Раскрытие скобок и правила применения – это одна из основных тем математике, на базе которой решаются многие задания во всех последующих классах. Поэтому правила раскрытия скобок необходимо усвоить в обязательном порядке.
Итак, основная функция скобок – задать порядок вычислений, так как в зависимости от того, в какой последовательности будут решаться примеры и выражения, зависит ответ. Раскрыть скобки означает избавиться от них, не влияя на результат . При этом существуют правила, которые применяются при раскрытии скобок.
- Раскрытие скобок: правила
- Правило раскрытия скобок при сложении
- Правило раскрытия скобок при вычитании
- Раскрытие скобок при умножении
- Раскрытие скобок при делении
- Раскрытие скобок при умножении двух скобок
- Раскрытие вложенных скобок
- Раскрытие скобок в натуральной степени
- 5 класс «Уравнения» тренажер тренажёр по математике (5 класс) на тему
- Скачать:
- Предварительный просмотр:
- Памятка : «Решение уравнений», 5 класс
- Дистанционное обучение как современный формат преподавания
- Математика: теория и методика преподавания в образовательной организации
- Методика обучения математике в основной и средней школе в условиях реализации ФГОС ОО
- Дистанционные курсы для педагогов
- Найдите материал к любому уроку, указав свой предмет (категорию), класс, учебник и тему:
- Материал подходит для УМК
- Другие материалы
- Вам будут интересны эти курсы:
- Оставьте свой комментарий
- Автор материала
- Дистанционные курсы для педагогов
- Подарочные сертификаты
- 📽️ Видео
Видео:Уравнения со скобками - 5 класс (примеры)Скачать
Раскрытие скобок: правила
Правило раскрытия скобок при сложении
Если перед скобками стоит плюс, то скобки просто опускаются.
Иными словами, скобки исчезнут, а то, что было в скобках, запишется без изменений.
Например, (a−b) = a−b.
В данном правиле следует учитывать, что в математике не принято писать знак плюс, если он стоит в выражении первым. Например, если мы складываем два положительных числа 2 и 3, то запишем 2+3, а не +2+3. Значит перед скобками, которые стоят в начале выражения, стоит плюс, который не пишут.
Пример 1: 8+(5−3) = 10. Ответ: 8+5–3 = 10.
Пример 2: 6+(−1+2) = 7. Ответ: 6–1+2 = 7.
Пример 3: 8a + (3b −6a). Ответ: 8a + 3b −6a = 2a + 3b.
Правило раскрытия скобок при вычитании
Если перед скобками стоит минус, то скобки опускаются, а каждое слагаемое внутри нее меняет свой знак на противоположный.
Например, −(a−b) = −a+b
Пример 1: 8–(5–3) = 6. Ответ: 8 – 5 + 3 = 6.
Пример 2: 6 − (−1 + 2) = 5. Ответ: 6 + 1 – 2 = 5.
Пример 3: 8a–(3b −6a). Ответ: 8a – 3b + 6a = 14a – 3b.
Пример 4: −(5b −2). Ответ: −5b +2.
Раскрытие скобок при умножении
Если перед скобками стоит знак умножения, то каждое число внутри скобок умножается на множитель, стоящий перед скобками.
При этом умножение минуса на минус дает плюс, а умножение минуса на плюс дает минус.
Данное правило основано на распределительном законе умножения: a(b+c) = ab + ac.
Пример 1: 8×(5 − 3) = 16. Ответ: 8 ×5 − 8 ×3 = 16.
Пример 2: a×(7 +2). Ответ: a×7+a×2 = 7a + 2a = 9a.
Пример 3: 8×(3b −6a). Ответ: 8×3b – 8×6a = 24b–48a
Раскрытие скобок при делении
Если после скобок стоит знак деления, то каждое число, стоящее внутри скобок, делится на делитель, стоящий после скобок.
Пример 1: (25−15):5. Ответ: 25:5−15:5= 2.
Пример 2: (−14a +10):2. Ответ: −14a:2 +10:2 = −7a +5.
Пример 3: (36b + 6a):6. Ответ: 36b:6 + 6a:6 = 6b + a.
Раскрытие скобок при умножении двух скобок
При умножении скобки на скобку, каждое слагаемое первой скобки умножается на каждое слагаемое второй скобки.
Например, (c+d) × (a−b) = c×(a−b)+d×(a−b) = ca−cb+da−db
Пример. Раскрыть скобки: (2−a) × (3a−1).
Решение:
Шаг 1. Убираем первую скобку (каждое ее слагаемое умножаем на вторую скобку): 2 × (3a−1) − a × (3a−1).
Шаг 2. Раскрываем произведение скобок: (2×3a− 2×1) – (a×3a−a×1) = 2×3a− 2×1 – a×3a + a×1.
Шаг 3. Перемножаем и приводим подобные слагаемые: 6a–2–3a2+a = 7a–2–3a2
Раскрытие вложенных скобок
Иногда встречаются примеры со скобками, которые вложены в другие скобки. Чтобы решить такую задачу, нужно сначала раскрыть внутреннюю скобку (при этом остальное выражение оставить без изменений), а потом внешнюю скобку.
Пример 1. 7a + 2 × (5− (3a+b)).
Решение:
Шаг 1. Раскроем внутреннюю скобку (не трогая остальное): 7a + 2 × (5 − (3a+b)) = 7a + 2 × (5 − 3a − b).
Шаг 2. Раскроем внешнюю скобку: 7a + 2 × (5 − (3a+b)) = 7a + 2×5 − 2×3a − 2×b.
Шаг 3. Упростим выражение: 7a + 10 − 6a − 2b = a+10-2b.
Раскрытие скобок в натуральной степени
Если стоит скобка в натуральной степени (n), то чтобы раскрыть скобки, нужно найти произведение скобок, перемноженных несколько раз (n раз).
Например, в примере (a+b)2 = (a+b)×(a+b) нужно перемножить скобки (a+b) два раза, далее раскрываем скобки, где каждое слагаемое первой скобки умножается на каждое слагаемое второй скобки.
Видео:Уравнение с двумя скобками.5 класс.МатематикаСкачать
5 класс «Уравнения» тренажер
тренажёр по математике (5 класс) на тему
уравнения «со скобками»
Видео:Решение уравнений в несколько действий. Как объяснить ребенку решение уравнений?Скачать
Скачать:
Вложение | Размер |
---|---|
1_uravneniya_trenazher.doc | 40 КБ |
Видео:Уравнения. 5 классСкачать
Предварительный просмотр:
- (128 + х) — 48 = 22
- 133 — (х + 73) = 43
- 145 — (45 + х) = 55
- (39 + x) — 27 = 23
- 6·x + 131 = 437
- 238 + х : 8 = 265
- 490 – y · 7 = 350
- х·9 – 754 = 155
- k : 16 – 109 = 231
- 67 – 36 : х = 55
- 8 · (х — 7) = 1080
- (k + 11): 23 = 27
- 900 : (210 +х) =36
- 124 : (3х +4) = 4
- 63 : (2·х — 1) = 7
- 248 : (41 – 2·х) = 8
- 18 · (7·х + 26) = 1854
- (5·х+1) : 16 =6
- (483-8·х) : 43 = 9
- 21· (5·х+14)=2499
- (128 + х) — 48 = 22
- 133 — (х + 73) = 43
- 145 — (45 + х) = 55
- (39 + x) — 27 = 23
- 6·x + 131 = 437
- 238 + х : 8 = 265
- 490 – y · 7 = 350
- х·9 – 754 = 155
- k : 16 – 109 = 231
- 67 – 36 : х = 55
- 8 · (х — 7) = 1080
- (k + 11): 23 = 27
- 900 : (210 +х) =36
- 124 : (3х +4) = 4
- 63 : (2·х — 1) = 7
- 248 : (41 – 2·х) = 8
- 18 · (7·х + 26) = 1854
- (5·х+1) : 16 =6
- (483-8·х) : 43 = 9
- 21· (5·х+14)=2499
- (128 + х) — 48 = 22
- 133 — (х + 73) = 43
- 145 — (45 + х) = 55
- (39 + x) — 27 = 23
- 6·x + 131 = 437
- 238 + х : 8 = 265
- 490 – y · 7 = 350
- х·9 – 754 = 155
- k : 16 – 109 = 231
- 67 – 36 : х = 55
- 8 · (х — 7) = 1080
- (k + 11): 23 = 27
- 900 : (210 +х) =36
- 124 : (3х +4) = 4
- 63 : (2·х — 1) = 7
- 248 : (41 – 2·х) = 8
- 18 · (7·х + 26) = 1854
- (5·х+1) : 16 =6
- (483-8·х) : 43 = 9
- 21· (5·х+14)=2499
- (128 + х) — 48 = 22
- 133 — (х + 73) = 43
- 145 — (45 + х) = 55
- (39 + x) — 27 = 23
- 6·x + 131 = 437
- 238 + х : 8 = 265
- 490 – y · 7 = 350
- х·9 – 754 = 155
- k : 16 – 109 = 231
- 67 – 36 : х = 55
- 8 · (х — 7) = 1080
- (k + 11): 23 = 27
- 900 : (210 +х) =36
- 124 : (3х +4) = 4
- 63 : (2·х — 1) = 7
- 248 : (41 – 2·х) = 8
- 18 · (7·х + 26) = 1854
- (5·х+1) : 16 =6
- (483-8·х) : 43 = 9
- 21· (5·х+14)=2499
Видео:Сложные уравнения. Как решить сложное уравнение?Скачать
Памятка : «Решение уравнений», 5 класс
Обращаем Ваше внимание, что в соответствии с Федеральным законом N 273-ФЗ «Об образовании в Российской Федерации» в организациях, осуществляющих образовательную деятельность, организовывается обучение и воспитание обучающихся с ОВЗ как совместно с другими обучающимися, так и в отдельных классах или группах.
(Х – 87) – 27 = 36; Х-87 в уравнении является уменьшаемым. Чтобы найти неизвестное уменьшаемое , нужно к разности прибавить вычитаемое
Х – 87 = 63; х в уравнении является уменьшаемым. Чтобы найти неизвестное уменьшаемое , нужно к разности прибавить вычитаемое
Проверка: (150 – 87) – 27 = 36;
87- ( 41 + У ) = 22; 41 + У в уравнении является вычитаемым . Чтобы найти неизвестное вычитаемое, нужно из уменьшаемого вычесть разность
41 + У = 65; У в уравнении является слагаемым. Чтобы найти неизвестное слагаемое , нужно из суммы вычесть известное слагаемое
Проверка: 87- ( 41 + 24 ) = 22;
(у – 35) + 12 = 32; у – 35 в уравнении является слагаемым. Чтобы найти неизвестное слагаемое , нужно из суммы вычесть известное слагаемое
у – 35 = 20; у в уравнении является уменьшаемым. Чтобы найти неизвестное уменьшаемое , нужно к разности прибавить вычитаемое
(237 + х) – 583 = 149;
468 – ( 259 – х) = 382;
(237 + х) – 583 = 149;
237 + х = 149 + 583;
(237 + х) – 583 = 149;
237 + х – 583 = 149;
х – (583 – 237) = 149;
468 – ( 259 – х) = 382;
259 – х = 468 – 382;
468 – ( 259 – х) = 382; 468 – 259 + х = 382;
Решение уравнений, приведение подобных слагаемых
Пример 1: 8х-х=49 ; сначала запишем знаки умножения,
8*х-1*х=49 ; затем воспользуемся распределительным свойством (вынесем общую переменную за скобки)
Х*7=49 ; х является неизвестным множителем . Чтобы найти неизвестный множитель , нужно произведение разделить на известный множитель
Пример 2: 2х+5х+350=700 ; воспользуемся распределительным свойством (вынесем общую переменную за скобки)
Х*(2+5)+350=700 ; приведем подобные слагаемые (т.е. сложим числа в скобках)
7х является неизвестным слагаемым . Чтобы найти неизвестное слагаемое нужно из суммы вычесть известное слагаемое
7х=350; х является неизвестным множителем . Чтобы найти неизвестный множитель , нужно произведение разделить на известный множитель
2*50 + 5*50 + 350 = 700;
100 + 250 + 350 = 700;
Пример: 270: х + 2 = 47;
( 270 : х — является слагаемым.
Чтобы найти неизвестное слагаемое нужно из суммы вычесть известное слагаемое
( х является делителем . Чтобы найти неизвестный делитель , нужно делимое разделить на частное)
Пример: а : 5 – 12 = 23;
Чтобы найти неизвестное уменьшаемое , нужно к разности прибавить вычитаемое )
( а является делимым. Чтобы найти неизвестное делимое , нужно частное умножить на делитель .
Курс повышения квалификации
Дистанционное обучение как современный формат преподавания
- Сейчас обучается 939 человек из 80 регионов
Курс профессиональной переподготовки
Математика: теория и методика преподавания в образовательной организации
- Сейчас обучается 686 человек из 75 регионов
Курс повышения квалификации
Методика обучения математике в основной и средней школе в условиях реализации ФГОС ОО
- Сейчас обучается 313 человек из 69 регионов
Ищем педагогов в команду «Инфоурок»
Видео:Сложные уравнения со скобками. Как решать уравнения в несколько действий в 5 классе.Скачать
Дистанционные курсы для педагогов
«Взбодрись! Нейрогимнастика для успешной учёбы и комфортной жизни»
Свидетельство и скидка на обучение каждому участнику
Найдите материал к любому уроку, указав свой предмет (категорию), класс, учебник и тему:
5 588 599 материалов в базе
Материал подходит для УМК
«Математика», Виленкин Н.Я., Жохов В.И. и др.
Самые массовые международные дистанционные
Школьные Инфоконкурсы 2022
33 конкурса для учеников 1–11 классов и дошкольников от проекта «Инфоурок»
«Психологические методы развития навыков эффективного общения и чтения на английском языке у младших школьников»
Свидетельство и скидка на обучение каждому участнику
Другие материалы
- 09.12.2019
- 256
- 2
- 08.12.2019
- 254
- 0
- 19.11.2019
- 200
- 2
- 18.11.2019
- 902
- 7
- 18.11.2019
- 311
- 0
- 17.11.2019
- 321
- 0
- 17.11.2019
- 296
- 10
- 17.11.2019
- 219
- 4
Вам будут интересны эти курсы:
Оставьте свой комментарий
Авторизуйтесь, чтобы задавать вопросы.
Добавить в избранное
- 15.12.2019 55976
- DOCX 17.4 кбайт
- 6501 скачивание
- Рейтинг: 5 из 5
- Оцените материал:
Настоящий материал опубликован пользователем Кретинина Светлана Сергеевна. Инфоурок является информационным посредником и предоставляет пользователям возможность размещать на сайте методические материалы. Всю ответственность за опубликованные материалы, содержащиеся в них сведения, а также за соблюдение авторских прав несут пользователи, загрузившие материал на сайт
Если Вы считаете, что материал нарушает авторские права либо по каким-то другим причинам должен быть удален с сайта, Вы можете оставить жалобу на материал.
Автор материала
- На сайте: 4 года и 5 месяцев
- Подписчики: 0
- Всего просмотров: 60659
- Всего материалов: 9
Московский институт профессиональной
переподготовки и повышения
квалификации педагогов
Видео:Уравнение. 5 класс.Скачать
Дистанционные курсы
для педагогов
663 курса от 690 рублей
Выбрать курс со скидкой
Выдаём документы
установленного образца!
Учителя о ЕГЭ: секреты успешной подготовки
Время чтения: 11 минут
В Швеции запретят использовать мобильные телефоны на уроках
Время чтения: 1 минута
В Курганской области дистанционный режим для школьников продлили до конца февраля
Время чтения: 1 минута
Каждый второй ребенок в школе подвергался психической агрессии
Время чтения: 3 минуты
В ростовских школах рассматривают гибридный формат обучения с учетом эвакуированных
Время чтения: 1 минута
Ленобласть распределит в школы прибывающих из Донбасса детей
Время чтения: 1 минута
Инфоурок стал резидентом Сколково
Время чтения: 2 минуты
Подарочные сертификаты
Ответственность за разрешение любых спорных моментов, касающихся самих материалов и их содержания, берут на себя пользователи, разместившие материал на сайте. Однако администрация сайта готова оказать всяческую поддержку в решении любых вопросов, связанных с работой и содержанием сайта. Если Вы заметили, что на данном сайте незаконно используются материалы, сообщите об этом администрации сайта через форму обратной связи.
Все материалы, размещенные на сайте, созданы авторами сайта либо размещены пользователями сайта и представлены на сайте исключительно для ознакомления. Авторские права на материалы принадлежат их законным авторам. Частичное или полное копирование материалов сайта без письменного разрешения администрации сайта запрещено! Мнение администрации может не совпадать с точкой зрения авторов.
Только 23 февраля!
Получите новую
специальность
по низкой цене
Цена от 1220 740 руб. Промокод на скидку Промокод скопирован в буфер обмена ПП2302 Выбрать курс Все курсы профессиональной переподготовки
📽️ Видео
УРАВНЕНИЯ СО СКОБКАМИ. Примеры | МАТЕМАТИКА 5 классСкачать
Математика 5 класс. 28 октября. Вынесение множителя за скобки в уравнениях #2Скачать
Обыкновенные дроби и действия над ними. Практическая часть. 5 класс.Скачать
Уравнение. Практическая часть - решение задачи. 1 часть. 5 класс.Скачать
КАК РЕШАТЬ УРАВНЕНИЯ С ДРОБЯМИ И СКОБКАМИ? Примеры | МАТЕМАТИКА 5 классСкачать
Решение простых уравнений. Что значит решить уравнение? Как проверить решение уравнения?Скачать
КАК РАСКРЫТЬ СКОБКИ?Скачать
Уравнение 5 классСкачать
Уравнения с дробями. Как решать уравнения с дробями в 5 классе.Скачать
Уравнение с дробями видео урок ( Математика 5 класс )Скачать
Решение сложных уравнений 4-5 класс.Скачать
Математика 5 класс. Уравнение. Корень уравненияСкачать
Уравнение. Практическая часть - решение задачи. 2 часть. 5 класс.Скачать