Уравнения с двумя неизвестными 6 класс задачи

Уравнение с двумя переменными. 6-й класс

Разделы: Математика

Класс: 6

Цели:

  • углубление и расширение знаний по предмету;
  • развитие математического кругозора, логического мышления;
  • стимулирование устойчивого интереса к математике.

Задачи:

  • развитие математических способностей и логического мышления;
  • развитие познавательного интереса, умение применять полученные знания в нестандартных задачах.

Каждый год в школе проводится олимпиада по математике. Задачи, которые предлагают на олимпиадах разного уровня, чаще всего являются нестандартными. Для их решения нужно уметь использовать материал школьной программы в нестандартных, непривычных для ребенка ситуациях. Внеурочная деятельность по предмету позволяет учителю решать этот вопрос. Чем раньше удается сформировать у учащихся интерес к предмету, тем глубже будут знания. А радость от полученного решения трудной нестандартной задачи будет велика.
Среди тем, предлагаемых для внеклассной работы с учащимися 5-6 классов, есть задачи, которые можно свести к уравнению с несколькими переменными. В них число переменных меньше, чем число уравнений. Это вызывает определенную трудность. С другой стороны, учащиеся в 5-6 классе не владеют в нужной мере методами решения уравнений и систем. Обычно решению помогают некоторые дополнительные условия, сформулированные в задаче. Речь идет о заданиях, в которых надо решить уравнение в целых или натуральных числах.
В этой работе мы рассмотрим задачи для внеклассной работы с учащимися 5-6 классов, которые сводятся к уравнению с двумя переменными (неопределенные уравнения) и методы их решения.

1. Использование понятия НОД (наибольший общий делитель)

Задача. Ребята получили на новогодней елке одинаковые подарки. Во всех подарках вместе 123 апельсина и 82 яблока. Сколько ребят присутствовало на елке? Сколько яблок и апельсинов было в каждом подарке?

Решение. Все подарки одинаковые, т.е. в каждом одинаковое число апельсинов и яблок. Надо найти наибольшее целое число, на которое делятся числа 123 и 82. 123 = 3 . 41, 82 = 2 . 41. Получаем, что ребят на елке было 41 человек. В каждом подарке было: 123 : 41 = 3 апельсина и 82 : 41 = 2 яблока.

Ответ: 41 ребенок, 2 яблока и 3 апельсина

2. Признаки делимости при решении задач

Задача. Можно ли разменять 100 р., имея рублевые, трехрублевые и пятирублевые купюры, так, чтобы всего было 29 купюр?
Решение. Пусть в размене участвуют х рублевых, у трехрублевых и z пятирублевых купюр, х + у + z =29, х + 3у + 5z = 100. Записав это равенство в виде (х + у + z) + (2у + 4z) = 100, заключаем, что х + у + z = 29 – четное число, т.к. числа 100 и 2у + 4z – четные числа. Следовательно, нельзя разменять 100 р с помощью 29 купюр достоинством в 1р, 3 р, 5р.

Задача. Решите в натуральных числах х и у уравнение 22х + 13у = 1000.
Решение. Из уравнения видно, что число у должно быть четным. Кроме того, так как 22х + 13у > 13у, то 1000 > 13у, Уравнения с двумя неизвестными 6 класс задачи> у, 76 Уравнения с двумя неизвестными 6 класс задачи> у. Следовательно, 2 . 16 + 1 = 33, а 33 делится на 11. Очередное значение у больше 16 не на 11, а на 22. Значит, у = 38; далее у = 38 + 22 = 60. Для каждого из значений у = 16, 38, 60 вычислим соответствующее значение х.

3. Свойства уравнений

Учащиеся 5 класса и большую часть 6 класса не владеют правилом переноса слагаемых из одной части уравнения в другую. Это осложняет решения задачи, сводящейся к уравнению вида ах + ву = с. Поэтому разумно на примере чашечных весов познакомить детей с некоторыми свойствами уравнений.

Свойство: Если к обеим частям уравнения прибавить или вычесть одно и то же число, то полученное в результате этого новое уравнение имеет те же и только те же решения, что и исходное уравнение.

Задача. В клетке находятся фазаны и кролики. Известно, что у них 35 голов и 94 ноги. Сколько в клетке фазанов и сколько кроликов?

Решение. Пусть в клетке х фазанов и у кроликов. Тогда общее число зверей х + у= 35. У фазанов по 2 ноги, т.е. 2х ног у всех фазанов. У кроликов по 4 лапы, т.е. 4у лап у всех кроликов. Найдем общее число лап 2х + 4у = 94.
Попробуем решить это уравнение, используя знание материала 5 класса.
Запишем уравнение 2х + 4у = 94 в виде: 2х + 2у + 2у = 94, 2(х + у) + 2у = 94. Воспользуемся заменой выражения х + у на тождественно равное х + у = 35. Получим: 2 . 35 + 2у = 94, 70 + 2у = 94, 2у = 24, у = 12, тогда х = 23.

Ответ: было 23 фазана и 12 кроликов.

4. Метод перебора

Этот метод применяется в задачах, при решении которых, приходится перебирать различные варианты. Применяется он в основном тогда, когда искомые величины могут быть только целыми числами, а множество всех таких значений конечно.
Нередко в задачах используется свойство делимости целых чисел, а метод перебора выступает в виде составной части решения.

Задача. Дети собирали макулатуру. Каждый мальчик собрал по 21 кг, а каждая девочка по 15 кг. Всего дети собрали 174 кг. Сколько мальчиков и девочек собирали макулатуру?

Решение. Пусть девочек было х человек, а мальчиков у. Составим уравнение 15х + 21у = 174.

Видео:Математика 6 класс (Урок№51 - Решение задач с помощью уравнений. Часть 1.)Скачать

Математика 6 класс (Урок№51 - Решение задач с помощью уравнений. Часть 1.)

Задачи по теме «Решение задач, составлением уравнения» (6 класс)

Обращаем Ваше внимание, что в соответствии с Федеральным законом N 273-ФЗ «Об образовании в Российской Федерации» в организациях, осуществляющих образовательную деятельность, организовывается обучение и воспитание обучающихся с ОВЗ как совместно с другими обучающимися, так и в отдельных классах или группах.

Задачи на составление уравнения (6класс)

  1. Кофейник и две чашки вмещают 740 г воды. В кофейник входит на 380 г больше, чем в чашку. Сколько граммов воды вмещает кофейник?
  1. За три дня было продано 830 кг апельсинов. Во второй день продали на 30 кг меньше, чем в первый, а в третий – в 3 раза больше, чем во второй. Сколько килограммов апельсинов было продано в первый день?
  1. Велосипедист проехал 43 км. По проселочной дороге он проехал в 3 раза большее расстояние, чем по лесной тропинке, а по тропинке на 35 км меньше, чем по шоссе. Какой длины была каждая часть пути велосипедиста?
  1. В двух альбомах 750 марок, причем в первом альбоме имевшихся марок составляли иностранные марки. Во втором альбоме иностранные марки составляли 0,9 имевшихся там марок. Сколько всего марок было в каждом альбоме, если число

иностранных марок в них было одинаково?

  1. В одной бочке 110 л бензина, а в дугой 130 л. После того как из второй бочки взяли в 2 раза больше бензина, чем из первой, в первой оказалось на 5 л больше, чем во второй. Сколько литров бензина взяли из каждой бочки?
  1. В летние каникулы я проехал на поезде на 120 км больше, чем проплыл на теплоходе. Если бы я проехал на поезде в 4 раза больше, а на теплоходе проплыл в 8 раз больше, чем в действительности, то общий путь составил бы 1200 км. Сколько километров я проплыл на теплоходе?
  1. В клетке сидят фазаны и кролики. У них 19 голов и 62 ноги. Сколько фазанов и сколько кроликов в клетке?
  1. – Скажи мне знаменитый Пифагор, сколько учеников посещают твою школу и слушают твои беседы

– Вот сколько, – ответил Пифагор, – половина изучает математику, четверть – природу, седьмая часть проводит время в размышлении, и, кроме того, есть еще три женщины.

  1. В одной пачке было в 2,5 раза больше тетрадей, чем в другой. Когда из второй пачки переложили в первую 5 тетрадей, то во второй стало в 3 раза меньше тетрадей, чем в первой. Сколько тетрадей было в каждой пачке первоначально?
  2. В первом вагоне трамвая ехало в 1,5 раза больше пассажиров, чем во втором. После того как из первого вагона вышли 5 пассажиров, а во второй вошли 3 пассажира, в обоих вагонах пассажиров стало поровну. Сколько пассажиров ехало в каждом вагоне первоначально?
  3. В бидоне было в 2 раза больше молока, чем в банке. После того как из банки взяли 2л, а из бидона 3 л, в банке осталось молока в 4,5 раза меньше, чем в бидоне. Сколько литров молока было в бидоне и в банке вместе?
  4. В парке 20% всех деревьев составляют березы, третью часть – клены, дубов на 18 больше, чем кленов, а остальные 94 дерева – липы. Сколько всего деревьев в этом парке?
  5. На овощную базу завезли 140 т картофеля и 80 т капусты. Потом с базы ежедневно вывозили картофеля в 2,5 раза больше, чем капусты, и через 8 дней их количество на базе стало одинаковым. Сколько всего тонн овощей вывозили ежедневно с базы?
  6. Пассажирский поезд проходит расстояние между двумя городами за 10 ч, а товарный – за 12 ч 30 мин. Товарный поезд идет со скоростью на 28 км/ч меньшей, чем пассажирский. Каково расстояние между городами?
  7. В питомнике было 450 саженцев яблонь и 180 саженцев слив. За день купили в 4 раза больше яблонь, чем слив, и саженцев слив осталось на 150 меньше, чем яблонь. Сколько всего саженцев купили за этот день?
  8. В первом бидоне было в 4 раза больше оливкового масла, чем во втором. Когда из первого бидона перелили во второй 1,6 л, то во втором бидоне стало в 1,5 раза больше масла, чем в первом. Сколько литров масла стало в каждом бидоне?

Видео:Решение задач с помощью уравнений. Видеоурок 29. Математика 6 классСкачать

Решение задач с помощью уравнений. Видеоурок 29. Математика 6 класс

Решение уравнений с двумя неизвестными

В математике большая часть задач ориентирована на решение стандартных уравнений, в которых представлена одна переменная. Однако, некоторые из них, помимо числовых выражений, содержат одновременно две неизвестные. Перед тем как приступить к решению такого уравнения, стоит изучить его определение.

Видео:Линейное уравнение с двумя переменными. 6 класс.Скачать

Линейное уравнение с двумя переменными. 6 класс.

Определение

Итак, уравнением с двумя неизвестными называют любое равенство следующего типа:

a*x + b*y =с, где a, b, c — числа, x, y — неизвестные переменные.

Ниже приведены несколько примеров:

Уравнение с двумя неизвестными точно так же, как и с одной, имеет решение. Однако такие выражения, как правило, имеют бесконечное множество разных решений, поэтому в алгебре их принято называть неопределенными.

Видео:Уравнение с двумя неизвестными. Решить в целых числах. ЗадачаСкачать

Уравнение с двумя неизвестными. Решить в целых числах. Задача

Решение задач

Чтобы решить подобные задачи, необходимо отыскать любую пару значений x и y, которая удовлетворяла бы его, другими словами, обращала бы уравнение с неизвестными x и y в правильное числовое равенство. Найти удовлетворяющую пару чисел можно при помощи метода подбора.

Для наглядности объяснений подберем корни для выражения: y-x = 6.

При y=5 и x=-1 равенство становится верным тождеством 5- (-1) = 6. Поэтому пару чисел (-1; 5) можно считать корнями выражения y-x = 6. Ответ: (-1; 5).

Необходимо отметить, что записывать полученный ответ по правилам необходимо в скобках через точку с запятой. Первым указывается значение х, вторым — значение y.

У равенств такого вида может и не быть корней. Рассмотрим такой случай на следующем примере: x+y = x+y+9

Приведем исходное равенство к следующему виду:

В результате мы видим ошибочное равенство, следовательно, это выражение не имеет корней.

При решении уравнений можно пользоваться его свойствами. Первое их них: каждое слагаемое можно вынести в другую часть выражения. Вместе с этим обязательно нужно поменять знак на обратный. Получившееся равенство будет равнозначно исходному.

Например, из выражения 20y — 3x = 16 перенесем неизвестное y в другую его часть.

Оба равенства равносильны.

Второе свойство: допустимо умножать или делить части выражения на одинаковое число, не равное нолю. В итоге получившиеся равенства будут равнозначны.

Оба уравнения также равносильны.

Уравнения с двумя неизвестными 6 класс задачи

Видео:Линейное уравнение с одной переменной. 6 класс.Скачать

Линейное уравнение с одной переменной. 6 класс.

Система уравнений с двумя неизвестными

Система уравнений представляет собой некоторое количество равенств, выполняющихся одновременно. В большинстве задач приходится находить решение системы, состоящей из двух равенств с двумя переменными.

Для решения системы уравнений необходимо найти пару чисел, обращающих оба уравнения системы в правильное равенство. Решением может служить одна пара чисел, несколько пар чисел или вовсе их отсутствие.

Решить подобные системы уравнений можно, применяя следующие методы.

Метод подстановки

  1. Выражаем неизвестное из любого равенства через вторую переменную.
  2. Подставляем получившееся выражение неизвестного во второе равенство и решаем его.
  3. Делаем подстановку полученного значения неизвестного и вычисляем значение второго неизвестного.

Метод сложения

  1. Приводим к равенству модули чисел при каком-либо неизвестном.
  2. Производим вычисление одной из переменных, произведя сложение или вычитание полученных выражений.
  3. Подставляем найденное значение в какое-либо уравнение в первоначальной системе и вычисляем вторую переменную.

Графический метод

  1. Выражаем в каждом равенстве одну переменную через другую.
  2. Строим графики двух имеющихся уравнений в одной координатной плоскости.
  3. Определяем точку их пересечения и ее координаты. На этом шаге у вас может получиться три варианта: графики пересекаются — у системы единственно верный вариант решения; прямые параллельны друг другу — система решений не имеет; графики совпадают — у системы бесконечно много решений.
  4. Делаем проверку, подставив полученные значения в исходную систему равенств.

При нахождении корней у одной системы всеми этими способами у вас обязательно должен получиться одинаковый результат, если вы, конечно, все сделали правильно.

В настоящее время есть возможность решения подобных задач с помощью встроенных средств офисной программы Excel, а также на специализированных онлайн-ресурсах и калькуляторах. С помощью них вы легко можете проверить правильность своих вычислений и результатов.

Надеемся, что наша статья помогла вам в освоении этой базовой темы школьной математики. Если же вы пока не можете справиться с решением уравнений такого вида, не расстраивайтесь. Для понимания и закрепления изученной темы рекомендуется как можно больше практиковаться, и тогда у вас без труда получится решать задачи любой сложности. Желаем вам удачи в покорении математических вершин!

Видео:Линейное уравнение с двумя переменными. Практическая часть. 6 класс.Скачать

Линейное уравнение с двумя переменными. Практическая часть. 6 класс.

Видео

Из этого видео вы узнаете, как решать уравнения с двумя неизвестными.

🎬 Видео

Математика 6 класс. Решение задач на составление уравненийСкачать

Математика 6 класс. Решение задач на составление уравнений

Решение уравнений, 6 классСкачать

Решение уравнений, 6 класс

Решение уравнений в несколько действий. Как объяснить ребенку решение уравнений?Скачать

Решение уравнений в несколько действий. Как объяснить ребенку решение уравнений?

Решить уравнение - Математика - 6 классСкачать

Решить уравнение - Математика - 6 класс

Линейное уравнение с двумя переменными. Практическая часть. 6 класс.Скачать

Линейное уравнение с двумя переменными. Практическая часть. 6 класс.

Решение задач с помощью уравнений.Скачать

Решение задач с помощью уравнений.

Алгоритм решения задач с помощью систем уравнений. Практическая часть. 9 класс.Скачать

Алгоритм решения задач с помощью систем уравнений. Практическая часть. 9 класс.

Решение уравнений ( подобные слагаемые ) . 6 класс .Скачать

Решение уравнений ( подобные слагаемые ) . 6 класс .

Решение системы линейных уравнений с двумя переменными способом подстановки. 6 класс.Скачать

Решение системы линейных уравнений с двумя переменными способом подстановки. 6 класс.

Линейное уравнение с одной переменной. Практическая часть. 6 класс.Скачать

Линейное уравнение с одной переменной. Практическая часть. 6 класс.

Cистемы уравнений. Разбор задания 6 и 21 из ОГЭ. | МатематикаСкачать

Cистемы уравнений. Разбор задания 6 и 21 из ОГЭ.  | Математика

Решение задач с помощью уравнений. 6 классСкачать

Решение задач с помощью уравнений. 6 класс

Линейное уравнение с двумя переменными. 7 класс.Скачать

Линейное уравнение с двумя переменными. 7 класс.

Пропорция. Основное свойство пропорции. Практическая часть - решение задачи. 2 часть. 6 класс.Скачать

Пропорция. Основное свойство пропорции. Практическая часть - решение задачи. 2 часть. 6 класс.
Поделиться или сохранить к себе: