Уравнения с дробями для 6 класса по математике примеры для решения

Решение уравнений с дробями

Уравнения с дробями для 6 класса по математике примеры для решения

О чем эта статья:

5 класс, 6 класс, 7 класс

Содержание
  1. Понятие дроби
  2. Основные свойства дробей
  3. Понятие уравнения
  4. Понятие дробного уравнения
  5. Как решать уравнения с дробями
  6. 1. Метод пропорции
  7. 2. Метод избавления от дробей
  8. Что еще важно учитывать при решении
  9. Универсальный алгоритм решения
  10. Примеры решения дробных уравнений
  11. Материал для устного счёта по математике в 6 классе на тему «Уравнения с обыкновенными дробями»
  12. Краткое описание документа:
  13. Математика: теория и методика преподавания в образовательной организации
  14. Дистанционное обучение как современный формат преподавания
  15. Педагогическая деятельность в контексте профессионального стандарта педагога и ФГОС
  16. Дистанционные курсы для педагогов
  17. Найдите материал к любому уроку, указав свой предмет (категорию), класс, учебник и тему:
  18. Материал подходит для УМК
  19. Другие материалы
  20. Вам будут интересны эти курсы:
  21. Оставьте свой комментарий
  22. Автор материала
  23. Дистанционные курсы для педагогов
  24. Подарочные сертификаты
  25. Как решать уравнения с дробями. Показательное решение уравнений с дробями.
  26. 🎦 Видео

Видео:Уравнения с дробями 6 класс (задания, примеры) - как решать?Скачать

Уравнения с дробями 6 класс (задания, примеры) - как решать?

Понятие дроби

Прежде чем отвечать на вопрос, как найти десятичную дробь, разберемся в основных определениях, видах дробей и разницей между ними.

Дробь — это рациональное число, представленное в виде a/b, где a — числитель дроби, b — знаменатель. Есть два формата записи:

  • обыкновенный вид — ½ или a/b,
  • десятичный вид — 0,5.

Дробь — это одна из форм деления, записываемая с помощью дробной черты. Над чертой принято писать делимое (число, которое делим) — числитель. А под чертой всегда находится делитель (на сколько делим), его называют знаменателем. Черта между числителем и знаменателем означает деление.

Дроби бывают двух видов:

  1. Числовые — состоят из чисел. Например, 2/7 или (1,8 − 0,3)/5.
  2. Алгебраические — состоят из переменных. Например, (x + y)/(x − y). Значение дроби зависит от данных значений букв.

Дробь называют правильной, когда ее числитель меньше знаменателя. Например, 4/9 и 23/57.

Неправильная дробь — та, у которой числитель больше знаменателя или равен ему. Например, 13/5. Такое число называют смешанным — читается так: «две целых три пятых», а записывается — 2 3/5.

Видео:Решить уравнение с дробями - Математика - 6 классСкачать

Решить уравнение с дробями - Математика - 6 класс

Основные свойства дробей

Дробь не имеет значения, если делитель равен нулю.

Дробь равняется нулю в том случае, если числитель равен нулю, а знаменатель отличен от нуля.

Дроби a/b и c/d называют равными, если a × d = b × c.

Если числитель и знаменатель дроби умножить или разделить на одно и то же натуральное число, то получится равная ей дробь.

Действия с дробями можно выполнять те же, что и с обычными числами: складывать, вычитать, умножать и делить. Также, дроби можно сравнивать между собой и возводить в степень.

Видео:Решение уравнений, 6 классСкачать

Решение уравнений, 6 класс

Понятие уравнения

Уравнение — это математическое равенство, в котором неизвестна одна или несколько величин. Наша задача — найти неизвестные числа так, чтобы при их подстановке в пример получилось верное числовое равенство. Давайте на примере:

  • Возьмем выражение 4 + 5 = 9. Это верное равенство, потому что 4+5 действительно 9. Если бы вместо 9 стояло любое другое число — мы бы сказали, что числовое равенство неверное.
  • Уравнением можно назвать выражение 4 + x = 9, с неизвестной переменной x, значение которой нужно найти. Результат должен быть таким, чтобы знак равенства был оправдан, и левая часть равнялась правой.

Корень уравнения — то самое число, которое уравнивает выражения справа и слева, когда мы подставляем его на место неизвестной. В таком случае афоризм «зри в корень» — очень кстати при усердном решении уравнений.

Равносильные уравнения — это те, в которых совпадают множества решений. Другими словами, у них одни и те же корни.

Решить уравнение значит найти все его корни или убедиться, что корней нет.

Алгебраические уравнения могут быть разными, самые часто встречающиеся — линейные и квадратные. Расскажем и про них.

Линейное уравнение выглядит таках + b = 0, где a и b — действительные числа.

Что поможет в решении:

  • если а не равно нулю, то у уравнения единственный корень: х = −b : а;
  • если а равно нулю, а b не равно нулю — у уравнения нет корней;
  • если а и b равны нулю, то корень уравнения — любое число.
Квадратное уравнение выглядит так:ax 2 + bx + c = 0, где коэффициенты a, b и c — произвольные числа, a ≠ 0.

Видео:Уравнение с дробямиСкачать

Уравнение с дробями

Понятие дробного уравнения

Дробное уравнение — это уравнение с дробями. Да, вот так просто. Но это еще не все. Чаще всего неизвестная стоит в знаменателе. Например, вот так:

Уравнения с дробями для 6 класса по математике примеры для решения Уравнения с дробями для 6 класса по математике примеры для решения

Такие уравнения еще называют дробно-рациональными. В них всегда есть хотя бы одна дробь с переменной в знаменателе.

Если вы видите в знаменателях числа, то это уравнения либо линейные, либо квадратные. Решать все равно нужно, поэтому идем дальше. Примеры:

Уравнения с дробями для 6 класса по математике примеры для решения Уравнения с дробями для 6 класса по математике примеры для решения

На алгебре в 8 классе можно встретить такое понятие, как область допустимых значений — это множество значений переменной, при которых это уравнение имеет смысл. Его используют, чтобы проверить корни и убедиться, что решение правильное.

Мы уже знаем все важные термины, их определения и наконец подошли к самому главному — сейчас узнаем как решить дробное уравнение.

Видео:Уравнения с дробями. Как решать уравнения с дробями в 5 классе.Скачать

Уравнения с дробями. Как решать уравнения с дробями в 5 классе.

Как решать уравнения с дробями

1. Метод пропорции

Чтобы решить уравнение методом пропорции, нужно привести дроби к общему знаменателю. А само правило звучит так: произведение крайних членов пропорции равно произведению средних. Проверим, как это работает.

Итак, у нас есть линейное уравнение с дробями:

Уравнения с дробями для 6 класса по математике примеры для решения

В левой части стоит одна дробь — оставим без преобразований. В правой части видим сумму, которую нужно упростить так, чтобы осталась одна дробь.

Уравнения с дробями для 6 класса по математике примеры для решения

После того, как в левой и правой части осталась одна дробь, можно применить метод пропорции и перемножить крест-накрест числители и знаменатели.

Уравнения с дробями для 6 класса по математике примеры для решения

2. Метод избавления от дробей

Возьмем то же самое уравнение, но попробуем решить его по-другому.

Уравнения с дробями для 6 класса по математике примеры для решения

В уравнении есть две дроби, от которых мы очень хотим избавиться. Вот, как это сделать:

  • подобрать число, которое можно разделить на каждый из знаменателей без остатка;
  • умножить на это число каждый член уравнения.

Ищем самое маленькое число, которое делится на 5 и 9 и без остатка — 45 как раз подходит. Умножаем каждый член уравнения на 45 и избавляемся от знаменателей. Вуаля!

Уравнения с дробями для 6 класса по математике примеры для решения

Вот так просто мы получили тот же ответ, что и в прошлый раз.

Что еще важно учитывать при решении

  • если значение переменной обращает знаменатель в 0, значит это неверное значение;
  • делить и умножать уравнение на 0 нельзя.

Универсальный алгоритм решения

Определить область допустимых значений.

Найти общий знаменатель.

Умножить каждый член уравнения на общий знаменатель и сократить полученные дроби. Знаменатели при этом пропадут.

Раскрыть скобки, если нужно и привести подобные слагаемые.

Решить полученное уравнение.

Сравнить полученные корни с областью допустимых значений.

Записать ответ, который прошел проверку.

Курсы по математике от Skysmart помогут закрепить материал и разобраться в сложных темах.

Видео:Решение уравнений. Видеоурок 28. Математика 6 классСкачать

Решение уравнений. Видеоурок 28. Математика 6 класс

Примеры решения дробных уравнений

Чтобы стать успешным в любом деле, нужно чаще практиковаться. Мы уже знаем, как решаются дробные уравнения — давайте перейдем к решению задачек.

Пример 1. Решить дробное уравнение: 1/x + 2 = 5.

  1. Вспомним правило х ≠ 0. Это значит, что область допустимых значений: х — любое число, кроме нуля.
  2. Отсчитываем справа налево в числителе дробной части три знака и ставим запятую.
  3. Избавимся от знаменателя. Умножим каждый член уравнения на х.

Решим обычное уравнение.

Пример 2. Найти корень уравненияУравнения с дробями для 6 класса по математике примеры для решения

  1. Область допустимых значений: х ≠ −2.
  2. Умножим обе части уравнения на выражение, которое сократит оба знаменателя: 2(х+2)
  3. Избавимся от знаменателя. Умножим каждый член уравнения на х.

Уравнения с дробями для 6 класса по математике примеры для решения

Переведем новый множитель в числитель..

Уравнения с дробями для 6 класса по математике примеры для решения

Сократим левую часть на (х+2), а правую на 2.

Пример 3. Решить дробное уравнение: Уравнения с дробями для 6 класса по математике примеры для решения

    Найти общий знаменатель:

Умножим обе части уравнения на общий знаменатель. Сократим. Получилось:

Выполним возможные преобразования. Получилось квадратное уравнение:

Решим полученное квадратное уравнение:

Получили два возможных корня:

Если x = −3, то знаменатель равен нулю:

Если x = 3 — знаменатель тоже равен нулю.

  • Вывод: числа −3 и 3 не являются корнями уравнения, значит у данного уравнения нет решения.
  • Видео:Решение уравнений с дробными числами в 6 классеСкачать

    Решение уравнений с дробными числами в 6 классе

    Материал для устного счёта по математике в 6 классе на тему «Уравнения с обыкновенными дробями»

    Обращаем Ваше внимание, что в соответствии с Федеральным законом N 273-ФЗ «Об образовании в Российской Федерации» в организациях, осуществляющих образовательную деятельность, организовывается обучение и воспитание обучающихся с ОВЗ как совместно с другими обучающимися, так и в отдельных классах или группах.

    Рабочие листы и материалы для учителей и воспитателей

    Более 300 дидактических материалов для школьного и домашнего обучения

    Математика 6 класс. Устный счёт на тему «Уравнени с обыкновенными дробями»

    Уравнения с дробями для 6 класса по математике примеры для решения

    Ответы. Математика 6 класс. Устный счёт на тему «Уравнени с обыкновенными дробями»

    Уравнения с дробями для 6 класса по математике примеры для решения

    Краткое описание документа:

    Математика 6 класс. Устный счёт на тему «Уравнени с обыкновенными дробями»

    Уравнения с дробями для 6 класса по математике примеры для решения

    Ответы. Математика 6 класс. Устный счёт на тему «Уравнени с обыкновенными дробями»

    Уравнения с дробями для 6 класса по математике примеры для решения

    Уравнения с дробями для 6 класса по математике примеры для решения

    Курс профессиональной переподготовки

    Математика: теория и методика преподавания в образовательной организации

    • Сейчас обучается 694 человека из 75 регионов

    Уравнения с дробями для 6 класса по математике примеры для решения

    Курс повышения квалификации

    Дистанционное обучение как современный формат преподавания

    • Сейчас обучается 867 человек из 78 регионов

    Уравнения с дробями для 6 класса по математике примеры для решения

    Курс повышения квалификации

    Педагогическая деятельность в контексте профессионального стандарта педагога и ФГОС

    • Сейчас обучается 52 человека из 24 регионов

    «Мотивация здорового образа жизни. Организация секций»

    Свидетельство и скидка на обучение каждому участнику

    • Для всех учеников 1-11 классов
      и дошкольников
    • Интересные задания
      по 16 предметам

    Уравнения с дробями для 6 класса по математике примеры для решения Уравнения с дробями для 6 класса по математике примеры для решения

    «Как закрыть гештальт: практики и упражнения»

    Свидетельство и скидка на обучение каждому участнику

    Видео:КАК РЕШИТЬ УРАВНЕНИЕ С ДРОБЯМИ? Примеры | МАТЕМАТИКА 6 классСкачать

    КАК РЕШИТЬ УРАВНЕНИЕ С ДРОБЯМИ? Примеры | МАТЕМАТИКА 6 класс

    Дистанционные курсы для педагогов

    Самые массовые международные дистанционные

    Школьные Инфоконкурсы 2022

    33 конкурса для учеников 1–11 классов и дошкольников от проекта «Инфоурок»

    Найдите материал к любому уроку, указав свой предмет (категорию), класс, учебник и тему:

    5 840 965 материалов в базе

    Материал подходит для УМК

    Уравнения с дробями для 6 класса по математике примеры для решения

    «Математика», Зубарева И.И., Мордкович А.Г.

    § 19. Решение уравнений

    Ищем педагогов в команду «Инфоурок»

    Другие материалы

    • 13.05.2018
    • 3573
    • 94

    Уравнения с дробями для 6 класса по математике примеры для решения

    • 13.05.2018
    • 6011
    • 251

    Уравнения с дробями для 6 класса по математике примеры для решения

    • 02.05.2018
    • 752
    • 0

    Уравнения с дробями для 6 класса по математике примеры для решения

    • 02.05.2018
    • 334
    • 2

    Уравнения с дробями для 6 класса по математике примеры для решения

    • 17.04.2018
    • 2142
    • 23

    Уравнения с дробями для 6 класса по математике примеры для решения

    • 15.04.2018
    • 377
    • 1

    Уравнения с дробями для 6 класса по математике примеры для решения

    • 24.03.2018
    • 631
    • 0

    Уравнения с дробями для 6 класса по математике примеры для решения

    • 16.02.2018
    • 2763
    • 2

    Уравнения с дробями для 6 класса по математике примеры для решения

    «Учись, играя: эффективное обучение иностранным языкам дошкольников»

    Свидетельство и скидка на обучение
    каждому участнику

    Вам будут интересны эти курсы:

    Оставьте свой комментарий

    Авторизуйтесь, чтобы задавать вопросы.

    Добавить в избранное

    • 13.05.2018 5652
    • DOCX 747.5 кбайт
    • 50 скачиваний
    • Рейтинг: 5 из 5
    • Оцените материал:

    Настоящий материал опубликован пользователем Коряковцева Нина Владимировна. Инфоурок является информационным посредником и предоставляет пользователям возможность размещать на сайте методические материалы. Всю ответственность за опубликованные материалы, содержащиеся в них сведения, а также за соблюдение авторских прав несут пользователи, загрузившие материал на сайт

    Если Вы считаете, что материал нарушает авторские права либо по каким-то другим причинам должен быть удален с сайта, Вы можете оставить жалобу на материал.

    Автор материала

    Уравнения с дробями для 6 класса по математике примеры для решения

    • На сайте: 4 года и 3 месяца
    • Подписчики: 78
    • Всего просмотров: 957303
    • Всего материалов: 519

    Московский институт профессиональной
    переподготовки и повышения
    квалификации педагогов

    Видео:540 Математика 6 класс. Как решить уравнение с дробями.Скачать

    540 Математика 6 класс. Как решить уравнение с дробями.

    Дистанционные курсы
    для педагогов

    663 курса от 690 рублей

    Выбрать курс со скидкой

    Выдаём документы
    установленного образца!

    Уравнения с дробями для 6 класса по математике примеры для решения

    Учителя о ЕГЭ: секреты успешной подготовки

    Время чтения: 11 минут

    Уравнения с дробями для 6 класса по математике примеры для решения

    Онлайн-конференция о профессиональном имидже педагога

    Время чтения: 2 минуты

    Уравнения с дробями для 6 класса по математике примеры для решения

    Минпросвещения рекомендует школьникам сдавать телефоны перед входом в школу

    Время чтения: 1 минута

    Уравнения с дробями для 6 класса по математике примеры для решения

    С 1 сентября в российских школах будут исполнять гимн России

    Время чтения: 1 минута

    Уравнения с дробями для 6 класса по математике примеры для решения

    Минобрнауки отменило плановые и внеплановые проверки вузов в 2022 году

    Время чтения: 1 минута

    Уравнения с дробями для 6 класса по математике примеры для решения

    Российские школьники начнут изучать историю с первого класса

    Время чтения: 1 минута

    Уравнения с дробями для 6 класса по математике примеры для решения

    Госдума рассматривает проект о регулировании «продленок» в школах

    Время чтения: 1 минута

    Подарочные сертификаты

    Ответственность за разрешение любых спорных моментов, касающихся самих материалов и их содержания, берут на себя пользователи, разместившие материал на сайте. Однако администрация сайта готова оказать всяческую поддержку в решении любых вопросов, связанных с работой и содержанием сайта. Если Вы заметили, что на данном сайте незаконно используются материалы, сообщите об этом администрации сайта через форму обратной связи.

    Все материалы, размещенные на сайте, созданы авторами сайта либо размещены пользователями сайта и представлены на сайте исключительно для ознакомления. Авторские права на материалы принадлежат их законным авторам. Частичное или полное копирование материалов сайта без письменного разрешения администрации сайта запрещено! Мнение администрации может не совпадать с точкой зрения авторов.

    Видео:дробное уравнение как решать для 6 классаСкачать

    дробное уравнение как решать для 6 класса

    Как решать уравнения с дробями. Показательное решение уравнений с дробями.

    Решение уравнений с дробями рассмотрим на примерах. Примеры простые и показательные. С их помощью вы наиболее понятным образом сможете усвоить, как решать уравнения с дробями.
    Например, требуется решить простое уравнение x/b + c = d.

    Уравнения такого типа называется линейным, т.к. в знаменателе находятся только числа.

    Решение выполняется путем умножения обоих частей уравнения на b, тогда уравнение принимает вид x = b*(d – c), т.е. знаменатель дроби в левой части сокращается.

    Например, как решить дробное уравнение:
    x/5+4=9
    Умножаем обе части на 5. Получаем:
    х+20=45

    Другой пример, когда неизвестное находится в знаменателе:

    Уравнения такого типа называются дробно-рациональными или просто дробными.

    Решать дробное уравнение бы будем путем избавления от дробей, после чего это уравнение, чаще всего, превращается в линейное или квадратное, которое решается обычным способом. Следует только учесть следующие моменты:

    • значение переменной, обращающее в 0 знаменатель, корнем быть не может;
    • нельзя делить или умножать уравнение на выражение =0.

    Здесь вступает в силу такое понятие, как область допустимых значений (ОДЗ) – это такие значения корней уравнения, при которых уравнение имеет смысл.

    Таким образом решая уравнение, необходимо найти корни, после чего проверить их на соответствие ОДЗ. Те корни, которые не соответствуют нашей ОДЗ, из ответа исключаются.

    Например, требуется решить дробное уравнение:

    Исходя из вышеуказанного правила х не может быть = 0, т.е. ОДЗ в данном случае: х – любое значение, отличное от нуля.

    Избавляемся от знаменателя путем умножения всех членов уравнения на х

    И решаем обычное уравнение

    5x – 2х = 1
    3x = 1
    х = 1/3

    Решим уравнение посложнее:

    Уравнения с дробями для 6 класса по математике примеры для решения

    Здесь также присутствует ОДЗ: х Уравнения с дробями для 6 класса по математике примеры для решения-2.

    Решая это уравнение, мы не станем переносить все в одну сторону и приводить дроби к общему знаменателю. Мы сразу умножим обе части уравнения на выражение, которое сократит сразу все знаменатели.

    Для сокращения знаменателей требуется левую часть умножить на х+2, а правую — на 2. Значит, обе части уравнения надо умножать на 2(х+2):

    Уравнения с дробями для 6 класса по математике примеры для решения

    Это самое обычное умножение дробей, которое мы уже рассмотрели выше

    Уравнения с дробями для 6 класса по математике примеры для решения

    Запишем это же уравнение, но несколько по-другому

    Уравнения с дробями для 6 класса по математике примеры для решения

    Левая часть сокращается на (х+2), а правая на 2. После сокращения получаем обычное линейное уравнение:

    х = 4 – 2 = 2, что соответствует нашей ОДЗ

    Для закрепления материала рекомендуем еще посмотреть видео.

    Решение уравнений с дробями не так сложно, как может показаться. В этой статье мы на примерах это показали. Если у вас возникли какие то трудности с тем, как решать уравнения с дробями, то отписывайтесь в комментариях.

    🎦 Видео

    Виленкин. 6 класс за 100 минут. Математика: теория чисел, дроби, уравненияСкачать

    Виленкин. 6 класс за 100 минут. Математика: теория чисел, дроби, уравнения

    Как решать уравнения с дробью? #shortsСкачать

    Как решать уравнения с дробью? #shorts

    Математика 6 класс (Урок№1 - Повторение материала по темам «Обыкновенные дроби» и «Смешанные дроби»)Скачать

    Математика 6 класс (Урок№1 - Повторение материала по темам «Обыкновенные дроби» и «Смешанные дроби»)

    Пропорция. Основное свойство пропорции. Практическая часть - решение задачи. 2 часть. 6 класс.Скачать

    Пропорция. Основное свойство пропорции. Практическая часть - решение задачи. 2 часть. 6 класс.

    Решение уравнений - математика 6 классСкачать

    Решение уравнений - математика 6 класс

    Линейное уравнение с одной переменной. 6 класс.Скачать

    Линейное уравнение с одной переменной. 6 класс.

    как решать дробиСкачать

    как решать дроби

    Решение уравнений ( подобные слагаемые ) . 6 класс .Скачать

    Решение уравнений ( подобные слагаемые ) . 6 класс .

    Математика 6 класс (Урок№51 - Решение задач с помощью уравнений. Часть 1.)Скачать

    Математика 6 класс (Урок№51 - Решение задач с помощью уравнений. Часть 1.)

    Уравнение с дробями видео урок ( Математика 5 класс )Скачать

    Уравнение с дробями видео урок ( Математика 5 класс )
    Поделиться или сохранить к себе: