Уравнения с параметром не имеющие корней

Видео:6. ПРИ КАКИХ ЗНАЧЕНИЯХ ПАРАМЕТРА УРАВНЕНИЕ НЕ ИМЕЕТ КОРНЕЙСкачать

6. ПРИ КАКИХ ЗНАЧЕНИЯХ ПАРАМЕТРА УРАВНЕНИЕ НЕ ИМЕЕТ КОРНЕЙ

Квадратные уравнения с параметром

Уравнение называется квадратным, если имеет вид (ax^2+bx+c=0,) где (a,b,c) — любые числа ((a≠0)). При этом надо быть внимательным, если (a=0), то уравнение будет линейным, а не квадратным. Поэтому, первым делом при решении квадратного уравнения с параметром, рекомендую смотреть на коэффициент при (x^2) и рассматривать 2 случая: (a=0) (линейное уравнение); (a≠0) (квадратное уравнение). Квадратное уравнение часто решается при помощи дискриминанта или теоремы Виета.

Видео:Корни уравнения с параметромСкачать

Корни уравнения с параметром

Исследование квадратного многочлена

Чтобы решить квадратное уравнение с параметром, нужно понять, при каких значениях параметра существуют корни, и найти их, выразив через параметр. Обычно это делается просто через анализ дискриминанта. (см. пример 1) Но иногда в задачах с параметром просят найти такие значения параметра, при которых корни принадлежат определенному числовому промежутку. Например:

  • Найдите такие значения параметра, чтобы оба корня были меньше некоторого числа (γ): (x_1≤x_2 0)); ветки параболы направлены вниз ((a 0). Значит, между корнями функция принимает отрицательные значения, а вне этого отрезка – положительные. Так как наше число (γ) должно по условию лежать вне отрезка ((x_1,x_2)), то (f(γ)>0).
  • (a 0). Этим условием мы накладываем ограничение, что наши корни должны лежать слева или справа от числа (γ).

В итоге получаем:

если (a*f(γ) 0), то (γ∉(x_1,x_2)).

Нам осталось наложить условие, чтобы наши корни были слева от числа (γ). Здесь нужно просто сравнить положение вершины нашей параболы (x_0) относительно (γ). Заметим, что вершина лежит между точками (x_1) и (x_2). Если (x_0 0, \x_0 Уравнения с параметром не имеющие корней

При каких значениях параметра a уравнение $$a(a+3) x^2+(2a+6)x-3a-9=0$$ имеет более одного корня?

1 случай: Если (a(a+3)=0), то уравнение будет линейным. При (a=0) исходное уравнение превращается в (6x-9=0), корень которого (x=1,5). Таким образом, при (a=0) уравнение имеет один корень.
При (a=-3) получаем (0*x^2+0*x-0=0), корнями этого уравнения являются любые рациональные числа. Уравнение имеет бесконечное количество корней.

2 случай: Если (a≠0; a≠-3), то получим квадратное уравнение. При положительном дискриминанте уравнение будет иметь более одного корня: $$D>0$$ $$D/4=(a+3)^2+3a(a+3)^2>0$$ $$(a+3)^2 (3a+1)>0$$ $$a>-frac.$$ С учетом (a≠0;) (a≠-3), получим, что уравнение имеет два корня при (a∈(-frac;0)∪(0;+∞)). Объединив оба случая получим (внимательно прочитайте, что от нас требуется):

Найти все значения параметра a, при которых корни уравнения $$(a+1) x^2-(a^2+2a)x-a-1=0$$ принадлежат отрезку ([-2;2]).

1 случай: Если (a=-1), то (0*x^2-x+1-1=0) отсюда (x=0). Это решение принадлежит ([-2;2]).

2 случай: При (a≠-1), получаем квадратное уравнение, с условием, что все корни принадлежат ([-2;2]). Для решения введем функцию (f(x)=(a+1) x^2-(a^2+2a)x-a-1) и запишем систему, которая задает требуемые условия:

Подставляем полученные выражения в систему:

Видео:Сможешь решить квадратное уравнение с параметром? Найти, когда корни имеют разные знаки...Скачать

Сможешь решить квадратное уравнение с параметром? Найти, когда корни имеют разные знаки...

Уравнения с параметром

Разделы: Математика

Справочный материал

Уравнение вида f(x; a) = 0 называется уравнением с переменной х и параметром а.

Решить уравнение с параметром а – это значит, для каждого значения а найти значения х, удовлетворяющие этому уравнению.

Если 1 – а = 0, т.е. а = 1, то х0 = -2 корней нет

Если 1 – а Уравнения с параметром не имеющие корней0, т.е. а Уравнения с параметром не имеющие корней1, то х = Уравнения с параметром не имеющие корней

Пример 4.

Если а = 1, то 0х = 0
х – любое действительное число

Если а = -1, то 0х = -2
Корней нет

Если а Уравнения с параметром не имеющие корней1, а Уравнения с параметром не имеющие корней-1, то х = Уравнения с параметром не имеющие корней(единственное решение).

Это значит, что каждому допустимому значению а соответствует единственное значение х.

если а = 5, то х = Уравнения с параметром не имеющие корней= Уравнения с параметром не имеющие корней;

Дидактический материал

3. а = Уравнения с параметром не имеющие корней+ Уравнения с параметром не имеющие корней

4. Уравнения с параметром не имеющие корней+ 3(х+1)

5. Уравнения с параметром не имеющие корней= Уравнения с параметром не имеющие корнейУравнения с параметром не имеющие корней

6. Уравнения с параметром не имеющие корней= Уравнения с параметром не имеющие корней

Ответы:

  1. При аУравнения с параметром не имеющие корней1 х =Уравнения с параметром не имеющие корней;
  1. При аУравнения с параметром не имеющие корней3 х = Уравнения с параметром не имеющие корней;
  1. При аУравнения с параметром не имеющие корней1, аУравнения с параметром не имеющие корней-1, аУравнения с параметром не имеющие корней0 х = Уравнения с параметром не имеющие корней;

при а = 1 х – любое действительное число, кроме х = 1

  1. При аУравнения с параметром не имеющие корней2, аУравнения с параметром не имеющие корней0 х = Уравнения с параметром не имеющие корней;
  1. При аУравнения с параметром не имеющие корней-3, аУравнения с параметром не имеющие корней-2, аУравнения с параметром не имеющие корней0, 5 х = Уравнения с параметром не имеющие корней
  1. При а + сУравнения с параметром не имеющие корней0, сУравнения с параметром не имеющие корней0 х = Уравнения с параметром не имеющие корней;

Квадратные уравнения с параметром

Пример 1. Решить уравнение

х = – Уравнения с параметром не имеющие корней

В случае а Уравнения с параметром не имеющие корней1 выделим те значения параметра, при которых Д обращается в нуль.

Д = (2(2а + 1)) 2 – 4(а – 1)(4а + 30 = 16а 2 + 16а + 4 – 4(4а 2 + 3а – 4а – 3) = 16а 2 + 16а + 4 – 16а 2 + 4а + 12 = 20а + 16

a = Уравнения с параметром не имеющие корней

a = Уравнения с параметром не имеющие корней

Если а -4/5 и а Уравнения с параметром не имеющие корней1, то Д > 0,

х = Уравнения с параметром не имеющие корней

х = – Уравнения с параметром не имеющие корней= – Уравнения с параметром не имеющие корней

Пример 2. При каких значениях параметра а уравнение

х 2 + 2(а + 1)х + 9а – 5 = 0 имеет 2 различных отрицательных корня?

В итогеУравнения с параметром не имеющие корней4(а – 1)(а – 6) > 0
— 2(а + 1) 0
Уравнения с параметром не имеющие корнейа 6
а > — 1
а > 5/9
Уравнения с параметром не имеющие корней

Уравнения с параметром не имеющие корней6

Пример 3. Найдите значения а, при которых данное уравнение имеет решение.

Д = 4(а – 1) 2 – 4(2а + 10 = 4а 2 – 8а + 4 – 8а – 4 = 4а 2 – 16а

4а 2 – 16 Уравнения с параметром не имеющие корней0

4а(а – 4) Уравнения с параметром не имеющие корней0

а(а – 4)) Уравнения с параметром не имеющие корней0

Уравнения с параметром не имеющие корней

Ответ: а Уравнения с параметром не имеющие корней0 и а Уравнения с параметром не имеющие корней4

Дидактический материал

1. При каком значении а уравнение ах 2 – (а + 1) х + 2а – 1 = 0 имеет один корень?

2. При каком значении а уравнение (а + 2) х 2 + 2(а + 2)х + 2 = 0 имеет один корень?

3. При каких значениях а уравнение (а 2 – 6а + 8) х 2 + (а 2 – 4) х + (10 – 3аа 2 ) = 0 имеет более двух корней?

4. При каких значениях а уравнение 2х 2 + ха = 0 имеет хотя бы один общий корень с уравнением 2х 2 – 7х + 6 = 0?

5. При каких значениях а уравнения х 2 +ах + 1 = 0 и х 2 + х + а = 0 имеют хотя бы один общий корень?

Показательные уравнения с параметром

Пример 1.Найти все значения а, при которых уравнение

9 х – (а + 2)*3 х-1/х +2а*3 -2/х = 0 (1) имеет ровно два корня.

Решение. Умножив обе части уравнения (1) на 3 2/х , получим равносильное уравнение

3 2(х+1/х) – (а + 2)*3 х+1/х + 2а = 0 (2)

Пусть 3 х+1/х = у, тогда уравнение (2) примет вид у 2 – (а + 2)у + 2а = 0, или

Если у = 2, т.е. 3 х+1/х = 2 то х + 1/х = log32 , или х 2 – хlog32 + 1 = 0.

Это уравнение не имеет действительных корней, так как его Д = log 2 32 – 4 х+1/х = а то х + 1/х = log3а, или х 2 – хlog3а + 1 = 0. (3)

Уравнение (3) имеет ровно два корня тогда и только тогда, когда

Д = log 2 32 – 4 > 0, или |log3а| > 2.

Если log3а > 2, то а > 9, а если log3а 9.

Пример 2. При каких значениях а уравнение 2 2х – (а – 3) 2 х – 3а = 0 имеет решения?

Для того чтобы заданное уравнение имело решения, необходимо и достаточно, чтобы уравнение t 2 – (a – 3) t – 3a = 0 имело хотя бы один положительный корень. Найдем корни по теореме Виета: х1 = -3, х2 = а = >

а – положительное число.

Дидактический материал

1. Найти все значения а, при которых уравнение

25 х – (2а + 5)*5 х-1/х + 10а * 5 -2/х = 0 имеет ровно 2 решения.

2. При каких значениях а уравнение

2 (а-1)х?+2(а+3)х+а = 1/4 имеет единственный корень?

3. При каких значениях параметра а уравнение

4 х — (5а-3)2 х +4а 2 – 3а = 0 имеет единственное решение?

Ответ:

  1. 0 25/2
  2. при а = 1, а = -2,2
  3. 0 0, хУравнения с параметром не имеющие корней1/4 (3)

Уравнения с параметром не имеющие корнейх = у

Если а = 0, то –2у + 1 = 0
2у = 1
у = 1/2
Уравнения с параметром не имеющие корнейх = 1/2
х = 1/4

Не выполняется (2) условие из (3).

Пусть а Уравнения с параметром не имеющие корней0, то ау 2 – 2у + 1 = 0 имеет действительные корни тогда и только тогда, когда Д = 4 – 4а Уравнения с параметром не имеющие корней0, т.е. при а Уравнения с параметром не имеющие корней1.

Если Д = 0 (а = 1), то (4) имеет единственный положительный корень х = 1, удовлетворяющий условиям (3).

Пусть Д > 0 (а 0 уравнение (4) имеет действительные корни разных знаков. Это условие выполняется тогда и только тогда, когда Д > 0 и 1/а х

Выражая х из (1) и подставляя в (2), получаем неравенство

Уравнения с параметром не имеющие корней2 – а > 1 – а (3)

Чтобы решить неравенство (3), построим графики функций у = Уравнения с параметром не имеющие корней2 – а и у = 1 – а.

Уравнения с параметром не имеющие корней

Решения неравенства (3) образуют промежуток (а0; 2), где а0 2

а0 = Уравнения с параметром не имеющие корней

Ответ: Уравнения с параметром не имеющие корнейx + 9a 3 ) = x имеет ровно два корня.

  • Найдите, при каких значениях а уравнение log 2 (4 x – a) = x имеет единственный корень.
  • При каких значениях а уравнение х – log 3 (2а – 9 х ) = 0 не имеет корней.
  • Ответы:

      при а 16.06.2009

    Видео:Уравнения с параметром. Алгебра 7 класс.Скачать

    Уравнения с параметром. Алгебра 7 класс.

    Квадратные уравнения и квадратичные неравенства с параметрами

    Дорогой друг! Если ты никогда не решал задач с параметрами – прочитай статьи «Что такое параметр» и «Графический способ решения задач с параметрами». Квадратные уравнения, а тем более неравенства с параметрами только на первый взгляд кажутся простыми. Чтобы уверенно решать их, надо знать определенные приемы. О некоторых мы расскажем.

    Разберем сначала подготовительные задачи. А в конце – реальную задачу ЕГЭ.

    1. Найдите все значения a, при которых уравнение не имеет действительных корней.

    Всегда ли это уравнение является квадратным относительно переменной х? – Нет, не всегда. В случае, когда коэффициент при равен нулю, оно станет линейным.

    Рассмотрим два случая – когда это уравнение квадратное и когда оно линейное.

    Тогда уравнение примет вид 2 = 0. Такое уравнение не имеет действительных корней, что удовлетворяет условию задачи.

    Уравнение будет квадратным. Квадратное уравнение не имеет действительных корней тогда и только тогда, когда его дискриминант отрицательный.

    Если и – корни квадратного уравнения
    , то по теореме Виета:

    Уравнения с параметром не имеющие корней

    Решим первое неравенство системы

    Уравнения с параметром не имеющие корней

    Уравнения с параметром не имеющие корней

    Квадратный трехчлен в левой части не имеет корней, так как дискриминант равен -32, то есть отрицателен. Поэтому неравенство будет выполняться для всех действительных значений .

    Возведем второе уравнение системы в квадрат:

    Из этих двух уравнений выразим сумму квадратов и .

    Значит, сумму квадратов корней уравнения можно выразить через параметр

    График функции — парабола, ее ветви направлены вверх, минимум будет достигаться в ее вершине. Найдем вершину параболы:

    3) Найдите все значения , при каждом из которых все решения уравнения

    Как и в первой задаче, уравнение является квадратным, кроме случая, когда . Рассмотрим этот случай отдельно

    1) . Получим линейное уравнение

    У него единственный корень, причем положительный. Это удовлетворяет условию задачи.

    2) При уравнение будет квадратным. Нам надо, чтобы решения существовали, причем были положительными. Раз решения есть, то .

    Покажем один из приемов решения квадратичных уравнений и неравенств с параметрами. Он основан на следующих простых утверждениях:

    — Оба корня квадратного уравнения и положительны тогда и только тогда, когда их сумма положительна и произведение положительно.

    Очевидно, что сумма и произведение двух положительных чисел также положительны. И наоборот – если сумма и произведение двух чисел положительны, то и сами числа положительны.

    — Оба корня квадратного уравнения и отрицательны тогда и только тогда, когда их сумма отрицательна, а произведение положительно.

    Корни квадратного уравнения и имеют разные знаки тогда и только тогда, когда их произведение отрицательно.

    Сумма и произведение корней входят в формулировку теоремы Виета, которой мы и воспользуемся. Получим

    Уравнения с параметром не имеющие корней

    Второе и третье неравенства имеют одинаковое решение . Решение первого неравенства:
    .

    С учетом пункта 1 получим ответ

    4. При каких значениях параметра a уравнение

    имеет единственное решение?

    Уравнение является показательным, причем однородным. Мы умеем решать такие уравнения! Разделим обе части на .

    Сделаем замену Уравнения с параметром не имеющие корней

    Для того, чтобы исходное уравнение имело единственное решение, нужно, чтобы уравнение относительно t имело ровно один положительный корень.

    1) В случае уравнение будет линейным

    Значит, подходит. В этом случае уравнение имеет единственный положительный корень.

    2) Если , уравнение будет квадратным.

    Дискриминант является полным квадратом и поэтому всегда неотрицателен. Уравнение имеет либо один, либо два корня. В этом случае несложно найти корни в явном виде.

    Один корень получился не зависящим от параметра, причем положительным. Это упрощает задачу.

    Для того, чтобы уравнение имело единственный положительный корень, нужно, чтобы либо второй был отрицательным, либо равным нулю, либо чтобы корни совпадали. Рассмотрим все случаи.

    Объединив все случаи, получим ответ.

    И наконец – реальная задача ЕГЭ.

    5. При каких значениях a система имеет единственное решение?

    Решением квадратного неравенства может быть:

    В каких случаях система двух квадратных неравенств имеет единственное решение:

    1) единственная общая точка двух лучей-решений ( или интервалов-решений)

    2) одно из неравенств имеет решение – точку, которая является решением второго неравенства

    Рассмотрим первый случай.

    Если является решением 1 и 2 уравнений, то является решением уравнения (вытекает из второго первое) ⇒ или

    Если , при этом система примет вид:

    Второй корень первого уравнения:

    Второй корень второго первого:

    Если , при этом система примет вид:

    – бесконечно много решений, не подходит.

    Рассмотрим второй случай.

    – решением является точка, если – является решением второго неравенства.

    – решением является точка, если – не является решением первого неравенства.

    🌟 Видео

    Простое уравнение с параметром с корнями | Параметр 98 | mathus.ru #егэ2024Скачать

    Простое уравнение с параметром с корнями | Параметр 98 | mathus.ru #егэ2024

    Что такое параметр? Уравнения и неравенства с параметром. 7-11 класс. Вебинар | МатематикаСкачать

    Что такое параметр? Уравнения и неравенства с параметром. 7-11 класс. Вебинар | Математика

    Самая сложная тема из ЕГЭ. Задание с ПАРАМЕТРОМ | Математика TutorOnlineСкачать

    Самая сложная тема из ЕГЭ. Задание с ПАРАМЕТРОМ | Математика TutorOnline

    Уравнения с параметром. Алгебра, 8 классСкачать

    Уравнения с параметром. Алгебра, 8 класс

    ✓ Параметры с нуля и до ЕГЭ | Задание 17. Профильный уровень | #ТрушинLive​​ #041 | Борис ТрушинСкачать

    ✓ Параметры с нуля и до ЕГЭ | Задание 17. Профильный уровень | #ТрушинLive​​ #041 | Борис Трушин

    #118 Урок 43 Квадратные уравнения. Параметры. При каком значении параметра уравнение имеет 1 корень.Скачать

    #118 Урок 43 Квадратные уравнения. Параметры. При каком значении параметра уравнение имеет 1 корень.

    Решить квадратное уравнение с параметром - bezbotvyСкачать

    Решить квадратное уравнение с параметром - bezbotvy

    Квадратное уравнение с параметром. Исследование корней квадратного уравнения. Алгебра 8 классСкачать

    Квадратное уравнение с параметром. Исследование корней квадратного уравнения. Алгебра 8 класс

    9 класс. Алгебра. Уравнение с параметрами.Скачать

    9 класс. Алгебра. Уравнение с параметрами.

    Решаем квадратное уравнение с параметромСкачать

    Решаем квадратное уравнение с параметром

    Быстрый способ решения квадратного уравненияСкачать

    Быстрый способ решения квадратного уравнения

    #95. УРАВНЕНИЕ С ПАРАМЕТРОМ! НЕОБЫЧНЫЙ ПОДХОД!Скачать

    #95. УРАВНЕНИЕ С ПАРАМЕТРОМ! НЕОБЫЧНЫЙ ПОДХОД!

    9 класс. Алгебра. Уравнения с параметрами.Скачать

    9 класс. Алгебра. Уравнения с параметрами.

    Уравнение с параметром из ЕГЭ №18 | Математика TutorOnlineСкачать

    Уравнение с параметром из ЕГЭ №18 | Математика TutorOnline

    9 класс. Алгебра. Уравнения с параметрами.Скачать

    9 класс. Алгебра. Уравнения с параметрами.

    Как решать квадратные уравнения без дискриминантаСкачать

    Как решать квадратные уравнения без дискриминанта
    Поделиться или сохранить к себе: