Уравнения с делением на ноль

Почему на ноль делить нельзя — правило, доказательство и и примеры

Ноль — одна из самых интересных цифр в математике. Сама по себе она ничего не значит, однако если стоит рядом с единицей, двойкой или тройкой, то увеличивает число ровно в десять раз. А еще любая функция в нулевой степени будет всегда равняться одному. Этот знак активно использовался даже в индейской культуре, например, племенем Майя. У них он обозначал «начало и бесконечность». Ну и как не упомянуть о запрете, который известен каждому школьнику: «На ноль делить нельзя!»

Уравнения с делением на ноль

Видео:✓ Можно ли делить на ноль? | Ботай со мной #019 | Борис ТрушинСкачать

✓ Можно ли делить на ноль? | Ботай со мной #019  | Борис Трушин

Учителя многое недоговаривали

Сразу же стоит отметить, что эта аксиома является не совсем правдивой. На самом деле на ноль делить можно, и конец света от этого не настанет. Просто уравнение будет иметь бесконечное количество решений. Чем-то напоминает число «Пи», которое можно высчитывать в течение всей жизни и так и не получить конечного результата. Однако когда человек учится в школе, у него даже не возникает вопроса о том, что будет, если поделить на ноль. Слова преподавателя он воспринимает на веру.

Но может ли учитель объяснить маленькому ребенку, что такое принцип неопределенности или натуральный предел? Куда проще будет сказать, что на 0 делить нельзя. Правило не является совсем правдивым, зато школьник не будет пытаться решить уравнение, которое имеет несколько миллиардов решений. Если же в процессе разбора задачи выходит так, что все-таки приходится поделить на ноль, значит, где-то была допущена ошибка.

На самом деле у такой задачи может быть и иное решение — бесконечность (при условии, что при расчетах не было допущено ошибок). Чтобы это доказать, не придется использовать формулу массы или закон сохранения энергии из физики. В

большинстве случаев алгебраическое доказательство сводится к решению одного простого уравнения или функции, которая в итоге имеет бесконечное количество решений.

Видео:Решение простых уравнений. Что значит решить уравнение? Как проверить решение уравнения?Скачать

Решение простых уравнений. Что значит решить уравнение? Как проверить решение уравнения?

Четыре действия в арифметике

Сложение, умножение, деление и вычитание — эти принципы известны каждому школьнику, учащемуся в средних классах. Однако далеко не все знают, что равноправными действиями обладают лишь первые два из них.

Уравнения с делением на ноль

Деление и вычитание — это операции, которые являются обратными сложению и умножению. Любые действия в математике могут быть легко построены лишь с помощью этих двух основ. Нужно лишь знать, как правильно выражать деление с помощью умножения или вычитание с помощью сложения. Здесь на помощь приходят уравнения, а также положительные и отрицательные числа. Иногда также приходится возводить число в какую-нибудь степень.

Чтобы было более понятно, следует немного попрактиковаться в арифметике. Что значит пример: «4−2»? Большинство школьников ответит на него достаточно просто: «Нужно взять 4 предмета, после чего провести удаление — отнять два из них, а затем взглянуть, сколько осталось». Вот только профессиональные математики представляют эту задачу совершенно иначе. Ее решение будет представлено уравнением: «x+2=4», корень которого представлен заменой арифметического действия. Нетрудно догадаться, что число «x» будет равно двум. Стоит отметить, что пример был решен без единого минуса.

Теперь немного о том, почему деление не считается полноправным действием в арифметике. В качестве примера возьмем следующее уравнение: «8:4=x». Всем и так понятно, что число «x» будет равно двум. Однако как получить это значение, не используя при этом деление? Правильно, нужно заменить его умножением. В результате математик получит уравнение: «x*4=8». Все очень просто и логично. Однако именно благодаря тому, что мы можем разделить, просто умножив, появляется первое определение того, что деление на ноль не имеет никакого смысла.

Уравнения с делением на ноль

Попробуем решить простой пример: «6:0». Пятиклассник сразу скажет, что оно не имеет решения. Однако мы ведь знаем, что можно записать это же выражение другой фразой: «0*x=6». То есть математик получает задание отыскать число, которое бы при умножении на 0 дало ему 6. Вот только каждому известно, что при умножении на 0 в итоге все равно получится 0. Это свойство числа является неотъемлемым и любой шанс опровергнуть аксиому лишен всякого смысла. Именно поэтому учителя и будут продолжать запрещать ученикам делить на ноль, ведь решить уравнение с умножением на это число попросту невозможно.

Видео:Деление на ноль. Объяснение математического смысла.Скачать

Деление на ноль. Объяснение математического смысла.

Принцип бесконечности

Уравнения с делением на ноль

Однако деление на ноль в высшей математике все-таки имеет решение. И оно даже не одно, их огромное множество. Этот прием называется принципом бесконечности и доказывает, что все-таки существует одно единственное число, которое можно разделить на ноль. Какое именно? Ну конечно же, сам ноль! Ведь если мы возьмем уравнение: «0*x=0», то оно будет успешно решаться — x будет равен нулю или любому другому числу, например, 512.

В этом и заключается принцип бесконечности. Ведь если вместо неизвестного показателя можно поставить любое число, то это значит, что уравнение с делением имеет огромное количество решений. Самое главное, чтобы один из множителей в обратном уравнении был также равен нулю. Другими словами, этот математический феномен также называется «принципом неопределенности» — какое бы число вы ни подставили вместо «x» (с плюсом или минусом, целое или дробное — неважно) — операция будет иметь неопределенное количество решений.

Работает ли этот факт с вычитанием? Не совсем! Если вы возьмете 5 яблок и вычтете из них ноль, то в итоге получится число, равное пяти. Но что если мы заменим одно из слагаемых числом «x»? Получится уравнение «5+x=5» Нетрудно догадаться, что уравнение имеет только одно решение, которое равно нулю. Однако можно ли подставить еще какое-то число, которое при сложении с другим отразит его зеркально? Разумеется, нет.

В этом и заключается одна из главных особенностей нуля. Если вы видите уравнение, в котором присутствует два слагаемых, а сумма равняется 5, то можете смело писать в решении «0», даже если вместо x там написана сложная система или логарифм.

Видео:ДЕЛЕНИЕ НА НОЛЬ 😉 #егэ #математика #профильныйегэ #shorts #огэСкачать

ДЕЛЕНИЕ НА НОЛЬ 😉 #егэ #математика #профильныйегэ #shorts #огэ

Арифметическая шутка с нулем

Правило «делить на ноль нельзя» (пример в предыдущем разделе) лежит в основе многих арифметических шуток, которые могут доказывать, что 2+2 равняется не 4, а 7. Однако если математик уяснит его, то никогда не будет введен в заблуждение. Возьмем в качестве примера уравнение «4*x+2-=7*x-35.» Подробный алгоритм решения выглядит следующим образом:

Уравнения с делением на ноль

  • Выносим за скобки знаменатели, дабы упростить решение. В правой части это будет четверка, а в левой — семерка. Получим уравнение: «4*(x — 5)=7*(x-5)».
  • Теперь необходимо умножить каждую часть уравнения на дробное число, которое равняется «1/(x-5)». Пример принимает следующий вид: «4*(х-5)/(х-5)=7*(х-5)/(х-5)».
  • Сокращаем дроби на «(x-5)», после чего получаем, что «4=7». Разбиваем левую часть на множители и узнаем, что «2+2» равняется не четырем, а семи.

Однако весь подвох заключается в том, что корень уравнения был равен пяти, а сокращать его с помощью дроби было нельзя, поскольку в итоге это привело к тому, что все уравнение было поделено на ноль. Поэтому при решении таких задач следует помнить важное правило: нельзя допускать, чтобы в знаменателе дроби оказался ноль. В противном случае это приведет вот к такому забавному решению, которое натолкнет математика на «открытие» ранее неизведанных «теорем».

Видео:Решение уравнений на умножение и деление.Скачать

Решение уравнений на умножение и деление.

Философия, да и только

Уравнения с делением на ноль

Многие люди используют пример с делением на ноль для того, чтобы объяснить некоторые закономерности, которые попросту не поддаются объяснению. Ведь что представляет собой само понятие «бесконечность», которую мы иногда можем получить в процессе решения некоторых уравнений? Никто не сможет ответить на этот вопрос, поскольку он находится за пределами нашего понимания. Это как объяснять гусенице, что такое закон притяжения. Безусловно, он на нее действует, однако столь примитивный организм никогда не сможет понять те законы, которые нас окружают, ведь ей движут всего лишь инстинкты.

То же самое и с делением на бесконечность. Да, мы можем записать огромное количество решений для функций и уравнений, в которых приходится делить на ноль. Но что в итоге это даст? Бесконечность — число или понятие, которое находится за гранью нашего восприятия. Решение подобного уравнения сравнимо с путешествием в кроличью нору. Даже если конечный результат не будет достигнут — есть над чем задуматься. К примеру, насколько же все-таки многогранным и удивительным является это число — ноль. Оно одновременно ничего не значит и значит слишком много.

Видео:Деление на 0Скачать

Деление на 0

График функции с нулем

Уравнения с делением на ноль

Лучше всего понять, что тип уравнения, в котором приходится делить на ноль, имеет бесконечное количество решений, помогает обычный график функции, который доводилось изучать каждому школьнику. Если говорить точнее, то потребуется гипербола, которая имеет обратную зависимость от функции. Выглядит рисунок в виде кривой с асимптотами — прямыми линиями, к которым симметрично стремится гипербола. Однако всем известно, что она никогда их не достигнет. Да, она пересекается возле точки, которая максимально близка к нулю, однако все-таки не достигает ее.

Вот такая получается математическая драма. Чем ближе функция приближается к своему значению, тем больше становится показатель «игрек», а «икс» — уменьшается. То есть если «y» будет стремиться к нулю, то «x» станет стремиться к бесконечности (или минус бесконечности). Так что такая функция не будет иметь решений, как бы математик не старался. Но ведь, по сути, в процессе решения никто не делит число на ноль. В роли делителя выступает число, которое имеет ничтожно малую величину. Вот так.

Именно поэтому многие опытные математики говорят, что при делении на ноль мы получаем бесконечность со знаком плюс или минус (в зависимости от знаменателя). Само собой, можно расписать на бумаге огромное множество решений до тех пор, пока известные числа просто не закончатся. Но стоит ли тратить свою жизнь на то, чтобы делать это? Ведь даже в школе учеников держат подальше от того, чтобы связываться с делением на ноль. Решить такое уравнение попросту невозможно, поскольку существуют миллиарды и даже триллионы возможных решений. Вот такой забавный парадокс с этим нулем.

Видео:Решение уравнений в несколько действий. Как объяснить ребенку решение уравнений?Скачать

Решение уравнений в несколько действий. Как объяснить ребенку решение уравнений?

Несколько умных ответов математикам

Поскольку решить уравнение с делением на ноль невозможно, стоит рассмотреть вариант ответов на случай, если на экзамене или где-нибудь на собеседовании будет задан вопрос от математика: «Почему на ноль делить нельзя?» Вот лишь несколько вариантов ответов, которые можно использовать и не ошибиться:

  • деление на ноль провоцирует принцип неопределённости;
  • ответов на такое уравнение существует бесконечное множество;
  • решение функции с гиперболой будет стремиться к нулю, но не достигнет его.

Ну а в качестве примера или «доказательства» аксиомы можно использовать уравнения, которые являются обратными общепринятым арифметическим действиям. Вот лишь несколько из них:

  • 0*x=0 — где вместо «x» можно подставить любое число, которое только вздумается;
  • 5-x=5 — таких «зеркальных» уравнений также существует бесконечное множество;
  • график функции, на котором «x» стремится к нулю, а «y» — к бесконечности.

Уравнения с делением на ноль

Многие работодатели и авторитетные личности, которые хотят проверить человека с математическим образованием на его знания, попросят доказать принцип бесконечности, на что можно привести эти простые примеры. Ведь каждый высший математик должен не просто знать правило, что на ноль делить нельзя, а уметь объяснить, почему именно решение таких уравнений является бессмысленным.

Надеемся, теперь вы понимаете, что решение задач, в которых в качестве делителя выступает ноль, неприлично много. Это значит, что пытаться разобрать их будет бессмысленно, поскольку принцип неопределенности попросту не даст довести пример до логического завершения.

Возможно, именно поэтому индейцы племени Майя и называли это число «началом и бесконечностью», ведь даже график функции никогда его не достигнет.

Видео:Почему нельзя делить на ноль? – Алексей Савватеев | Лекции по математике | НаучпопСкачать

Почему нельзя делить на ноль? – Алексей Савватеев | Лекции по математике | Научпоп

Делить на ноль — это норма. Часть 2

В прошлой части мы расширяли алгебру и смогли делить на ноль арифметически. В качестве бонуса, способ оказался не единственным. Однако, все эти алгебры не дали ответа на вопрос: “Что там внутри или почему нам это не показывают?”

Пока древние вязали узелки, такой вопрос возникнуть не мог. Сейчас, куда не глянь, “бла-бла, для а≠0”. Значит ответ затаился где-то между узелками и настоящим. В математике все строго и последовательно, а значит и ответ не мог потеряться.

Уравнения с делением на ноль

Мы попробуем приблизиться к ответу настолько близко насколько это возможно. Эта часть практически полностью посвящена философии арифметики. Скорее всего часть материала будет для Вас тривиальной. Однако у нас тут не повтор школьного курса арифметики.

Материал построен так, чтобы выделить структуру арифметики. Мы будем вгрызаться в нее с разных сторон и отрывать слои. Цель — понять, что на чем лежит.

Видео:В реале кто-то (не)прав! Деление 0 на 0Скачать

В реале кто-то (не)прав! Деление 0 на 0

2. Истина где-то рядом

Видео:Решение уравнений ( подобные слагаемые ) . 6 класс .Скачать

Решение уравнений ( подобные слагаемые ) . 6 класс .

2.1 Зачем вообще напрягаться?

Чтобы снова броситься в дебри, хотелось бы понять, почему этот вопрос периодически возникает и ради чего стоит искать ответ.

Давайте вспомним школьные годы, то время, когда нам впервые сказали: “На ноль делить нельзя, — вот так вот категорично. — Нельзя и все!”. А ведь до того в математике все было логично и последовательно. Складывали арбузы и вычитали дыни, яблоки перекатывали. Откуда не возьмись, на самом старте изучения математики, появился первый запретный плод.

  • «Нельзя и все!» или «Проверь на калькуляторе» — без комментариев. Особая педагогическая методика.

«Яблоко можно разделить на двоих. Тебя и друга Колю. Можно на троих. А если на ноль человек делить, то сколько раз разрезать нужно?» — да, непонятно выходит. Да и вопросом на вопрос отвечать неприлично. А учитель-то для чего? Твердят что математика “красивая”, математика “царица”, а тут такой конфуз.

“2∙0=0 и 3∙0=0, поделим оба равенства на ноль, то выходит что 2=0/0 и 3=0/0. Значит 2=3 что ли?” — пример, конечно, наглядный. Но такие примеры мало того что на вопрос ответа не дают, так еще и страх перед наукой сеют. А вдруг еще на что делить нельзя или умножать. А вдруг поскользнусь. А может учитель сам не разобрался?

  • «Чтобы понять нужно много знаний. Это в ВУЗе изучают, и то не все» — ну да, а че делить то нельзя? До этого момента у нас причинно-следственные связи не нарушались, шли от простого к сложному. А ведь ноль — число как число. Деление — операция как операция. Запрет на ровном месте!
  • Но система образования не щадит никого (пруф). Нет другого выхода, кроме как идти дальше и осваивать новые знания. В голове происходит “скачок знаний”, как будто тысячелетие эволюции математики было пропущено. И это только начало.

    Уравнения с делением на ноль

    «… не нужно проявлять лишней поспешности, нужно дать время ученику освоиться с тем внутренним переворотом, который в нем совершается в результате акта познания”, — Ф. Клейн, “Элементарная математика с точки зрения высшей”

    В старших классах, откуда ни возьмись, появляются формулы окружности и треугольников, дискриминант, тригонометрические тождества и т.п. Что их объединяет? Все они пришли сверху, совершенно неизвестно откуда. Их нужно просто использовать, в худшем случае зазубрить.

    Оказавшись в ВУЗе, большинство, вместо возвращения к пропущенному материалу, изучает «вышку» с уклоном в специальность. Объем формул, пришедших свыше, уже совершенно не смущает.

    Да, систему образования понять можно. Специалисту платят за результат, а не за то что он знает откуда экспонента в его расчетах.

    В итоге мы не приходим к выводам, так как это делают математики. В момент “скачка знаний”, то есть когда мы отбрасываем часть логических цепочек, вершится таинство. Мы принимаем на веру то что нам говорят. Учебник превращается в священное писание!

    Уравнения с делением на ноль

    Запрет деления на ноль — это первый и самый навязчивый запрет математики. Поэтому он запоминается на всю жизнь. Это так же педагогическая проблема, которая оставляет отпечаток на всю математику, как на “тайну покрытую мраком”. Это сложная проблема, по сравнению с ней найти большинство пропущенных логических цепочек не составляет труда.

    Превратить священное писание назад в учебник можно. Причина запрета должна стать строго определенной. Задача педагогов преподнести ее ясно. Наука не должна сеять сомнения.

    Видео:Схема Горнера. 10 класс.Скачать

    Схема Горнера. 10 класс.

    2.2 Что такое деление?

    Деле́ние (операция деления) — одно из четырёх простейших арифметических действий, обратное умножению. Деление — это такая операция, которая считает сколько раз одно содержится в другом.

    Что из этого следует:

      Деление не самостоятельная операция. Она определяется через умножение. Если посмотреть на определение умножения, то оно определяется через сложение. Вычитание так же определено через сложение. Сложение самостоятельно и ни от кого не зависит.

    В определении нет упоминания о нуле. При повсеместном запрете деления на ноль это весьма странно. Кстати, упоминания нуля нет и в определениях остальных арифметических операций.

  • Вторая часть определения не является частью определения, это всего лишь пояснение. Убедиться можно сравнив с аналогами в других проверенных источниках.
  • Уравнения с делением на ноль

    Похоже, самое полезное, что мы здесь нашли — это связь между операциями. Можно сказать что деление — вино третьего отжима, умножение и вычитание — второго, а сложение — первого. Возможно, именно по этой причине деление стало давать сбой при работе с нулем.

    Видео:Сложные уравнения. Как решить сложное уравнение?Скачать

    Сложные уравнения. Как решить сложное уравнение?

    2.3 Порождающие операции

    Итак, только операция сложения содержит правило о том, как по двум исходным аргументам (слагаемым) определить результат операции (сумму). Все остальные арифметические операции используют данное правило (соответствие чисел), но вдобавок накладывают свои “дополнительные условия”.

    Уравнения с делением на ноль

    В зависимости от “дополнительных условий” арифметические операции можно поделить на прямые и обратные:

      Прямые операции: это сложение, умножение и возведение в степень. Выражая эти операции через сложение, все слагаемые остаются известны. Определение результата любой из операций не представляет сложностей.

    Уравнения с делением на ноль

    Обратные операции: вычитание, деление, взятие корня (логарифмирование). Данные операции берут за основу соответствующую прямую операцию и “инвертируют” ее. Таким образом, выражая операцию через сложение, хотя бы одно из слагаемых оказывается неизвестно. Это слагаемое и есть результат операции. Сумма, как правило, известна.

    Уравнения с делением на ноль

    Определение результата операции, в общем случае, задача не тривиальная.

    Уравнения с делением на ноль

    Все прямые операции обладают одним свойством. Они являются замкнутыми. То есть тип результата полностью определяется типами входных чисел (невозможно получить из произведения двух целых чисел дробный результат).

    Обратные операции являются замкнутыми только частично (значение корня из целого числа может оказаться целым числом, а может и не оказаться). В тех случаях, где подобрать результат не удается операция оказывается не определена. Данную проблему издавна решают простым способом: рассматривают получившуюся запись операции и числа как новый тип чисел: Уравнения с делением на ноль.

    Таким образом, можно сказать что обратные операции и “порождают” новые типы чисел.

    В общем случае использование термина “обратная операция” неприемлемо для обозначения способности операции порождать новые типы чисел. Например, “дополнительными условиями” можно:

    • поместить результат операции в одно или несколько слагаемых (как показано на примере выше);
    • определить результат операции как ответ на вопрос, сколько слагаемых участвовало в операции (дробные числа, иррациональные числа использующие корень);
    • определить результат операции как сумму бесконечного количества слагаемых. При этом все слагаемые известны (число Пи и число Эйлера).

    Деление одна из порождающих операций. Возможно, в процессе рождения что-то пошло не так и новорожденный получил травму. Для того чтобы ответить на это вопрос нужно понять откуда взялось деление и откуда взялся ноль.

    Видео:геометрия деления на ноль ( для придирчивых )Скачать

    геометрия деления на ноль ( для придирчивых )

    2.4 Эволюция арифметики

    Попробуем структурировать наше представление об арифметических операциях и порождаемых ими типах чисел. Для наглядности представим один из вариантов, как может идти эволюция арифметики.

    2.4.1 Область определения

    Мы в пещере. С умением считать никто не родился. Однако в процессе “созерцания” появилось понимание, что такое понятие “количество”. То есть мы знаем что два мамонта и два яблока имеют нечто общее и можем это выразить, загибая пальцы. Соответственно ничего, кроме натуральных чисел на этом этапе мы не знаем.

    Уравнения с делением на ноль

    Множество натуральных чисел помечено звездочкой “*” для однозначности. Здесь и далее подчеркивается отсутствие понятия “ноль”.

    Есть несколько формальных определений последовательности натуральных чисел. Мы возьмем за основу аксиомы Пеано. Примечательно что эти определения не были описаны древними. Они появились только в 19 веке, а после прошли процедуру уточнения (в первоначальном варианте их было девять, в современном виде уже пять).

    Рассмотрим формальные определения и их суть в рамках нашей задачи (традиционное словесное описание можно найти на Википедии):

      Уравнения с делением на ноль
      Есть число “один” и оно натурально.

    Уравнения с делением на ноль
    Вводится функция следования S(x). Для всех натуральных аргументов она возвращает следующее за ним натуральное число. В первом приближении (весьма грубом) это S(x)=x+1, например 2=S(1) и 3=S(S(1)).

    Уравнения с делением на ноль
    Вводится явный запрет на глобальную закольцованность порождаемой последовательности чисел. Генерируя числа мы не можем получить элемент с которого начали генерацию, то есть единицу.

    Уравнения с делением на ноль
    Разные аргументы функции следования должны давать разные результаты. Таким образом вводится явный запрет на локальную закольцованность. То есть функция следования не должна повторно сгенерировать число, которое уже было сгенерировано.

    Уравнения с делением на ноль
    Математическая индукция, позволяющая подняться с уровня элементов последовательности до уровня последовательности в целом. Если какое-то высказывание “P” верно для единицы и для каждой пары соседних элементов, то оно верно и для всех элементов последовательности.

    Например. Для чисел 2 и 3, верно что между ними есть один средний элемент 2.5, для 3 и 4 это 3.5 и т.д. Делаем вывод, между любыми соседними натуральными числами есть средний элемент и он единственный.

    Какой вывод можно сделать из этих аксиом? Вводится запрет на закольцованность в любом виде (глобальную или локальную). Запрет на закольцованность всегда требует наличие следующего элемента. Так появляется математическое понятие “бесконечность” основанное на понятии «количество”. Понятие “бесконечность” не может существовать без понятия „количество”.

    Довольно часто за “стартовый элемент” в аксиомах Пиано берут ноль. Почему так делать нельзя, будет раскрыто при описании операции “вычитание” (уже совсем скоро).

    Функция следования не использует операцию сложения в прямом смысле этого слова. Это фундаментальная функция, которая используется как для построения множества натуральных чисел, так и для формального определения операции сложения.

    То есть и числа и арифметические операции определены при помощи функции следования.

    Функция следования входит в класс примитивно рекурсивных функций, рассматриваемых в теории алгоритмов. Как известно, понятие рекурсия не содержит требования ее конечности (достижимости терминальных ветвей), а значит она так же неявно определяет понятие “бесконечность”.

    2.4.2 Сложение

    Первая операция, возникшая в ходе нашей эволюции. Как целые пальцы не загибай, результат будет целым. Разве что у вождя сумма пальцев может быть чуть больше чем у всех остальных. Если пальцев не хватает, всегда можно позвать научного ассистента по пещере и расширить разрядную сетку.

    Уравнения с делением на ноль

    2.4.2 Вычитание

    В четверг охотники подстрелили 12 мамонтов. За пятницу съели 5 штук. Сколько мамонтов осталось?

    Уравнения с делением на ноль

    Задача хорошо решается путем введения разгибания пальцев. Но подход работает не всегда. Например, чтобы оценить запасы на выходные охотник загибает семь пальцев за остаток, разгибает пять пальцев за субботу (норма расхода в день) и “пытается” разжать за воскресенье.

    Уравнения с делением на ноль

    В этот момент между “try” и “catch” возникает ArithmeticException. Результат оказывается не определен. Наша операция определена только для случая, когда уменьшаемое больше вычитаемого.

    Уравнения с делением на ноль

    Однако определение вычитания не накладывает никаких ограничений. Чтобы избавиться от требования “a > b” введем “правило перестановки”. То есть позволим менять местами уменьшаемое и вычитаемое. Но чтобы тождество оставалось верным результат нужно пометить каким-то маркером, например знаком “минус”. Всякие маркеры для математики — дело обычное (например, признак отсутствия нуля у Уравнения с делением на ноль).

    Уравнения с делением на ноль

    За счет вспомогательной операции “перестановки” мы подошли к первой абстракции — “отрицательные числа”. Пометка в виде знака “минус” у натурального числа есть ничто иное как признак отложенного вычитания (но это только пока).

    Уравнения с делением на ноль

    У нас остался всего один не определенный случай, когда уменьшаемое и вычитаемое равны. Если мы захотим определить его, то нам придется ответить на вопрос что такое понятие “ничто”. Хотя к чему все эти сложности, обозначим “ничто” символом “0” (позже вникнем по полной).

    Уравнения с делением на ноль

    Осталось зафиксировать наше решение в виде “правил сложения/вычитания нуля”. Они следуют из определения нуля после пары нехитрых перестановок:

    Уравнения с делением на ноль

    Посмотрим, насколько хорошо работают введенные правила. Решая уравнения, мы по двум известным числам всегда можем найти неизвестное третье. Совершенно неважно в какой части уравнения оно стоит, решение всегда однозначно.

    Уравнения с делением на ноль

    Отрицательные числа появились в результате перестановки, ноль же заполнил “ничто”. Отрицательные числа и ноль рождены разными способами. Далее мы будем рассматривать две ветви эволюции: отдельно всех чисел без нуля и отдельно ноль.

    2.4.3 Умножение

    Умножение по определению является сокращенной записью сложения. Умножая натуральные числа, результат может быть только натуральным. На этом этапе эволюции для нас польза от определения заканчивается.

    Уравнения с делением на ноль

    Для отрицательных чисел в определении нет ни слова о том как их перемножать. Эти правила сформировались постепенно в ходе решения прикладных задач. В современной трактовке они известны как дополнение к умножению в виде “правил знаков”. Они определены настолько хорошо, что применяя их к целым не нулевым числам, операция остается замкнутой.

    Уравнения с делением на ноль

    В случае нуля ситуация отличается кардинально. Вводится еще одно правило “правило умножения нуля“ (умножение любого числа на ноль дает ноль). Но новым это правило только кажется. Ввести какое либо иное правило мы не можем. Определение умножения жестко связывает нас со сложением. Раскрывая умножение через сложение, мы используем “правила сложения/вычитания нуля”, соответственно ничего кроме нуля мы получить не можем.

    Уравнения с делением на ноль

    Если сравнить операции сложения и умножения в арифметике и общей алгебре, то можно заметить одно серьезное различие. В арифметике данные операции связаны по определению. Дистрибутивный закон является следствием этих определений. В общей алгебре наоборот, операции описываются независимо друг от друга, а уже в определении поля (кольца, если говорить точнее) связываются дистрибутивным законом. Как следствие:

    • В определении поля есть требование к обратному элементу. При этом для умножения и для сложения требование описано не симметрично. Допускается отсутствие обратного элемента по умножению для нейтральных элементов по сложению, но не наоборот.
    • Для придания симметрии при описании колес пришлось отказаться от привычного дистрибутивного закона, а значит и от оперирования полем.

    Поле, венец универсальности, “за уши” притянуто к элементарной арифметике. Но чтобы избавиться от этой подпорки (описать требования к операциям симметрично) придется расширить определение дистрибутивного закона (начиная с кольца конечно). Есть основания полагать, что венцом универсальности может стать другая алгебраическая система, для которой поле окажется частным случаем.

    2.4.4 Деление

    Деление — операция обратная умножению. В уравнениях с положительными и отрицательными числами появляется возможность подстановки не кратных чисел.

    Уравнения с делением на ноль

    Как следствие операция порождает “рациональные числа”.

    Уравнения с делением на ноль

    Чтобы вписать их в арифметику, в комплекте идут “правила действий с обыкновенными дробями”. К счастью, эти правила гармонично сосуществуют с введенными нами ранее “правилами знаков”. В итоге в уравнениях сохраняется возможность определить по двум известным числам неизвестное при любой расстановке.

    Уравнения с делением на ноль

    В случае нуля его можно умножать на рациональные числа. На этом всё, гармония закончилась! Только для двух из трех видов уравнений с произвольными числами решение может быть найдено.

    Уравнения с делением на ноль

    Уравнения с делением на ноль

    Во-первых, появилась возможность составить уравнение с настолько не удобными числами, что мы не сможем подобрать ни одного решения. Решение “не возможно”.

    Уравнения с делением на ноль

    Во-вторых, появилась возможность составить уравнение в котором есть бесконечное множество решений. Выбрать какое-то одно из них так же невозможно. Решение “не однозначно”.

    Уравнения с делением на ноль

    Несложно догадаться, корень проблемы деления на ноль лежит в “невозможности” и “неоднозначности” умножения нуля. Умножение, в свою очередь, ретранслирует “правила сложения/вычитания нуля”. По сути можно задать уравнения, обладающие такими же свойствами, используя только сложение.

    Уравнения с делением на ноль

    В обоих уравнениях нужно определить количество нулей, которые нужно сложить чтобы получить произвольное число или ноль.
    Деление не привнесло чего-то качественно нового. Произошла трансформация “невозможности” и “неоднозначности” сложения в конкретные сущности, в неопределенности вида 1/0 и 0/0 соответственно.

    Уравнения с делением на ноль

    Получается что деление, как первый подозреваемый, не виновато в том что на ноль делить нельзя.

    Уравнения с делением на ноль

    Пока не существует понятия “ноль” все операции, включая возведение в степень и взятие корня (логарифмирование), хорошо замкнуты (уже правда на комплексных числах) и арифметика работает великолепно. Но есть одно “но”, при такой конфигурации арифметики операция вычитания, оказывается определена не полностью.

    После введения нуля сложение и вычитание неплохо работает. Для остальных операций он скорее повод для установки костылей (Уравнения с делением на ноль), нежели равноправное число.

    Видео:Изучаем математику с нуля / Урок № 7 / Умножение и деление на нольСкачать

    Изучаем математику с нуля / Урок № 7 / Умножение и деление на ноль

    2.5 Что такое ноль?

    Итак, раз операция деления оказалась не виновата в запрете деления на ноль. Попробуем тогда собрать воедино все, что мы знаем о нуле:

      Потребность в нуле появилась при определении операции вычитания.

    Для разрешения большей части неопределенностей вычитания было введено “правило перестановки”. Знак минус перед числом, по сути, является маркером “отложенного вычитания”. Все что “правило перестановки” не осилило, закрыл собой ноль. По сути, ноль был введен для обозначения понятия “ничто”.
    В предыдущей части статьи (при проективном расширении числовой прямой) мы “с потолка” ввели беззнаковую бесконечность. Ноль, аналогичная “затычка” для всего, что нам не понятно. Последствия, в виде появления новых неопределенностей, оказываются весьма предсказуемы.

    У понятия “ничто”, отсутствует связь с понятием “количество” (основа для определения натуральных чисел и сложения). Эти понятия существуют сами по себе и мы можем “созерцать” их совершенно независимо, например “пять яблок” и “вакуум”. Отсюда следует, что в своей сути ноль так же не связан с натуральными числами, как понятие “ничто” не связанно с понятием “количество”. Вычитание использует данное понятие, но не порождает его.

    Отсутствие породившей операции качественно отличает ноль от всех остальных чисел.

    Для того, чтобы была ясна связь не рассмотренных нами типов чисел с операциями, продолжим, максимально кратко, тему эволюции. Мы остановились на делении. Комплексные числа и часть иррациональных порождаются операцией взятия корня (логарифмированием) над отрицательным числом. Прочие иррациональные (число Пи и число Эйлера) появляются за счет введения бесконечных сумм и бесконечных умножений. Мнимые единицы кватернионов даны по определению и не выведены арифметически. Соответственно, инородны в рамках эволюции чисел.

    Вероятно именно из-за возможности одновременного “созерцания” понятия “ничто” и понятия “количество” ноль иногда приписывают к натуральным числам. Однако гораздо более логичным видится вынесение нуля как минимум в отдельный тип чисел.

    Было принято, что ноль единый и абсолютный. Именно из этого, весьма спорного, предположения следуют “правила сложения/вычитания нуля” с другими числами. Как следствие, ноль обладает уникальным свойством, которое отсутствует у всех остальных чисел. В результате сложения нуля с произвольным числом неизвестно, сколько нулей участвовало в операции и были ли они вообще.

    Уравнения с делением на ноль

    На последнем пункте стоит остановиться поподробнее. Попробуем представить не абсолютный ноль.

    Допустим, у нас есть мамонт. Для его перевозки нужна тара. Если положить мамонта в тару, а потом вытащить, то в таре окажется “ничто” (прям как на картинке со спичкой выше). Однако тара для двух мамонтов несколько отличается от тары для одного. В случае кражи есть основание выставлять обвинение в соответствии с размером оставшейся тары. А значит, существуют ситуации когда одно “ничто” другому “ничто” рознь.

    Уравнения с делением на ноль

    Может ли “ничто” быть разным или “ничто” есть единая и абсолютная сущность? Это вопрос на который невозможно дать ответ. Аналогичен и бессмысленен спор на тему есть ли Бог, а и есть то единый он или их много. Ответа на этом свете мы не узнаем.

    Отношение математики к нулю как к единому и абсолютному объекту лучше описать по отдельным разделам математики:

      Общая алгебра. В алгебраических системах с разрешенным делением на ноль, очень ярко проявляется борьба с абсолютным нулем. Причудливые операции вычитания это не прихоть, а следствие уничтожения единого и абсолютного нуля. Например, в колесах для вычитания определено следующее тождество:

    Уравнения с делением на ноль

  • Математическая логика. Формально арифметика определяется расширением аксиом Пеано. Пять аксиом, определяющие ряд натуральных чисел, дополняются еще четырьмя. Это расширение определяет связь базовых арифметических операций (сложение и умножение) с числами:
    1. Уравнения с делением на ноль
    2. Уравнения с делением на ноль
    3. Уравнения с делением на ноль
    4. Уравнения с делением на ноль

    В этих аксиомах заложено особое отношение к нулю. Формально определяется объект со свойствами отличными от всех остальных чисел. Этому объекту посвящено две из девяти аксиом описывающих всю арифметику.
    Здесь мы прикасаемся к одному из проявлений теоремы Гёделя о неполноте. Невозможно средствами арифметики доказать или опровергнуть единую или множественную сущность нуля.

  • Теория алгоритмов. Можно заглянуть в арифметику еще глубже. Для построения последовательности натуральных чисел и определения операции сложения, используется класс примитивно рекурсивных функций. Функция следования S(x), используемся в аксиомах Пеано, одна из них. Наравне с ней определена Нулевая функция O(x), функция которая всегда возвращает ноль.
  • Таким образом, на самом дне арифметики, там где не существует ни натуральных чисел, ни сложения (а значит и прочих операций), существует ноль.

    Уравнения с делением на ноль

    Хорошо, ответа на вопрос сколько должно быть нулей арифметика дать не может. Мы пользуемся одним нулем. В колесах, рассмотренных в первой части, использовалась арифметика с бесконечным количеством нулей. А может ли быть конечное число нулей, но больше одного.

    Может и такие арифметики успешно используются. Один из ярких примеров арифметика со “знаковым нулем”, реализованная в JavaScript.

    Знаковый ноль, хоть записывается аналогично +0 и -0, не имеет ничего общего с исчислением бесконечно малых.

    Введение знакового нуля является еще одним вариантом расширения числовой прямой. В общей топологии существует очень близкое (но не тождественное) пространство “линия с двумя началами” (не хаусдорфово).

    Однако и эта арифметика грешит неопределенностями.

    Можно сделать вывод, что неопределенности в арифметике будут сохраняться до тех пор, пока количество нулей конечно.

    По большому счету неважно как мы будем относиться к нулю. Нужен ли нам единый и абсолютный ноль, а может парочка или вообще бесконечное количество, арифметика всегда сможет под нас подстроиться.

    Уравнения с делением на ноль

    Видео:Как решать уравнения с дробью? #shortsСкачать

    Как решать уравнения с дробью? #shorts

    2.6 Бесконечность наше всё

    Напоследок, хотелось бы представить хотя бы один вариант числовой оси содержащей бесконечное количество нулей (данный пример описывает концепцию и не претендует на математическую строгость).

    Для вычитания, когда уменьшаемое и вычитаемое равны, вместо ввода нуля определим операцию “сокращения”. То есть разрешаем вычеркивать эквивалентные выражения с противоположным знаком. Но если мы сократили все, то результат уже не пригоден к дальнейшему использованию.

    Уравнения с делением на ноль

    Отсчет в числовой оси начнем с единицы (от первого числа зародившего понятие “количество”). Для генерации остальных чисел воспользуемся бесконечной последовательностью, определенной функцией следования (она же использована в аксиомах Пеано). Это будет наш эталонный генератор бесконечной последовательности.

    Чтобы получить очень маленькое число при помощи функции следования нужно затратить столько же сил сколько и на генерацию очень большого. Используем функции f(x)=1/x и f(x)=x. Приводить в десятичный вид рациональную дробь задача не стоит, соответственно вычислительная сложность функций одинакова.

    Так как ни “абсолютный ноль“ (отмечен символом ноль), ни »потенциальная бесконечность» (отмечена символом беззнаковой бесконечности) недостижимы, ось растет из единицы бесконечно в обоих направлениях (масштаб неравномерный).

    Уравнения с делением на ноль

    При определении вычитания определено “правило перестановки”. Мы же, в свою очередь, делаем копию нашей прямой и отображаем ее зеркально. Числа-близнецы и недостижимые для них пределы помечаем знаком “минус”. Положительная прямая, не соединена с отрицательной. Переход из одной прямой в другую выполняется только за счет “правила перестановки”.

    Уравнения с делением на ноль

    Для наглядности изобразим полученную числовую прямую в виде круга. Так же, как мы делали при проективном расширении. Однако, предельные значения не смыкаем (компактификацию не выполняем). Данная трансформация смысловой нагрузки не несет и выполнена только для улучшения восприятия.

    Уравнения с делением на ноль

    Теперь мы готовы к самому главному. Выполним переход от единой потенциальной бесконечности к бесконечному множеству актуальных бесконечностей (аналогичный подход используется в нестандартном анализе).

    Будем относится к бесконечно большим величинам как к полноправным числам. За эталонную актуальную бесконечность возьмем “скорость” с которой функция следования достигает любого произвольного числа. Обозначим это число Уравнения с делением на ноль. Не стоит его путать с потенциальной бесконечностью Уравнения с делением на ноль, она все так же недостижима.

    Для получения различных актуальных бесконечностей будем использовать понятие предела функции при стремлении к числу Уравнения с делением на ноль. Мы не будем отбрасывать бесконечно малые (низшего порядка) и не будем поглощать константы бесконечно большими величинами, как это принято в классическом анализе. Мы будем сохранять всю информацию, составляющую число. Соответственно, у нас появляется возможность сравнения бесконечно больших чисел.

    Уравнения с делением на ноль

    Возводя число Уравнения с делением на нольв отрицательные степени, мы получаем бесконечно малые числа. По сути это и есть наше бесконечное множество нулей, которые можно сравнить между собой и использовать в арифметике (в отличие от бесконечно малой величины в классическом анализе).

    С точки зрения общей алгебры, наша алгебраическая система, не является полем, так как отсутствует ноль (нейтральный элемент). Нестандартный анализ оперирует аналогичными актуальными бесконечностями, они называются гиперреальными числами. Ноль (нейтральный элемент) является одним из гиперреальных чисел. Соответственно алгебраическая система нестандартного анализа оперирует полем.

    Наша эталонная бесконечность Уравнения с делением на нольпредставляет собой одно из чисел нестандартного анализа. Однако, вместо упрощенного понятия “скорость”, в нестандартном анализе числами являются классы эквивалентности бесконечных последовательностей. Так как в нашем концепте все алгебраические операции можно выразить через функцию следования, значит любую актуальную бесконечность, образованную арифметически, можно выразить через Уравнения с делением на ноль.

    По факту пределы практически перестают упрощаться, в том виде к которому мы привыкли. Сейчас мы просто производим замену переменной на Уравнения с делением на ноль. Правило Лопиталя так же не применимо. В первой части было показано как в классике, при определении производной, отбрасывается бесконечно малая величина. Однако стоит отметить, понятие предела в нестандартном анализе все же существует, но определено несколько шире.

    Если возникнет практическая необходимость, можно определить операцию вычитания и для равных чисел (вместо “сокращения” определенного нами выше). Например, это может быть число низшего порядка, нежели исходные числа Уравнения с делением на ноль(аналог уравнения из колеса). Арифметика окажется замкнутой. Но нужно отдавать себе отчет, что сумма двух двоек тут же окажется равной четырем с хвостиком. Это чем-то похоже на сложение скоростей в теории относительности. Еще один пример, термодинамика и понятие абсолютного нуля температуры. Остановив молекулы, атомы продолжают движение. Остановив атомы, кварки все еще двигаются и т.д. Погружение бесконечно.

    Видео:ЛИНЕЙНЫЕ УРАВНЕНИЯ - Как решать линейные уравнения // Подготовка к ЕГЭ по МатематикеСкачать

    ЛИНЕЙНЫЕ УРАВНЕНИЯ - Как решать линейные уравнения // Подготовка к ЕГЭ по Математике

    Эпилог

    Мы находимся между прошлым и будущим, между микро и макро миром. Во всех областях рано или поздно мы находим предел за который мы не сможем зайти и это нормально.

    В математике все не так. Нам говорят что ноль — это число. Затем ставят его в один ряд со всеми остальными числами. Затем нам говорят, длина пути от минус единицы до единицы равна двум. И в этот момент наше сознание окончательно растворяет ноль среди остальных чисел.

    Мы не можем делить на ноль, потому что забыли что однажды смешали понятие “ничто” и понятие “количество”.

    Видео:Решение уравнений - математика 6 классСкачать

    Решение уравнений - математика 6 класс

    Почему делить на ноль нельзя?

    Все математические действия равны, но некоторые равнее других

    Начнём с того, что четыре арифметических действия — сложение, вычитание, умножение и деление — не являются равноправными. И разговор идёт не о порядке выполнения действий при решении какого-нибудь примера или уравнения. Нет, имеется в виду само понятие числа. И согласно ему, наиболее важными являются сложение и умножение. А уже вычитание и деление «вытекают» из них тем или иным образом.

    Сложение и вычитание

    Например, разберём простую операцию: «3 — 1». Что это означает? Школьник легко объяснит эту задачку: это означает, что было три предмета (например, три апельсина), один вычли, оставшееся количество предметов и есть верный ответ. Верно описано? Верно. Мы и сами объяснили бы точно так же. Но математики рассматривают процесс вычитания иначе.

    Операция «3 — 1» рассматривается не с позиции вычитания, а только со стороны сложения. Согласно этому нет никаких «три минус один», есть «какое-то неизвестное число, которое при прибавлении одного даёт три». Таким образом, простое «три минус один» превращается в уравнение с одним неизвестным: «х + 1 = 3». Причём появление уравнения изменило знак — вычитание поменялось на сложение. Осталась только одна задача — отыскать подходящее число.

    Уравнения с делением на ноль

    Умножение и деление

    Аналогичные метаморфозы происходят с таким действием, как деление. Задачу «6 : 3» математики отказываются воспринимать как некие шесть предметов, разбитых на три части. «Шесть разделить на три» не что иное, как «неизвестное число, умноженное на три, в результате чего получилось шесть»: «х · 3».

    Делим на ноль

    Выяснив принцип математических действий по отношению к задачам с вычитанием и делением, рассмотрим наше деление на ноль.

    Задача «4 : 0» превращается в «х · 0». Получается, нам нужно найти такое число, умножение с которым даст нам 4. Известно, что умножение на ноль всегда даёт ноль. Это уникальное свойство нуля и, собственно, его суть. Числа, умноженного на ноль и выдающего любое другое число кроме нуля, не существует. Мы пришли к противоречию, значит задача не имеет решения. Следовательно, записи «4 : 0» не соответствует никакое определённое число, а отсюда уже вытекает её бессмысленность. Поэтому, чтобы кратко подчеркнуть непродуктивность такого процесса, как деление на ноль, и говорят, что «на ноль делить нельзя».

    Больше интересных материалов:

    А что получится, если ноль разделить на ноль?

    Представим такое уравнение: «0 · x = 0». С одной стороны, выглядит вполне справедливо. Представляем вместо неизвестного числа ноль и получаем готовое решение: «0 · 0 = 0». Из этого вполне логично вывести, что «0 : 0 = 0».

    Однако теперь давайте в это же уравнение с неизвестным вместо «x = 0» подставим любое другое число, например «x = 7». Получившееся выражение выглядит теперь как «0 · 7 = 0». Вроде бы, всё верно. Делаем обратную операцию и получаем «0 : 0 = 7». Но тогда, получается, что можно взять абсолютно любое число и вывести 0 : 0 = 1, 0 : 0 = 2. 0 : 0 = 145. — и так до бесконечности.

    Если при любом числе х уравнение будет справедливо, то мы не имеем права выбрать лишь одно, исключив остальные. Значит, мы так и не можем ответить, какому числу соответствует выражение «0 : 0». Снова оказавшись в тупике, мы признаём, что и эта операция тоже бессмысленна. Получается, что ноль нельзя делить даже на самого себя.

    Оговоримся, что в математическом анализе иногда бывают специальные условия задачи — так называемое «раскрытие неопределенности». В подобных случаях разрешается отдавать предпочтение одному из возможных решений уравнения «0 · x = 0». Однако в арифметике таких «допусков» не происходит.

    📺 Видео

    Решение уравнений, 6 классСкачать

    Решение уравнений, 6 класс

    ✓ Теорема Безу. Рациональные нули многочленов | Ботай со мной #119 | Борис ТрушинСкачать

    ✓ Теорема Безу. Рациональные нули многочленов | Ботай со мной #119 | Борис Трушин

    НОЛЬ НА БЕСКОНЕЧНОСТЬ 😉 #егэ #математика #профильныйегэ #shorts #огэСкачать

    НОЛЬ НА БЕСКОНЕЧНОСТЬ 😉 #егэ #математика #профильныйегэ #shorts #огэ
    Поделиться или сохранить к себе: