Уравнения с lnx и е

Логарифм. Натуральный логарифм.

За основание логарифмов нередко берут цифру е = 2,718281828. Логарифмы по данному основанию именуют натуральным. При проведении вычислений с натуральными логарифмами общепринято оперировать знаком ln, а не log; при этом число 2,718281828, определяющие основание, не указывают.

Другими словами формулировка будет иметь вид: натуральный логарифм числа х — это показатель степени, в которую нужно возвести число e, чтобы получить x.

Так, ln(7,389. )= 2, так как e 2 =7,389. . Натуральный логарифм самого числа e= 1, потому что e 1 =e, а натуральный логарифм единицы равен нулю, так как e 0 = 1.

Само число е определяет предел монотонной ограниченной последовательности

Уравнения с lnx и е

вычислено, что е = 2,7182818284. .

Весьма часто для фиксации в памяти какого либо числа, цифры необходимого числа ассоциируют с какой-нибудь выдающейся датой. Скорость запоминания первых девяти знаков числа е после запятой возрастет, если заметить, что 1828 — это год рождения Льва Толстого!

Число е является иррациональным. Французский математик Эрмит (1822 — 1901) обосновал, что это число не может быть корнем никакого алгебраического уравнения с целыми коэффициентами. Такие иррациональные числа именуются трансцендентными.

На сегодняшний день существуют достаточно полные таблицы натуральных логарифмов.

График натурального логарифма (функции y = ln x) является следствием графика экспоненты зеркальным отражением относительно прямой у = х и имеет вид:

Уравнения с lnx и е

Натуральный логарифм может быть найден для каждого положительного вещественного числа a как площадь под кривой y = 1/x от 1 до a.

Элементарность этой формулировку, которая состыковывается со многими другими формулами, в которых задействован натуральный логарифм, явилось причиной образования названия «натуральный».

Если анализировать натуральный логарифм, как вещественную функцию действительной переменной, то она выступает обратной функцией к экспоненциальной функции, что сводится к тождествам:

По аналогии со всеми логарифмами, натуральный логарифм преобразует умножение в сложение, деление в вычитание:

Логарифм может быть найден для каждого положительного основания, которое не равно единице, а не только для e, но логарифмы для других оснований отличаются от натурального логарифма только постоянным множителем, и, обычно, определяются в терминах натурального логарифма.

Проанализировав график натурального логарифма, получаем, что он существует при положительных значениях переменной x. Он монотонно возрастает на своей области определения.

При x 0 пределом натурального логарифма выступает минус бесконечность ( –∞ ).При x → +∞ пределом натурального логарифма выступает плюс бесконечность ( + ∞ ). При больших x логарифм возрастает довольно медленно. Любая степенная функция x a с положительным показателем степени a возрастает быстрее логарифма. Натуральный логарифм является монотонно возрастающей функцией, поэтому экстремумы у него отсутствуют.

Использование натуральных логарифмов весьма рационально при прохождении высшей математики. Так, использование логарифма удобно для нахождения ответа уравнений, в которых неизвестные фигурируют в качестве показателя степени. Применение в расчетах натуральных логарифмом дает возможность изрядно облегчить большое количество математических формул. Логарифмы по основанию е присутствуют при решении значительного числа физических задач и естественным образом входят в математическое описание отдельных химических, биологических и прочих процессов. Так, логарифмы употребляются для расчета постоянной распада для известного периода полураспада, или для вычисления времени распада в решении проблем радиоактивности. Они выступают в главной роли во многих разделах математики и практических наук, к ним прибегают в сфере финансов для решения большого числа задач, в том числе и в расчете сложных процентов.

Видео:Уравнение касательной в точке. Практическая часть. 1ч. 10 класс.Скачать

Уравнение касательной в точке. Практическая часть. 1ч. 10 класс.

Натуральный логарифм и число е

Вы будете перенаправлены на Автор24

Прежде чем познакомится с понятием натурального логарифма, рассмотрим понятие постоянного числа $е$.

Видео:#13. Дифференциальное уравнение не содержащее искомой функции у (y'=ln(x))Скачать

#13. Дифференциальное уравнение не содержащее искомой функции у (y'=ln(x))

Число $e$

Число $e$ – это математическое постоянное, которое является трансцендентным числом и равно $e approx 2,718281828459045ldots$.

Трансцендентным называется число, которое не является корнем полинома с целыми коэффициентами.

Число $e$ является пределом выражения $(1+frac)^k$ при $k$, которое стремится к бесконечности:

Последней формулой описывается второй замечательный предел.

Число е также носит название числа Эйлера, а иногда и числа Непера.

Чтобы запомнить первые знаки числа $е$ зачастую пользуются следующим выражением: «$2$, $7$, дважды Лев Толстой». Конечно же, для того, чтобы можно было его использовать, необходимо помнить, что Лев Толстой родился в $1828$ г. Именно эти числа дважды повторяются в значении числа $е$ после целой части $2$ и десятичной $7$.

Рассмотрение понятия числа $е$ при изучении натурального логарифма мы начали именно потому, что оно стоит в основании логарифма $log_⁡a$, который принято называть натуральным и записывать в виде $ln ⁡a$.

Видео:Математика без Ху!ни. Уравнение касательной.Скачать

Математика без Ху!ни. Уравнение касательной.

Натуральный логарифм

Часто при расчетах используют логарифмы, в основании которых стоит число $е$.

Логарифм с основанием $е$ называют натуральным.

Готовые работы на аналогичную тему

Т.е. натуральный логарифм можно обозначить как $log_⁡a$, но в математике принято использовать обозначение $ln ⁡a$.

Видео:Химия | Молекулярные и ионные уравненияСкачать

Химия | Молекулярные и ионные уравнения

Свойства натурального логарифма

Т.к. логарифм по любому основанию от единицы равен $0$, то и натуральный логарифм единицы равен $0$:

Натуральный логарифм от числа $е$ равен единице:

Натуральный логарифм произведения двух чисел равен сумме натуральных логарифмов от этих чисел:

Натуральный логарифм частного двух чисел равен разнице натуральных логарифмов этих чисел:

Натуральный логарифм степени числа может быть представлен в виде произведения показателя степени на натуральный логарифм подлогарифмического числа:

$ln⁡ a^s=s cdot ln⁡ a$.

Применим к первому логарифму в числителе и в знаменателе свойство логарифма произведения, а ко второму логарифму числителя и знаменателя – свойство логарифма степени:

откроем скобки и приведем подобные слагаемые, а также применим свойство $ln ⁡e=1$:

Найти значение выражения $ln⁡ 2e^2+ln frac$.

Применим формулу суммы логарифмов:

$ln 2e^2+ln frac=ln 2e^2 cdot frac=ln ⁡e=1$.

Вычислить значение логарифмического выражения $2 lg ⁡0,1+3 ln⁡ e^5$.

Применим свойство логарифма степени:

$2 lg ⁡0,1+3 ln e^5=2 lg 10^+3 cdot 5 ln ⁡e=-2 lg ⁡10+15 ln ⁡e=-2+15=13$.

Ответ: $2 lg ⁡0,1+3 ln e^5=13$.

Упростить логарифмическое выражение $ln frac-3 ln ⁡4$.

Применим свойство логарифма степени:

$ln frac-3 ln ⁡4=ln 2^-3 ln 2^2=-3 ln⁡2-3 cdot 2 ln ⁡2=-9 ln ⁡2$.

Упростить логарифмическое выражение $ln frac$.

Применим свойство логарифма частного:

во втором логарифме подлогарифмическое выражение запишем как число в степени:

применим свойство логарифма степени к первому и второму логарифму:

применив свойство $ln ⁡e=1$, получим:

Вычислить значение логарифмического выражения $3 ln frac-2 ln ⁡27$.

Применим к обоим логарифмам свойство логарифма степени:

$3 ln frac-2 ln ⁡27=3 ln (frac)^2-2 ln 3^3=3 cdot 2 ln frac-2 cdot 3 ln ⁡3=6 ln frac-6 ln ⁡3=$

применим к первому логарифму свойство логарифма частного:

откроем скобки и приведем подобные слагаемые:

$=6 ln ⁡3-6 ln ⁡e-6 ln ⁡3=-6$.

Получи деньги за свои студенческие работы

Курсовые, рефераты или другие работы

Автор этой статьи Дата последнего обновления статьи: 21 07 2021

Видео:Десятичные и натуральные логарифмы. Видеоурок 16. Алгебра 10 классСкачать

Десятичные и натуральные логарифмы. Видеоурок 16. Алгебра 10 класс

Решение задач по математике онлайн

//mailru,yandex,google,vkontakte,odnoklassniki,instagram,wargaming,facebook,twitter,liveid,steam,soundcloud,lastfm, // echo( ‘

Видео:Производная логарифмической функции. 11 класс.Скачать

Производная логарифмической функции. 11 класс.

Калькулятор онлайн.
Решение логарифмических уравнений.

Этот математический калькулятор онлайн поможет вам решить логарифмическое уравнение. Программа для решения логарифмического уравнения не просто даёт ответ задачи, она приводит подробное решение с пояснениями, т.е. отображает процесс получения ответа.

Данная программа может быть полезна учащимся старших классов общеобразовательных школ при подготовке к контрольным работам и экзаменам, при проверке знаний перед ЕГЭ, родителям для контроля решения многих задач по математике и алгебре. А может быть вам слишком накладно нанимать репетитора или покупать новые учебники? Или вы просто хотите как можно быстрее сделать домашнее задание по математике или алгебре? В этом случае вы также можете воспользоваться нашими программами с подробным решением.

Таким образом вы можете проводить своё собственное обучение и/или обучение своих младших братьев или сестёр, при этом уровень образования в области решаемых задач повышается.

Обязательно ознакомьтесь с правилами ввода функций. Это сэкономит ваше время и нервы.
Правила ввода функций >> Почему решение на английском языке? >>
С 9 января 2019 года вводится новый порядок получения подробного решения некоторых задач. Ознакомтесь с новыми правилами >> —> ln(b) или log(b) или log(e,b) — натуральный логарифм числа b
log(10,b) — десятичный логарифм числа b
log(a,b) — логарифм b по основанию a

Введите логарифмическое уравнение
Решить уравнение

Видео:Натуральный логарифм. Число е (Эйлера). Экспонента.Скачать

Натуральный логарифм. Число е (Эйлера). Экспонента.

Немного теории.

Видео:Производная 5 Экспонента и натуральный логарифм.Скачать

Производная 5 Экспонента и натуральный логарифм.

Логарифмическая функция. Логарифмы

Задача 1. Найти положительный корень уравнения x 4 = 81
По определению арифметического корня имеем ( x = sqrt[4] = 3 )

Задача 2. Решить уравнение 3 x = 81
Запишем данное уравнение так: 3 x = 3 4 , откуда x = 4

В задаче 1 неизвестным является основание степени, а в задаче 2 — показатель степени. Способ решения задачи 2 состоял в том, что левую и правую части уравнения удалось представить в виде степени с одним и тем же основанием 3. Но уже, например, уравнение 3 x = 80 таким способом решить не удаётся. Однако это уравнение имеет корень. Чтобы уметь решать такие уравнения, вводится понятие логарифма числа.
Уравнение a x = b, где a > 0, ( a neq 1 ), b > 0, имеет единственный корень. Этот корень называют логарифмом числа b no основанию a и обозначают logab
Например, корнем уравнения 3 x = 81 является число 4, т.е. log381 = 4.

Определение. Логарифмом положительного числа b по основанию a, где a > 0, ( a neq 1 ), называется показатель степени, в которую надо возвести число a, чтобы получить b

log77 = 1, так как 7 1 = 7

Определение логарифма можно записать так:

Действие нахождения логарифма числа называют логарифмированием.
Действие нахождения числа по его логарифму называют потенцированием.

Вычислить log64128
Обозначим log64128 = х. По определению логарифма 64 x = 128. Так как 64 = 2 6 , 128 = 2 7 , то 2 6x = 2 7 , откуда 6x = 7, х = 7/6.
Ответ log64128 = 7/6

Вычислить ( 3^ )
Используя свойства степени и основное логарифмическое тождество, находим

Решить уравнение log3(1-x) = 2
По определению логарифма 3 2 = 1 — x, откуда x = -8

Видео:Why does e^(ln x) = xСкачать

Why does e^(ln x) = x

Свойства логарифмов

При выполнении преобразований выражений, содержащих логарифмы, при вычислениях и при решении уравнений часто используются различные свойства логарифмов. Рассмотрим основные из них.

Пусть а > 0, ( a neq 1 ), b > 0, c > 0, r — любое действительное число. Тогда справедливы формулы:

Видео:16 Натуральные логарифмы Функция у=ln х, ее свойства, график, дифференцированиеСкачать

16  Натуральные логарифмы  Функция у=ln х, ее свойства, график, дифференцирование

Десятичные и натуральные логарифмы

Для логарифмов чисел составлены специальные таблицы (таблицы логарифмов). Логарифмы вычисляют также с помощью микрокалькулятора. И в том и в другом случае находятся только десятичные или натуральные логарифмы.

Определение. Десятичным логарифмом числа называют логарифм этого числа по основанию 10 и пишут
lg b вместо log10b

Определение. Натуральным логарифмом числа называют логарифм этого числа по основанию e, где e — иррациональное число, приближённо равное 2,7. При этом пишут ln b вместо logeb

Иррациональное число e играет важную роль в математике и её приложениях. Число e можно представить как сумму:
$$ e = 1 + frac + frac + frac + dots + frac + dots $$

Оказывается, что достаточно знать значения только десятичных или только натуральных логарифмов чисел, чтобы находить логарифмы чисел по любому основанию.
Для этого используется формула замены основания логарифма:

Следствия из формулы замены основания логарифма.
При c = 10 и c = e получаются формулы перехода к десятичным и натуральным логарифмам:
$$ log_a b = frac , ;; log_a b = frac $$

Видео:Натуральные логарифмы. Функция у=ln х | Алгебра 11 класс #17 | ИнфоурокСкачать

Натуральные логарифмы. Функция у=ln х | Алгебра 11 класс #17 | Инфоурок

Логарифмическая функция, её свойства и график

В математике и её приложениях часто встречается логарифмическая функция
y = logax
где а — заданное число, a > 0, ( a neq 1 )

Логарифмическая функция обладает свойствами:
1) Область определения логарифмической функции — множество всех положительных чисел.

2) Множество значений логарифмической функции — множество всех действительных чисел.

3) Логарифмическая функция не является ограниченной.

4) Логарифмическая функция y = logax является возрастающей на промежутке ( (0; +infty) ), если a > 1,
и убывающей, если 0 1, то функция y = logax принимает положительные значения при х > 1,
отрицательные при 0 1.

Ось Oy является вертикальной асимптотой графика функции y = logax

Уравнения с lnx и е Уравнения с lnx и е

Отметим, что график любой логарифмической функции y = logax проходит через точку (1; 0).
При решении уравнений часто используется следующая теорема:

Логарифмическая функция y = logax и показательная функция y = a x , где a > 0, ( a neq 1 ), взаимно обратны.

Видео:11 класс, 19 урок, Дифференцирование показательной и логарифмической функцийСкачать

11 класс, 19 урок, Дифференцирование показательной и логарифмической функций

Логарифмические уравнения

Решить уравнение log2(x+1) + log2(x+3) = 3
Предположим, что х — такое число, при котором равенство является верным, т.е. х — корень уравнения. Тогда по свойству логарифма верно равенство
log2((x+1)(x+3)) = 3
Из этого равенства по определению логарифма получаем
(x+1)(x+3) = 8
х 2 + 4х + 3 = 8, т.е. х 2 + 4x — 5 = 0, откуда x1 = 1, х2 = -5
Так как квадратное уравнение является следствием исходного уравнения, то необходима проверка.
Проверим, являются ли числа 1 и -5 корнями исходного уравнения.
Подставляя в левую часть исходного уравнения х = 1, получаем
log2(1+1) + log2(1+3) = log22 + log24 = 1 + 2 = 3, т.е. х = 1 — корень уравнения.
При х = -5 числа х + 1 и х + 3 отрицательны, и поэтому левая часть уравнения не имеет смысла, т.е. х = -5 не является корнем этого уравнения.
Ответ x = 1

Решить уравнение lg(2x 2 — 4x + 12) = lg x + lg(x+3)
По свойству логарифмов
lg(2x 2 — 4x + 12) = lg(x 2 + 3x)
откуда
2x 2 — 4x + 12 = x 2 + 3x
x 2 — 7x + 12 = 0
x1 = 3, х2 = 4
Проверка показывает, что оба значения х являются корнями исходного уравнения.
Ответ x1 = 3, х2 = 4

Решить уравнение log4(2x — 1) • log4x = 2 log4(2x — 1)
Преобразуем данное уравнение:
log4(2x — 1) • log4x — 2 log4(2x — 1) = 0
log4(2х — 1) • (log4 x — 2) = 0
Приравнивая каждый из множителей левой части уравнения к нулю, получаем:
1) log4 (2х — 1) = 0, откуда 2х — 1 = 1, х1 = 1
2) log4 х — 2 = 0, откуда log4 = 2, х2 = 16
Проверка показывает, что оба значения х являются корнями исходного уравнения.
Ответ x1 = 1, х2 = 16

💡 Видео

Логарифмы с нуля за 20 МИНУТ! Introduction to logarithms.Скачать

Логарифмы с нуля за 20 МИНУТ! Introduction to logarithms.

ЛИНЕЙНЫЕ УРАВНЕНИЯ - Как решать линейные уравнения // Подготовка к ЕГЭ по МатематикеСкачать

ЛИНЕЙНЫЕ УРАВНЕНИЯ - Как решать линейные уравнения // Подготовка к ЕГЭ по Математике

Производная: секретные методы решения. Готовимся к ЕГЭ | Математика TutorOnlineСкачать

Производная: секретные методы решения. Готовимся к ЕГЭ | Математика TutorOnline

Производные функций ln(x) и е^хСкачать

Производные функций ln(x) и е^х

РЕАКЦИИ ИОННОГО ОБМЕНА, ИОННОЕ УРАВНЕНИЕ - Урок Химия 9 класс / Подготовка к ЕГЭ по ХимииСкачать

РЕАКЦИИ ИОННОГО ОБМЕНА, ИОННОЕ УРАВНЕНИЕ - Урок Химия 9 класс / Подготовка к ЕГЭ по Химии

Решите уравнение ★ y'-2y=e^(2x) ★ Линейное дифференциальное уравнение 1-го порядкаСкачать

Решите уравнение ★ y'-2y=e^(2x) ★ Линейное дифференциальное уравнение 1-го порядка

Logarithmic Form to Exponential Form (Natural Log Edition) 🤯 #Shorts #algebra #math #educationСкачать

Logarithmic Form to Exponential Form (Natural Log Edition) 🤯 #Shorts #algebra #math #education
Поделиться или сохранить к себе: