости брошенных под углом к горизонту

Используя то, что парабола – это симметричная кривая, найдем максимальную высоту, которой может достичь тело .
Время, за которое тело долетит до середины, равно: Уравнения скорости брошенных под углом к горизонту

Уравнения скорости брошенных под углом к горизонту

Тогда: Уравнения скорости брошенных под углом к горизонту

Максимальная высота:
Уравнения скорости брошенных под углом к горизонту

Скорость тела в любой момент времени направлена по касательной к траектории движения (параболе) и равна Уравнения скорости брошенных под углом к горизонту

Угол, под которым направлен вектор скорости в любой момент времени:

Видео:Урок 38. Движение тела,брошенного под углом к горизонту (окончание)Скачать

Урок 38. Движение тела,брошенного под углом к горизонту (окончание)

Движение тела под углом к горизонту

Видео:Физика 9 класс (Урок№3 - Движение тела, брошенного под углом к горизонту)Скачать

Физика 9 класс (Урок№3 - Движение тела, брошенного под углом к горизонту)

Начальные условия

Рассмотрим движение тела (материальной точки) брошенного под углом к горизонту с некоторой высоты $h_0$. Начальная скорость тела равна $<overline>_0$, вектор $<overline>_0$ составляет угол $alpha $ с горизонтом (рис.1). Систему отсчета, в которой движется тело, свяжем с Землей. Ось X направим параллельно земле, ось Y вертикально вверх.

Уравнения скорости брошенных под углом к горизонту

Движение тела под углом к горизонту происходит в поле тяжести Земли под воздействием силы тяжести. Силой сопротивления воздуха пренебрежём. В этом случае ускорение тела ($overline$) совпадает с ускорением свободного падения ($overline$):

Запишем начальные условия движения тела (рис.1):

Видео:Физика. Задача о теле, брошенном под углом к горизонту.Скачать

Физика. Задача о теле, брошенном под углом к горизонту.

Уравнение для перемещения тела, брошенного под углом к горизонту. Траектория его движения

Перемещение тела, которое бросили под углом к горизонту является равноускоренным, следовательно, для написания уравнения движения воспользуемся векторным уравнением для перемещения ($overline$) при равнопеременном движении в виде, учтем равенство (1):

Векторное уравнение (3) в проекции на оси координат X и Y даст нам два скалярных уравнения:

Из системы уравнений (4) мы видим, что при рассматриваемом нами движении происходит наложение двух прямолинейных движений. Причем по оси X тело под углом к горизонту движется с постоянной скоростью $_=v_0$ а по оси Y материальная точка перемещается с постоянным ускорением $overline$. Уравнение траектории движения тела можно получить, если из первого уравнения системы (4) выразить время ($t$) полученный результат подставить во вторую формулу системы:

Уравнение $y(x)$ (функция (5)) показывает, что тело движется по параболе в плоскости, в которой лежат векторы $overline$ и $<overline>_0.$

Видео:Урок 40. Задачи на движение тела, брошенного под углом к горизонту (ч.1)Скачать

Урок 40. Задачи на движение тела, брошенного под углом к горизонту (ч.1)

Уравнение скорости движения тела брошенного под углом к горизонту

В векторном виде уравнение для скорости движения рассматриваемого нами тела в произвольный момент времени запишем:

В скалярном виде уравнение (6) представим в виде системы уравнений:

В системе уравнений (7) мы еще раз видим, что движение тела под углом к горизонту по оси X равномерное, по оси Y равнопеременное. Причем, двигаясь вверх, тело уменьшает свою скорость от $v_$ до нуля, затем падая вниз скорость тела увеличивается.

Модуль вектора скорости в производный момент времени для рассматриваемого нами движения найдем как:

Видео:Физика - движение тела, брошенного под углом к горизонтуСкачать

Физика - движение тела, брошенного под углом к горизонту

Время подъема и полета тела

Время, которое тело тратит на полет вверх в рассматриваемом движении можно найти из второго уравнения системы (7). В точке максимального подъема вектор скорости точки параллелен оси X, значит $v_y=0$, тогда время подъема ($t_p$):

Время, которое тело находилось в воздухе (время полета($t_$)) получим из второго уравнения системы (4), приравняв ординату $y$ к нулю:

При $h_0=0$ мы видим, что $t_=2t_p.$

Видео:Урок 54. Третий закон Ньютона. Принцип относительности ГалилеяСкачать

Урок 54. Третий закон Ньютона. Принцип относительности Галилея

Дальность полета и высота подъема

Для того чтобы найти горизонтальную дальность полета тела ($s$) при заданных нами условиях в уравнение координаты $x$ системы уравнений (4) подставим время полета ($t_$) (10). При $h_0=0,$ дальность полета равна:

Максимальную высоту подъема тела под углом к горизонту ($h_$) находят из второго уравнения системы (4), подставляя в него время подъема ($t_p$) (9):

Видео:Полная теория движения тела брошенного под углом к горизонтуСкачать

Полная теория движения тела брошенного под углом к горизонту

Примеры задач с решением

Задание. Каким будет угол ($alpha $) под которым бросили тело к горизонту, если оказалось, что максимальная высота подъема ($h$) тела в четыре раза меньше, чем дальность его полета ($s$)? Сопротивление воздуха можно не учитывать.

Решение. Выберем систему отсчета связанную с Землей. Будем считать, что тело бросили из начала координат (рис.2).

Уравнения скорости брошенных под углом к горизонту

Запишем кинематические уравнения движения тела в поле тяжести земли:

Исходя из начальных условий, нашей задачи:

В проекциях на оси уравнения (1.1) и (1.2)предстанут в виде:

Время подъема из второго уравнения системы (1.5) равно:

Тогда максимальная высота подъема равна:

Если тело бросили из начала координат, то $t_=2t_p,$ дальность полета найдем, подставив время полета в первое уравнение системы (1.4):

По условию задачи: $h=frac$, используем уравнения (1.7) и (1.8):

Ответ. $alpha =frac$

Задание. Какова скорость падения тела брошенного под углом горизонта $alpha $ со скоростью $v_0$? Если тело бросили с земли. Сопротивление воздуха можно не учитывать.

Решение. За основу решения задачи примем кинематическое уравнение для скорости движения тела в поле тяжести Земли:

Начальные условия движения нашего тела:

В проекциях на оси X и Y уравнение (2.1):

Время подъёма тела, принимая во внимание, что $v_yleft(t_pright)=0$ из второго уравнения (2.3) равно:

Если тело бросили из начала координат, то $t_=2t_p:$

Зная время полета, найдем $v_yleft(t_right)$, подставив его во второе уравнение (2.3):

Модуль вектора скорости в момент падения найдем как:

Ответ. При заданных условиях величина скорости падения равна модулю скорости бросания.

📺 Видео

9 класс, 12 урок, Движение тела, брошенного под углом к горизонтуСкачать

9 класс, 12 урок, Движение тела, брошенного под углом к горизонту

Математика без Ху!ни. Комплексные числа, часть 1. Введение.Скачать

Математика без Ху!ни. Комплексные числа, часть 1. Введение.

Движение тела, брошенного под углом к горизонтуСкачать

Движение тела, брошенного под углом к горизонту

Урок 41. Задачи на движение тела, брошенного под углом к горизонту (ч.2)Скачать

Урок 41. Задачи на движение тела, брошенного под углом к горизонту (ч.2)

Разбор задачи про тело, брошенное под углом к горизонту с начальной высотыСкачать

Разбор задачи про тело, брошенное под углом к горизонту с начальной высоты

Бросок под углом к горизонтуСкачать

Бросок под углом к горизонту

125 отжиманий, 7 выходов и 7 оборотов, на кольцах, 7 книжек на канатах, и 7 секунд горизонтСкачать

125 отжиманий, 7 выходов и 7 оборотов, на кольцах, 7 книжек на канатах, и 7 секунд горизонт

Свободное падение тел. 10 класс.Скачать

Свободное падение тел. 10 класс.

Теория движения тела брошенного горизонтально . 2021-10Скачать

Теория движения тела брошенного горизонтально . 2021-10

Урок 39. Простейшие задачи о движении тела, брошенного под углом к горизонтуСкачать

Урок 39. Простейшие задачи о движении тела, брошенного под углом к горизонту
Поделиться или сохранить к себе:
Движение тела, брошенного горизонтально или под углом к горизонту.
  1. Это движение в плоскости, поэтому для описания движения необходимо 2 координаты.
  2. Считаем, что движение происходит вблизи поверхности Земли, поэтому ускорение тела – ускорение свободного падения (a = g).
Уравнения скорости брошенных под углом к горизонту
Уравнения скорости брошенных под углом к горизонту— между координатами квадратичная зависимость, траектория – парабола!
Уравнения скорости брошенных под углом к горизонту
Следовательно, для решения этой задачи необходимо решить уравнение

Уравнения скорости брошенных под углом к горизонту

Оно будет иметь решение при t=0 (начало движения) иУравнения скорости брошенных под углом к горизонту

Зная время полета, найдем максимальное расстояние, которое пролетит тело:

Уравнения скорости брошенных под углом к горизонту

Дальность полета:
Уравнения скорости брошенных под углом к горизонту

Из этой формулы следует, что:

— максимальная дальность полета будет наблюдаться при бросании тела (при стрельбе, например) под углом 45 0 ;

— на одно и то же расстояние можно бросить тело (с одинаковой начальной скоростью) двумя способами – т.н. навесная и настильная баллистические траектории.

Уравнения скорости брошенных под углом к горизонту