Уравнения с числами в периоде

Периодические дроби с примерами решения

Каждое рациональное число является действительным числом, а поэтому может быть записано в виде десятичной дроби — конечной или бесконечной. Хорошо известно, как это делается, когда Уравнения с числами в периоде

Уравнения с числами в периоде

Применим теперь этот метод обращения обыкновенной дроби в десятичную к числу Уравнения с числами в периодеДля этого разделим Уравнения с числами в периодеУравнения с числами в периоде

Таким образом, Уравнения с числами в периоде

Бесконечная дробь, стоящая в правой части этого равенства, содержит периодически повторяющуюся группу цифр 72. Эта группа цифр называется периодом дроби, а сама дробь — периодической. При записи таких дробей период заключают в скобки и пишут один раз:

Уравнения с числами в периоде

(Читается: «Одна целая семьдесят два в периоде».)

Еще один пример: Уравнения с числами в периоде

(Читается: «Нуль целых восемь десятых шестьдесят три в периоде».)

Приписывая к конечной десятичной дроби бесконечно много нулей, мы получаем бесконечную десятичную дробь. Поэтому конечные десятичные дроби тоже считаются периодическими с периодом 0. (При делении двух натуральных чисел не могут получиться дроби с числом 9 в периоде, поэтому в школьном курсе алгебры их не рассматривают.)

Приведенные примеры дают возможность догадаться, что каждое рациональное число записывается в виде бесконечной десятичной периодической дроби.

Чтобы в этом убедиться, заметим, что для обращения обыкновенной дроби Уравнения с числами в периодев десятичную мы на каждом шаге остаток от деления (он был равен либо 8, либо 3) умножали на 10 и делили на 11. Но при делении на 11 вообще возможны лишь 11 различных остатков. Значит, на каком-то шаге остаток обязательно повторится (в нашем примере это случилось на третьем шаге), и поэтому в результате деления должна получиться периодическая дробь.

Наоборот, каждая бесконечная десятичная периодическая дробь представляет некоторое рациональное число.

Каждую периодическую десятичную дробь можно рассматривать либо как сумму бесконечно убывающей геометрической прогрессии, либо как сумму конечной десятичной дроби и сумму бесконечно убывающей геометрической прогрессии. Это позволяет представлять периодические десятичные дроби в виде обыкновенных дробей.

Пример №1

Обратить в обыкновенную дробь число:

Уравнения с числами в периоде

Решение:

Уравнения с числами в периоде

Уравнения с числами в периоде

Таким образом, число 0,(7) есть Уравнения с числами в периоде— сумма бесконечно убывающей геометрической прогрессии Уравнения с числами в периодегде Уравнения с числами в периоде

Значит, Уравнения с числами в периоде

б) Уравнения с числами в периоде

Уравнения с числами в периоде

Сумму, стоящую в скобках, обозначим буквой S. Тогда Уравнения с числами в периодеесть сумма бесконечно убывающей геометрической прогрессии с первым членом Уравнения с числами в периодеи знаменателем Уравнения с числами в периоде

Значит, Уравнения с числами в периоде

Уравнения с числами в периоде

Ответ: Уравнения с числами в периоде

Изучением периодических дробей занимался великий немецкий математик К- Ф. Гаусс (1777—1855). Уже в детстве он делил единицу на все подряд простые числа р из первой тысячи. При этом Гаусс подметил, что, начиная с какого-то места, десятичные знаки начинают повторяться, т. е. получаются периодические десятичные дроби. А периоды некоторых дробей достигали нескольких сотен десятичных знаков. Рассматривая эти примеры, Гаусс установил, что число цифр в периоде всегда является делителем числа Уравнения с числами в периоде

Пример №2

Найти значение выражения:

Уравнения с числами в периоде

Решение:

Обратив каждое из чисел в обыкновенную дробь (см. пример 1), получим: Уравнения с числами в периоде

Ответ: Уравнения с числами в периоде

Рекомендую подробно изучить предметы:
  1. Математика
  2. Алгебра
  3. Линейная алгебра
  4. Векторная алгебра
  5. Высшая математика
  6. Дискретная математика
  7. Математический анализ
  8. Математическая логика
Ещё лекции с примерами решения и объяснением:
  • Степень с рациональным показателем
  • Степень с действительным показателем
  • Логарифм — формулы, свойства и примеры
  • Корень из числа — нахождение и вычисление
  • Тождества с корнями, содержащие одну переменную
  • Действия с корнями нечетной степени
  • Действия с корнями четной степени
  • Бесконечно убывающая геометрическая прогрессия

При копировании любых материалов с сайта evkova.org обязательна активная ссылка на сайт www.evkova.org

Сайт создан коллективом преподавателей на некоммерческой основе для дополнительного образования молодежи

Сайт пишется, поддерживается и управляется коллективом преподавателей

Whatsapp и логотип whatsapp являются товарными знаками корпорации WhatsApp LLC.

Cайт носит информационный характер и ни при каких условиях не является публичной офертой, которая определяется положениями статьи 437 Гражданского кодекса РФ. Анна Евкова не оказывает никаких услуг.

Видео:Уроки Айплюс | Бесконечные периодические дробиСкачать

Уроки Айплюс | Бесконечные периодические дроби

Периодические дроби

Существуют дроби, у которых в дробной части некоторые цифры бесконечно повторяются. Выглядят эти дроби следующим образом:

Дроби такого вида называют периодическими. В данном уроке мы попробуем разобраться, что это за дроби и как с ними работать.

Видео:Перевод бесконечной периодической десятичной дроби в обыкновенную дробь. 6 класс.Скачать

Перевод бесконечной периодической десятичной дроби в обыкновенную дробь. 6 класс.

Получаем периодическую дробь

Попробуем разделить 1 на 3. Не будем подробно останавливаться на том, как это сделать. Этот момент подробно описан в уроке действия с десятичными дробями, в теме деление меньшего числа на большее. Продвинутый уровень.

Итак, делим 1 на 3

Уравнения с числами в периоде

Видно, что мы постоянно получаем остаток 1, далее приписываем к нему 0 и делим 10 на 3. И это повторяется вновь и вновь. В результате в дробной части каждый раз получается цифра 3. Деление 1 на 3 будет выполняться бесконечно, поэтому разýмнее будет остановиться на достигнутом.

Такие дроби называют периодическими, поскольку у них присутствует период цифр, который бесконечно повторяется. Период цифр может состоять из нескольких цифр, а может состоять из одной как в нашем примере.

В примере, который мы рассмотрели выше, период в дроби 0,33333 это цифра 3. Обычно такие дроби записывают сокращённо. Сначала записывают цéлую часть, затем ставят запятую и в скобках указывают период (цифру, которая повторяется).

В нашем примере повторяется цифра 3, она является периодом в дроби 0,33333. Поэтому сокращённая запись будет выглядеть так:

Читается как «ноль целых и три в периоде»

Пример 2. Разделить 5 на 11

Уравнения с числами в периоде

Это тоже периодическая дробь. Период данной дроби это цифры 4 и 5, эти цифры повторяются бесконечно. Сокращённая запись будет выглядеть так:

Читается как «ноль целых и сорок пять в периоде»

Пример 3. Разделить 15 на 13

Уравнения с числами в периоде

Здесь период состоит из нескольких цифр, а именно из цифр 153846. Для наглядности период отделён синей линией. Сокращённая запись для данной периодической дроби будет выглядеть так:

Читается как: «одна целая сто пятьдесят три тысячи восемьсот сорок шесть в периоде».

Пример 4. Разделить 471 на 900

Уравнения с числами в периоде

В этом примере период начинается не сразу, а после цифр 5 и 2. Сокращённая запись для данной периодической дроби будет выглядеть так:

Читается как: «ноль целых пятьдесят две сотых и три в периоде».

Видео:Перевод периодической дроби в обыкновеннуюСкачать

Перевод периодической дроби в обыкновенную

Виды периодических дробей

Периодические дроби бывают двух видов: чистые и смéшанные.

Если в периодической дроби период начинается сразу после запятой, то такую периодическую дробь называют чистой. Например, следующие периодические дроби являются чистыми:

Видно, что в этих дробях период начинается сразу после запятой.

Если же в периодической дроби период начинается не сразу, а после некоторого количества не повторяющихся цифр, то такую периодическую дробь называют смéшанной. Например, следующие периодические дроби являются смéшанными:

Видно, что в этих дробях период начинается не сразу, а после некоторого количества не повторяющихся цифр.

Видео:Уравнения с десятичными дробями. Математика 5 классСкачать

Уравнения с десятичными дробями. Математика 5 класс

Избавляемся от хвоста

Подобно тому, как ящерица избавляется от хвоста, мы можем избавить периодическую дробь от повторяющегося периода. Для этого достаточно округлить эту периодическую дробь до нýжного разряда.

Например, округлим периодическую дробь 0, (3) до разряда сотых. Чтобы увидеть сохраняемую и отбрасываемую цифру, временно запишем дробь 0, (3) не в сокращённом виде, а в полном:

Уравнения с числами в периоде

Вспоминаем правило округления. Если при округлении чисел первая из отбрасываемых цифр 0, 1, 2, 3 или 4, то сохраняемая цифра остаётся без изменений.

Значит периодическая дробь 0, (3) при округлении до сотых обращается в дробь 0,33

Округлим периодическую дробь 6,31 (6) до разряда тысячных.

Запишем эту дробь в полном виде, чтобы увидеть сохраняемую и отбрасываемую цифру:

Уравнения с числами в периоде

Вспоминаем правило округления. Если при округлении чисел первая из отбрасываемых цифр 5, 6, 7, 8 или 9, то сохраняемая цифра увеличивается на единицу.

Значит периодическая дробь 6,31 (6) при округлении до тысячных обращается в дробь 6,317

Видео:КАК ПРЕОБРАЗОВАТЬ ПЕРИОДИЧЕСКУЮ ДРОБЬ В ОБЫКНОВЕННУЮ НА ЕГЭ? #shorts #математика #егэ #огэ #дробиСкачать

КАК ПРЕОБРАЗОВАТЬ ПЕРИОДИЧЕСКУЮ ДРОБЬ В ОБЫКНОВЕННУЮ НА ЕГЭ? #shorts #математика #егэ #огэ #дроби

Перевод чистой периодической дроби в обыкновенную дробь

Перевод периодической дроби в обыкновенную это операция, которую мы будем применять довольно редко. Тем не менее, для общего развития желательно изучить и этот момент. А начнём мы с перевода чистой периодической дроби в обыкновенную дробь.

Мы уже говорили, что если период в периодической дроби начинается сразу после запятой, то такую дробь называют чистой.

Чтобы перевести чистую периодическую дробь в обыкновенную дробь, нужно в числитель обыкновенной дроби записать период периодической дроби, а в знаменатель обыкновенной дроби записать некоторое количество девяток. При этом, количество девяток должно быть равно количеству цифр в периоде периодической дроби.

В качестве примера, рассмотрим чистую периодическую дробь 0, (3) — ноль целых и три в периоде. Попробуем перевести её в обыкновенную дробь.

Правило гласит, что в первую очередь в числитель обыкновенной дроби нужно записать период периодической дроби.

Итак, записываем в числителе период дроби 0, (3) то есть тройку:

Уравнения с числами в периоде

А в знаменатель нужно записать некоторое количество девяток. При этом, количество девяток должно быть равно количеству цифр в периоде периодической дроби 0, (3).

В периодической дроби 0, (3) период состоит из одной цифры 3. Значит в знаменателе обыкновенной дроби записываем одну девятку:

Уравнения с числами в периоде

Полученную дробь Уравнения с числами в периодеможно сократить на 3, тогда получим следующее:

Уравнения с числами в периоде

Получили обыкновенную дробь Уравнения с числами в периоде.

Таким образом, при переводе периодической дроби 0, (3) в обыкновенную дробь получается Уравнения с числами в периоде

Пример 2. Перевести периодическую дробь 0, (45) в обыкновенную дробь.

Здесь период составляет две цифры 4 и 5. Записываем эти две цифры в числитель обыкновенной дроби:

Уравнения с числами в периоде

А в знаменатель записываем некоторое количество девяток. Количество девяток должно быть равно количеству цифр в периоде периодической дроби 0, (45).

В периодической дроби 0, (45) период состоит из двух цифр 4 и 5. Значит в знаменателе обыкновенной дроби записываем две девятки:

Уравнения с числами в периоде

Полученную дробь Уравнения с числами в периодеможно сократить эту дробь на 9, тогда получим следующее:

Уравнения с числами в периоде

Таким образом, при переводе периодической дроби 0, (45) в обыкновенную дробь получается Уравнения с числами в периоде

Видео:Перевод периодической дроби в обыкновеннуюСкачать

Перевод периодической дроби в обыкновенную

Перевод смешанной периодической дроби в обыкновенную дробь

Чтобы перевести смешанную периодическую дробь в обыкновенную дробь, нужно в числителе записать разность в которой уменьшаемое это цифры, стоящие после запятой в периодической дроби, а вычитаемое — цифры, стоящие между запятой и первым периодом периодической дроби.

В знаменателе же нужно записать некоторое количество девяток и нулей. При этом, количество девяток должно быть равно количеству цифр в периоде периодической дроби, а количество нулей должно быть равно количеству цифр между запятой и периодом периодической дроби.

Например, переведём смешанную периодическую дробь 0,31 (6) в обыкновенную дробь.

Сначала запишем в числителе разность. Уменьшаемым будут все цифры, стоящие после запятой (включая и период), а вычитаемым будут цифры, стоящие между запятой и периодом:

Уравнения с числами в периоде

Итак, записываем в числителе разность:

Уравнения с числами в периоде

А в знаменателе запишем некоторое количество девяток и нулей. Количество девяток должно быть равно количеству цифр в периоде периодической дроби 0,31 (6)

В дроби 0,31 (6) период состоит из одной цифры. Значит в знаменатель дроби записываем одну девятку:

Уравнения с числами в периоде

Теперь дописываем количество нулей. Количество нулей должно быть равно количеству цифр между запятой и периодом периодической дроби.

В дроби 0,31 (6) между запятой и периодом располагается две цифры. Значит в знаменателе дроби должно быть два нуля. Дописываем их:

Уравнения с числами в периоде

Получили выражение, которое вычисляется легко:

Уравнения с числами в периоде

Получили ответ Уравнения с числами в периоде

Таким образом, при переводе периодической дроби 0,31 (6) в обыкновенную дробь, получается Уравнения с числами в периоде

Пример 2. Перевести смешанную периодическую дробь 0,72 (62) в обыкновенную дробь

Сначала запишем в числителе разность. Уменьшаемым будут все цифры, стоящие после запятой (включая и период), а вычитаемым будут цифры, стоящие между запятой и периодом:

Уравнения с числами в периоде

Итак, записываем в числителе разность:

Уравнения с числами в периоде

А в знаменателе запишем некоторое количество девяток и нулей. Количество девяток должно быть равно количеству цифр в периоде периодической дроби 0,72 (62)

В дроби 0,72 (62) период состоит из двух цифр. Значит в знаменатель дроби записываем две девятки:

Уравнения с числами в периоде

Теперь дописываем количество нулей. Количество нулей должно быть равно количеству цифр между запятой и периодом периодической дроби.

В дроби 0,72 (62) между запятой и периодом располагаются две цифры. Значит в знаменателе дроби должно быть два нуля. Дописываем их:

Уравнения с числами в периоде

Получили выражение, которое вычисляется легко:

Уравнения с числами в периоде

Получили ответ Уравнения с числами в периоде

Значит при переводе периодической дроби 0,72 (62) в обыкновенную дробь, получается Уравнения с числами в периоде

Понравился урок?
Вступай в нашу новую группу Вконтакте и начни получать уведомления о новых уроках

Возникло желание поддержать проект?
Используй кнопку ниже

Видео:Период математического маятника. В школе обманывали?Скачать

Период математического маятника. В школе обманывали?

35 thoughts on “Периодические дроби”

Когда же следующие уроки? Уже что-то долго ничего нету

Большое спасибо за урок! Откровенно говоря…эту тему не помню вообще…Будто ее и не было в школе О__о Ну или я ее проболела… (Перевод смешанной периодической дроби в обыкновенную дробь)

Вы бы хоть номер кошелька написали. А то столько трудились и никакой отдачи. С такими уроками никакой экзамен не страшен.

Спасибо большое Тэла, за столь добрый отзыв 😉
Если люди получают пользу от этих уроков — это уже отдача)

Огромное Вам спасибо за уроки! Всё объясняете доступно и наглядно! На ваших уроках готовлюсь поступать на ФИТ на программиста. Хорошо бы еще алгебру выложили.)

Вы не могли бы объяснить логику алгоритма перевода периодической дроби в обычную?

Зачем в знаменателе ставятся девятки — заместно, например, округления числа, подставляемого в числитель, до последней цифры периода, и постановки степени 10 в знаменатель? Зачем, при переводе смешанной периодической дроби, производится соотв. вычитание и чем объясняется подстановка нулей и единиц в зависимости от принадлежности цифры к периоду??…

При делении числителя и знаменателя обыкновенной дроби , которая была превращена из периодической , то получается как раз таки период

Спасибо большое за урок 🙂 Скажите пожалуйсто при округлении(когда избавляемся от хвоста) откуда знать до каких разряд надо округлять?

Вот и здесь последняя задача говорит округлить до разряда сотых,а почему не до десятых(например)?

зависит от задачи, которую решаете. Если в задаче сказано округлять до десятых, значит округляете до десятых. Если сказано округлять до сотых — округляете до сотых

Спасибо за ответ . Я даже не знаю как вас зовут,но уверен вы очень хороший человек,раз вы уделяете время для других. Кстати я советую друзья посешать этот сайт,как тут нигде не обясняют.

Видео:Перевод обыкновенной дроби в десятичную. Смотри, чтобы не ошибиться на экзамене!Скачать

Перевод обыкновенной дроби в десятичную. Смотри, чтобы не ошибиться на экзамене!

Периодические десятичные дроби

Бесконечная десятичная дробь, у которой одна или несколько цифр повторяются в одной и той же последовательности, называется периодической десятичной дробью.

Например. $0,1234444444 ldots ; 12,453737373737 ldots$

Повторяющиеся цифры — период — для сокращения записи пишут в круглых скобках.

Например. $0,12344444444 ldots=0,123(4)$ ; $12,453737373737 ldots=12,45(37)$

Чистой периодической дробью называется периодическая дробь, у которой период начинается сразу после запятой.

Например. $2,4949 ldots=2,(49)$

Смешанной периодической дробью называется такая десятичная дробь, у которой между запятой и периодом есть не менее одной неповторяющейся бесконечное число раз цифры.

Например. $0,11232323 ldots=0,11(23)$ ; $1,54444 . .=1,5(4)$

Чтобы обратить чистую периодическую дробь в обыкновенную, достаточно записать числителем ее период, а в знаменателе записать столько девяток, сколько цифр в периоде.

Уравнения с числами в периоде

Чтобы записать смешанную периодическую дробь в виде обыкновенной, надо из числа, стоящего до второго периода вычесть число, стоящее до первого периода, результат записать в числителе; в знаменатель записать число, содержащее столько девяток, сколько цифр в периоде, и столько нулей в конце, сколько цифр между запятой и периодом.

Например. Запишем дробь $2,34(2)$ в виде обыкновенной

🎦 Видео

Как решать уравнения с дробью? #shortsСкачать

Как решать уравнения с дробью? #shorts

Как решать Диофантовы уравнения ★ 9x+13y=-1 ★ Решите уравнение в целых числахСкачать

Как решать Диофантовы уравнения ★ 9x+13y=-1 ★ Решите уравнение в целых числах

Как решать уравнения с десятичными дробями - математика 5 классСкачать

Как решать уравнения с десятичными дробями - математика 5 класс

Решить уравнение с дробями - Математика - 6 классСкачать

Решить уравнение с дробями - Математика - 6 класс

🤷 НЕ ДЕЛИТСЯ или как вернуть обыкновенную дробь #shortsСкачать

🤷 НЕ ДЕЛИТСЯ или как вернуть обыкновенную дробь #shorts

Решение уравнений с отрицательными числами.Скачать

Решение уравнений с отрицательными числами.

Дробно-рациональные уравнения. 8 класс.Скачать

Дробно-рациональные уравнения. 8 класс.

Бесконечные периодические десятичные дроби, 6 классСкачать

Бесконечные периодические десятичные дроби, 6 класс

Как бесконечную дробь перевести в обыкновеннуюСкачать

Как бесконечную дробь перевести в обыкновенную

ЧТО ТАКОЕ ПЕРИОДИЧЕСКАЯ ДРОБЬ? Готовимся к ЕГЭ #shorts #математика #егэ #огэ #профильныйегэСкачать

ЧТО ТАКОЕ ПЕРИОДИЧЕСКАЯ ДРОБЬ? Готовимся к ЕГЭ #shorts #математика #егэ #огэ #профильныйегэ

Как решать дробно-рациональные уравнения? | МатематикаСкачать

Как решать дробно-рациональные уравнения? | Математика

Как перевести бесконечную десятичную дробь в обыкновеннуюСкачать

Как перевести бесконечную десятичную дробь в обыкновенную
Поделиться или сохранить к себе: