55 уравнений, неравенств и их систем.
Для перехода к разбору кликните по номеру в документе.
Видео:Самая сложная тема из ЕГЭ. Задание с ПАРАМЕТРОМ | Математика TutorOnlineСкачать
Шкала перевода баллов ОГЭ 2022
Рекомендации по переводу суммы первичных баллов за экзаменационные работы основного государственного экзамена (ОГЭ) в пятибалльную систему оценивания в 2022 году.
Видео:Сможешь решить уравнение с параметром из ЕГЭ 2021?Скачать
Итоги собеседования по русскому языку
98,7% девятиклассников, сдававших итоговое собеседование по русскому языку в основной срок 9 февраля, успешно справились с заданиями и получили «зачёт». Участие в итоговом собеседовании приняли 1 млн. 373 тыс. учащихся 9 классов из 1 млн. 462 тыс. зарегистрированных.
Видео:Что такое параметр? Уравнения и неравенства с параметром. 7-11 класс. Вебинар | МатематикаСкачать
Задача 18 ЕГЭ-2021 по математике. Параметры
Посмотрите на условия задач с параметрами ЕГЭ-2021. Вы заметите, что на вид все они похожи. Однако сходство только внешнее, и решаются они по-разному. В этой статье – обзор задач с параметрами ЕГЭ-2021 по математике.
1. Начнем с задачи, которую лучше всего решить аналитическим способом. Слева в уравнении модуль, справа – произведение модуля и корня квадратного. Лучше всего первым действием сделать возведение обеих частей уравнения в квадрат (при неотрицательности подкоренного выражения).
О том, как решать уравнения, где слева модуль и справа модуль, читайте здесь: Уравнения с модулем.
При каких значениях параметра a уравнение
имеет ровно 2 решения?
Уравнение равносильно системе:
Вынесли общий множитель за скобку
Так как и при всех исходное уравнение имеет корни и при всех Значит, исходное уравнение имеет ровно два корня в следующих случаях:
не имеет решений и
2) совпадение корней
Рассмотрим первый случай.
Неравенство — не имеет решений, если
Рассмотрим второй случай.
1) Корни и совпадают, тогда и
Так как исходное уравнение при имеет один корень
2) Корни и совпадают.
Уравнение имеет корни и
3) Корни и совпадают, исходное уравнение имеет ровно два корня.
Мы применили аналитический способ решения: с помощью равносильных переходов от исходного уравнения перешли к такой форме, где сразу видно, какие корни имеет уравнение при определенных значениях параметра.
На Онлайн-курсе подготовки к ЕГЭ на 100 баллов мы подробно рассказывали об этом методе и решали множество задач. Способ хорош тем, что вы просто действуете по образцу – и быстро приходите к ответу.
2. Второе уравнение очень похоже на первое. И первое действие будет таким же: возведением обеих частей в квадрат. А закончим мы – для разнообразия – построением графиков в системе координат (а; х).
Найти a, при которых имеет ровно 2 решения.
Возведем обе части уравнения в квадрат.
Найдем, каким значениям параметра соответствует ровно два значения
Построим в системе координат графики функций:
Мы находим такие при которых горизонтальная прямая имеет ровно 2 общие точки с совокупностью прямых, являющихся графиком исходного уравнения.
Видим, что в общем случае прямая пересекает каждую из трех прямых, то есть исходное уравнение имеет ровно 3 решения.
Ровно 2 решения будет в случаях, когда прямая проходит через точки пересечения прямых, то есть в случаях совпадения корней.
Данная совокупность имеет ровно два решения в случаях совпадения корней.
О графическом способе решения задач с параметрами читайте здесь: Графический метод решения задач с параметрами.
3. В третьем задании также присутствуют выражения под модулями. Но подход будет другой: мы применим метод интервалов для модулей, о котором можно прочитать здесь: Уравнения с модулем.
С его помощью раскроем модули и получим график функции, заданной описанием: на разных интервалах график этой функции выглядит по-разному, то есть состоит из отдельных кусочков. А дальше – графическое решение.
Найдите все значения a, при каждом из которых уравнение
имеет ровно два различных корня.
Применим метод интервалов для модулей. Уравнение равносильно совокупности систем:
Мы сделали так, потому что при оба модуля раскрываем с противоположным знаком:
Заметим, что если уравнение не выполняется ни при каких
Решим графически полученную совокупность.
Рассмотрим функцию такую, что:
Для функции ось ординат – вертикальная асимптота.
Уравнение имеет ровно два корня при или
Вообще задачи с параметрами, как правило, можно решать многими способами.
4. И наконец, довольно сложное уравнение с тремя модулями. Нам придется раскрывать все эти модули по определению, рассматривая 4 случая. Но ничего страшного здесь нет – просто аккуратность. А потом мы разобьем координатную плоскость (х; а) на области и в каждой из областей построим график уравнения. Кто знаком с методом областей – тот легко с этим справится.
При каких значениях параметра a уравнение имеет ровно три различных решения
Видео:Сможешь решить уравнение с параметром? Из ЕГЭ 2021Скачать
Параметрические уравнения, неравенства и системы, часть С
Видео:✓ Параметры с нуля и до ЕГЭ | Задание 17. Профильный уровень | #ТрушинLive #041 | Борис ТрушинСкачать
Теория к заданию 18 из ЕГЭ по математике (профильной)
Видео:Сможешь решить уравнение с параметром? Из ЕГЭ 2019Скачать
Параметрические уравнения
Уравнение, которое кроме неизвестной величины содержит также другую дополнительную величину, которая может принимать различные значения из некоторой области, называется параметрическим. Эта дополнительная величина в уравнении называется параметр. На самом деле с каждым параметрическим уравнением может быть написано множество уравнений.
Способ решения параметрических уравнений
- Находим область определения уравнения.
- Выражаем a как функцию от $х$.
- В системе координат $хОа$ строим график функции, $а=f(х)$ для тех значений $х$, которые входят в область определения данного уравнения.
- Находим точки пересечения прямой, $а=с$, где $с∈(-∞;+∞)$ с графиком функции $а=f(х)$. Если прямая, а=с пересекает график, $а=f(х)$, то определяем абсциссы точек пересечения. Для этого достаточно решить уравнение вида, $а=f(х)$ относительно $х$.
- Записываем ответ.
Общий вид уравнения с одним параметром таков:
При различных значениях, а уравнение $F(x, a) = 0$ может иметь различные множества корней, задача состоит в том, чтобы изучить все случаи, выяснить, что будет при любом значении параметра. При решении уравнений с параметром обычно приходится рассматривать много различных вариантов. Своевременное обнаружение хотя бы части невозможных вариантов имеет большое значение, так как освобождает от лишней работы.
Поэтому при решении уравнения $F(x, a) = 0$ целесообразно под ОДЗ понимать область допустимых значений неизвестного и параметра, то есть множество всех пар чисел ($х, а$), при которых определена (имеет смысл) функция двух переменных $F(x, а)$. Отсюда естественная геометрическая иллюстрация ОДЗ в виде некоторой области плоскости $хОа$.
ОДЗ различных выражений (под выражением будем понимать буквенно — числовую запись):
1. Выражение, стоящее в знаменателе, не должно равняться нулю.
2. Подкоренное выражение должно быть неотрицательным.
3. Подкоренное выражение, стоящее в знаменателе, должно быть положительным.
4. У логарифма: подлогарифмическое выражение должно быть положительным; основание должно быть положительным; основание не может равняться единице.
Алгебраический способ решения квадратных уравнений с параметром $ax^2+bx+c=0$
Квадратное уравнение $ax^2+bx+c=0, а≠0$ не имеет решений, если $D 0$;
Квадратное уравнение имеет один корень, если $D=0$
Тригонометрические тождества
3. $sin^α+cos^α=1$ (Основное тригонометрическое тождество)
Из основного тригонометрического тождества можно выразить формулы для нахождения синуса и косинуса
💡 Видео
Профильный ЕГЭ 2023 математика. Задача 17. Параметр. Аналитический методСкачать
Сможешь решить уравнение с параметром? Из ЕГЭ 2021Скачать
Задача 17 ЕГЭ профильный. Параметры с нуляСкачать
✓ Параметр с модулями | ЕГЭ-2021. Задание 17. Математика. Профильный уровень | Борис ТрушинСкачать
Параметры с нуля до уровня ЕГЭ. Линейные уравнения. Математик МГУСкачать
№18 из ЕГЭ 2021 по математике на 8 баллов. Графический параметр с окружностью и ОДЗ.Скачать
Как решать уравнение с параметром и модулем ★ Решите уравнение: x-|x|=aСкачать
ЕГЭ. Решение задач с параметром. Вебинар | МатематикаСкачать
Иррациональное уравнение с параметром с реального ЕГЭ 2022Скачать
Уравнения с параметрами, ЕГЭ - 2022гСкачать
№18 Показательные уравнения с параметром. Подготовка к ЕГЭ по математике.Скачать
Старт интенсива 💥 ВСЕ, что нужно знать для ПАРАМЕТРА №18 из ЕГЭ 2021Скачать
Все уравнения с параметром на РешуЕГЭ. Тотальный разбор 17 номера ЕГЭ по математикеСкачать
5-часовой стрим по ПАРАМЕТРАМ. Вся алгебра для №17 с нуля и до уровня ЕГЭ 2023Скачать