Уравнения разных фигур на плоскости

Содержание
  1. Уравнения фигур
  2. Понятие уравнения фигур
  3. Уравнение прямой
  4. Уравнения окружности и сферы
  5. Пример 2.
  6. Презентация «Уравнение фигуры. Уравнение окружности»
  7. Описание презентации по отдельным слайдам:
  8. Дистанционное обучение как современный формат преподавания
  9. Математика: теория и методика преподавания в образовательной организации
  10. Методика обучения математике в основной и средней школе в условиях реализации ФГОС ОО
  11. Дистанционные курсы для педагогов
  12. Найдите материал к любому уроку, указав свой предмет (категорию), класс, учебник и тему:
  13. Материал подходит для УМК
  14. Другие материалы
  15. Вам будут интересны эти курсы:
  16. Оставьте свой комментарий
  17. Автор материала
  18. Дистанционные курсы для педагогов
  19. Подарочные сертификаты
  20. Геометрия
  21. Уравнение линии в координатах
  22. Уравнение окружности
  23. Уравнение прямой
  24. Задачи на пересечение двух фигур
  25. 📹 Видео

Видео:Уравнения прямой на плоскости | Векторная алгебраСкачать

Уравнения прямой на плоскости | Векторная алгебра

Уравнения фигур

Уравнение фигуры — это уравнение с двумя переменными x и y, для которого выполняются два условия: 1) координаты любой точки фигуры F удовлетворяют этому уравнению.

Содержание:

Понятие уравнения фигур

Название этого раздела означает: геометрические фигуры можно задавать уравнениями (некоторые фигуры можно задавать неравенствами).

Известно, что точки плоскости и пространства задаются их координатами, геометрические фигуры могут задаваться уравнениями или неравенствами: Уравнения разных фигур на плоскости— уравнение прямой; Уравнения разных фигур на плоскости— уравнение окружности; Уравнения разных фигур на плоскости— уравнение сферы и т. д.

Говорят, что фигура F задается уравнением в прямоугольных координатах, если точка принадлежит фигуре F тогда и только тогда, когда координаты этой точки удовлетворяют данному уравнению. Это означает, что выполняются два условия:

1. Если точка принадлежит фигуре F, то ее координаты удовлетворяют данному уравнению.

2. Если числа х, у, г удовлетворяют данному уравнению, то точка с такими координатами принадлежит фигуре F.

Второе условие можно выразить иначе: координаты любой точки, не принадлежащей фигуре F, не удовлетворяют данному уравнению.

Например, прямая, перпендикулярная оси Ох и проходящая через точку М(2, 0), на оси Ох задается уравнением х = 2 (рис. 2.461). Действительно, каждая точка, лежащая на этой прямой, имеет одну и ту же координату 2. А любая точка, не лежащая на этой прямой, имеет другое значение координаты х, нежели 2. Ось Оу задается уравнением х = 0.

Аналогично прямая, перпендикулярная оси Оу и проходящая через точку Щ0, 3), имеет уравнение у = 3 (рис. 2.462). Ось Ох имеет уравнение у = 0.

Уравнения разных фигур на плоскости

Уравнение прямой

Можно доказать такую теорему.

Теорема 3. Любая прямая в декартовой системе координат хОу имеет уравнение вида Уравнения разных фигур на плоскости Уравнения разных фигур на плоскости— некоторые числа.

Выясним, как расположена прямая относительно осей координат, если ее уравнение Уравнения разных фигур на плоскостиимеет тот или иной частный вид.

1. Уравнения разных фигур на плоскостиВ этом случае уравнение прямой можно переписать так: Уравнения разных фигур на плоскости

Таким образом, все точки прямой имеют одну и ту же ординату Уравнения разных фигур на плоскости; следовательно, прямая параллельна оси х (рис. 2.463). В частности, если с = 0, то прямая совпадает с осью Ох.

2. Уравнения разных фигур на плоскостиЭтот случай рассматривается аналогично. Прямая параллельна оси Оу (рис. 2.464) и совпадает с ней, если и с = 0.

Уравнения разных фигур на плоскости

3. с = 0. Прямая проходит через начало координат, так как его координаты (0; 0) удовлетворяют уравнению прямой (рис. 2.465).

Если в общем уравнении прямой Уравнения разных фигур на плоскостикоэффициент при у не равен нулю, то это уравнение можно разрешить относительно у. Получим: Уравнения разных фигур на плоскостиИли, обозначая Уравнения разных фигур на плоскостиполучим: у = kх + d.

Коэффициент k в уравнении прямой с точностью до знака равен тангенсу острого угла, который образует прямая с осью Ох. В уравнении прямой, изображенной на рисунке 2.466, k > 0.

Коэффициент k в уравнении прямой называют угловым коэффициентом прямой.

Уравнения разных фигур на плоскости

Уравнения окружности и сферы

Составим уравнение окружности с центром в точке Уравнения разных фигур на плоскостии радиусом R (рис. 2.467).

1. Возьмем произвольную точку А(х, у) на окружности. Расстояние от нее до центра О равно R.

2. Квадрат расстояния от точки А до точки О равен Уравнения разных фигур на плоскости(формула расстояния между точками).

3. Координаты х, у каждой точки А окружности удовлетворяют уравнению

Уравнения разных фигур на плоскости

(2, определение окружности).

Получили искомое уравнение. Обратно: любая точка А, координаты которой удовлетворяют уравнению окружности, принадлежит окружности, так как расстояние от нее до точки О равно R. Отсюда следует, что данное уравнение действительно является уравнением окружности с центром в точке О и радиусом R.

Заметим, что если центром окружности является начало координат, то уравнение окружности имеет вид:

Уравнения разных фигур на плоскости

Выведем теперь уравнение сферы. Пусть в пространстве введена прямоугольная система координат и задана сфера S с центром Уравнения разных фигур на плоскостии радиусом R. Эта сфера есть множество точек М, для которых расстояние от А равно R, т. е. AM = R (рис. 2.468).

Уравнения разных фигур на плоскости

Пусть х, у, z — координаты точки М. Согласно формуле расстояния между точками в пространстве, предыдущее равенство можно записывать в координатах так:

Уравнения разных фигур на плоскости

Уравнения разных фигур на плоскости

Это и есть уравнение сферы S с центром Уравнения разных фигур на плоскостии радиусом R, т. е. множество точек, координаты которых удовлетворяют данному уравнению, представляет собой сферу S (рис. 2.468).

Если центр А находится в начале координат, т. е. Уравнения разных фигур на плоскостито уравнение получает простой вид:

Уравнения разных фигур на плоскости

Рассмотрим шар с центром Уравнения разных фигур на плоскостии радиусом R (рис. 2.469).

Уравнения разных фигур на плоскости

По определению, это множество точек М, для которых Уравнения разных фигур на плоскости, т. е. Уравнения разных фигур на плоскости. Выражая расстояние AM через координаты точки М(х, у, z), получим:

Уравнения разных фигур на плоскости

Это неравенство задает шар S с центром Уравнения разных фигур на плоскостии радиусом R, так как оно равносильно неравенству Уравнения разных фигур на плоскости, задающему такой шар по самому его определению.

Если центр шара находится в начале координат, то уравнение шара упрощается и имеет вид:

Уравнения разных фигур на плоскости

Два предприятия A и В производят продукцию с одной и той же ценой т за одно изделие. Однако автопарк, обслуживающий предприятие А, оснащен более современными и более мощными грузовыми автомобилями. В результате транспортные расходы на перевозку одного изделия составляют для предприятия А 10 руб. на 1 км, а для предприятия В 20 руб. на 1 км. Расстояние между предприятиями 300 км. Как территориально должен быть разделен рынок сбыта между двумя предприятиями для того, чтобы расходы потребителей при покупке изделий были минимальными?

Решение:

1. Выберем систему координат так, чтобы ось Ох проходила через пункты А и В, а ось Оу — через точку А (построение) (рис. 2.470).

Уравнения разных фигур на плоскости

2. Пусть N — произвольная точка, Уравнения разных фигур на плоскости— расстояния от точки N до предприятий А и Б (рис. 2.471).

Уравнения разных фигур на плоскости

3. При доставке груза из пункта А расходы равны Уравнения разных фигур на плоскости(1,2).

4. При доставке груза из пункта Б расходы равны Уравнения разных фигур на плоскости(1,2).

5. Если для пункта N выгоднее доставлять груз с предприятия А, то Уравнения разных фигур на плоскостиоткуда Уравнения разных фигур на плоскостиУравнения разных фигур на плоскости, в обратном случае получим Уравнения разных фигур на плоскости(3,4).

6. Таким образом, границей этих двух областей для каждой точки, до которой расходы на перевозку груза из пунктов А и Б равны, будет множество точек плоскости, удовлетворяющих уравнению Уравнения разных фигур на плоскости(5)

7. Выразим Уравнения разных фигур на плоскостичерез координаты:

Уравнения разных фигур на плоскости(1,2, формула расстояния между точками).

8. Имея в виду равенство из п. 6, получим:

Уравнения разных фигур на плоскости(6,7).

9. Это есть уравнение окружности (рис. 2.472).

Следовательно, для всех пунктов, попадающих во внутреннюю область круга, выгоднее привозить груз из пункта В, а для всех пунктов, попадающих во внешнюю часть круга, — из пункта А.

Пример 2.

Два наблюдаемых пункта находятся в точках Уравнения разных фигур на плоскостиПункт наблюдения О находится на прямой АВ и удален от точки А на расстояние Уравнения разных фигур на плоскостикм, а от В на расстояние с км (с > Уравнения разных фигур на плоскости). Наблюдатель для безопасности должен идти по такому пути, чтобы расстояние от него до пункта А все время оставалось в два раза больше, чем расстояние от него до пункта В. По какой линии должен идти наблюдатель?

Решение:

Из условий задачи имеем:

1. Два наблюдаемых пункта находятся в точках Уравнения разных фигур на плоскости

2. Пункт наблюдения О находится на прямой АВ и удален от А на расстоянии Уравнения разных фигур на плоскостикм, а от В — с км (с > Уравнения разных фигур на плоскости).

3. Наблюдатель идет так, чтобы расстояние до пункта А было в два раза больше, чем до В.

4. По какой линии должен идти наблюдатель?

Уравнения разных фигур на плоскости

5. Примем за начало координат наблюдательный пункт О и направление оси Ох будет проходить через пункты А и В (по условию задачи эти три точки находятся на одной прямой) (рис. 2.473).

6. Пусть наблюдатель находится в точке М(х, у). Вычислим расстояние от наблюдателя до пунктов А и В (рис. 2.473):

Уравнения разных фигур на плоскости

(1, 2, 3, 5, формула расстояния между точками).

7. По условию задачи имеем: МА = 2MB, т. е.

Уравнения разных фигур на плоскости(3, 6).

8. Решая это уравнение, получим:

Уравнения разных фигур на плоскости

9. Раскроем скобки и перегруппируем:

Уравнения разных фигур на плоскости

10. Наблюдатель должен идти по окружности с центром Уравнения разных фигур на плоскостии радиусом Уравнения разных фигур на плоскости(4, уравнение окружности).

Эта лекция взята со страницы полного курса лекций по изучению предмета «Математика»:

Смотрите также дополнительные лекции по предмету «Математика»:

Присылайте задания в любое время дня и ночи в ➔ Уравнения разных фигур на плоскостиУравнения разных фигур на плоскости

Официальный сайт Брильёновой Натальи Валерьевны преподавателя кафедры информатики и электроники Екатеринбургского государственного института.

Все авторские права на размещённые материалы сохранены за правообладателями этих материалов. Любое коммерческое и/или иное использование кроме предварительного ознакомления материалов сайта natalibrilenova.ru запрещено. Публикация и распространение размещённых материалов не преследует за собой коммерческой и/или любой другой выгоды.

Сайт предназначен для облегчения образовательного путешествия студентам очникам и заочникам по вопросам обучения . Наталья Брильёнова не предлагает и не оказывает товары и услуги.

Видео:Математика без Ху!ни. Уравнение плоскости.Скачать

Математика без Ху!ни. Уравнение плоскости.

Презентация «Уравнение фигуры. Уравнение окружности»

Обращаем Ваше внимание, что в соответствии с Федеральным законом N 273-ФЗ «Об образовании в Российской Федерации» в организациях, осуществляющих образовательную деятельность, организовывается обучение и воспитание обучающихся с ОВЗ как совместно с другими обучающимися, так и в отдельных классах или группах.

Уравнения разных фигур на плоскости

Описание презентации по отдельным слайдам:

Уравнения разных фигур на плоскости

Уравнение окружности. Уравнение линии на плоскости. Уравнение фигуры

Уравнения разных фигур на плоскости

Повторяем! O x y A(2;4) 1 1 2 2 4 B(1;2) Вывод: если точка принадлежит графику уравнения, то ее координаты удовлетворяют этому уравнению.

Уравнения разных фигур на плоскости

Алгебра: По заданному уравнению линии исследовать ее свойства. Геометрия: По геометрическим свойствам линии найти ее уравнение.

Уравнения разных фигур на плоскости

Задачи урока: Узнать, что называется уравнением линии, окружности; Понять, как по заданным свойствам окружности найти ее уравнение; Научиться находить уравнение окружности.

Уравнения разных фигур на плоскости

УРАВНЕНИЕ С ДВУМЯ ПЕРЕМЕННЫМИ Х И У НАЗЫВАЕТСЯ УРАВНЕНИЕМ ЛИНИИ L, ЕСЛИ ЭТОМУ УРАВНЕНИЮ УДОВЛЕТВОРЯЮТ КООРДИНАТЫ ЛЮБОЙ ТОЧКИ ЛИНИИ L И НЕ УДОВЛЕТВОРЯЮТ КООРДИНАТЫ НИКАКОЙ ТОЧКИ, НЕ ЛЕЖАЩЕЙ НА ЭТОЙ ЛИНИИ. Определение:

Уравнения разных фигур на плоскости

Уравнением фигуры Ф, заданной на плоскости xy, называют уравнение с двумя переменными x и y, имеющее такие свойства: если точка принадлежит фигуре Ф, то ее координаты являются решением данного уравнения; любое решение (x;y) данного уравнения является координатами точки, принадлежащей фигуре Ф. Определение:

Уравнения разных фигур на плоскости

У Х 0 М (х;у) r C (х0;у0) УРАВНЕНИЕ ОКРУЖНОСТИ СМ= (х – х0)2 + (у – у0)2 СМ = r, или СМ2 = r2 r2 = (х – х0)2 + (у – у0)2 Уравнение окружности общего вида

Уравнения разных фигур на плоскости

У Х 0 М (х; у) r УРАВНЕНИЕ ОКРУЖНОСТИ (с центром в начале координат) МО= (х – 0)2 + (у – 0)2 r2 = х2 + у 2

Уравнения разных фигур на плоскости

Как составить уравнение окружности: — узнать координаты центра; — узнать длину радиуса; подставить координаты центра и длину радиуса в уравнение окружности общего вида.

Уравнения разных фигур на плоскости

Например: 1. Центр С (2;4), радиус r = 3; уравнение окружности: (х – 2)2 + (у – 4)2 = 9 2. Центр С (0;0), радиус r = 4; уравнение окружности: х2 + у2 = 16

Уравнения разных фигур на плоскости

Решить задачи: Окружность задана уравнением: . Укажите координаты центра окружности и ее радиус. №№ 327, 328, 330, 332 Решить самостоятельно.

Уравнения разных фигур на плоскости

Дома: Выучить определения и формулы уравнений; Выполнить упражнения: №№ 329, 331, 333.

Уравнения разных фигур на плоскости

Курс повышения квалификации

Дистанционное обучение как современный формат преподавания

  • Сейчас обучается 930 человек из 80 регионов

Уравнения разных фигур на плоскости

Курс профессиональной переподготовки

Математика: теория и методика преподавания в образовательной организации

  • Сейчас обучается 687 человек из 75 регионов

Уравнения разных фигур на плоскости

Курс повышения квалификации

Методика обучения математике в основной и средней школе в условиях реализации ФГОС ОО

  • Сейчас обучается 304 человека из 68 регионов

Ищем педагогов в команду «Инфоурок»

Видео:Лекция 23. Виды уравнений прямой на плоскости.Скачать

Лекция 23. Виды уравнений прямой на плоскости.

Дистанционные курсы для педагогов

«Взбодрись! Нейрогимнастика для успешной учёбы и комфортной жизни»

Свидетельство и скидка на обучение каждому участнику

Найдите материал к любому уроку, указав свой предмет (категорию), класс, учебник и тему:

5 595 598 материалов в базе

Материал подходит для УМК

Уравнения разных фигур на плоскости

«Геометрия», Шарыгин И.Ф.

12.2. Уравнение линии

Самые массовые международные дистанционные

Школьные Инфоконкурсы 2022

33 конкурса для учеников 1–11 классов и дошкольников от проекта «Инфоурок»

«Психологические методы развития навыков эффективного общения и чтения на английском языке у младших школьников»

Свидетельство и скидка на обучение каждому участнику

Другие материалы

  • 30.01.2020
  • 138
  • 0

Уравнения разных фигур на плоскости

  • 30.01.2020
  • 183
  • 1

Уравнения разных фигур на плоскости

  • 30.01.2020
  • 114
  • 0

Уравнения разных фигур на плоскости

  • 30.01.2020
  • 189
  • 1

Уравнения разных фигур на плоскости

  • 29.01.2020
  • 1123
  • 15

Уравнения разных фигур на плоскости

  • 29.01.2020
  • 275
  • 0

Уравнения разных фигур на плоскости

  • 25.10.2019
  • 1121
  • 28

Уравнения разных фигур на плоскости

  • 24.10.2019
  • 401
  • 4

Уравнения разных фигур на плоскости

Вам будут интересны эти курсы:

Оставьте свой комментарий

Авторизуйтесь, чтобы задавать вопросы.

Добавить в избранное

  • 30.01.2020 1036
  • PPTX 739 кбайт
  • 103 скачивания
  • Оцените материал:

Настоящий материал опубликован пользователем Булдакова Светлана Валерьяновна. Инфоурок является информационным посредником и предоставляет пользователям возможность размещать на сайте методические материалы. Всю ответственность за опубликованные материалы, содержащиеся в них сведения, а также за соблюдение авторских прав несут пользователи, загрузившие материал на сайт

Если Вы считаете, что материал нарушает авторские права либо по каким-то другим причинам должен быть удален с сайта, Вы можете оставить жалобу на материал.

Автор материала

Уравнения разных фигур на плоскости

  • На сайте: 5 лет и 3 месяца
  • Подписчики: 0
  • Всего просмотров: 6885
  • Всего материалов: 6

Московский институт профессиональной
переподготовки и повышения
квалификации педагогов

Видео:Задача на построение фигуры, заданной уравнением, 9-11 класс| Математика TutorOnlineСкачать

Задача на построение фигуры, заданной уравнением, 9-11 класс| Математика TutorOnline

Дистанционные курсы
для педагогов

663 курса от 690 рублей

Выбрать курс со скидкой

Выдаём документы
установленного образца!

Уравнения разных фигур на плоскости

Учителя о ЕГЭ: секреты успешной подготовки

Время чтения: 11 минут

Уравнения разных фигур на плоскости

В Ростовской и Воронежской областях организуют обучение эвакуированных из Донбасса детей

Время чтения: 1 минута

Уравнения разных фигур на плоскости

Школьник из Сочи выиграл международный турнир по шахматам в Сербии

Время чтения: 1 минута

Уравнения разных фигур на плоскости

В Белгородской области отменяют занятия в школах и детсадах на границе с Украиной

Время чтения: 0 минут

Уравнения разных фигур на плоскости

Минпросвещения России подготовит учителей для обучения детей из Донбасса

Время чтения: 1 минута

Уравнения разных фигур на плоскости

Ленобласть распределит в школы прибывающих из Донбасса детей

Время чтения: 1 минута

Уравнения разных фигур на плоскости

Минобрнауки и Минпросвещения запустили горячие линии по оказанию психологической помощи

Время чтения: 1 минута

Подарочные сертификаты

Ответственность за разрешение любых спорных моментов, касающихся самих материалов и их содержания, берут на себя пользователи, разместившие материал на сайте. Однако администрация сайта готова оказать всяческую поддержку в решении любых вопросов, связанных с работой и содержанием сайта. Если Вы заметили, что на данном сайте незаконно используются материалы, сообщите об этом администрации сайта через форму обратной связи.

Все материалы, размещенные на сайте, созданы авторами сайта либо размещены пользователями сайта и представлены на сайте исключительно для ознакомления. Авторские права на материалы принадлежат их законным авторам. Частичное или полное копирование материалов сайта без письменного разрешения администрации сайта запрещено! Мнение администрации может не совпадать с точкой зрения авторов.

Видео:9 класс, 6 урок, Уравнение окружностиСкачать

9 класс, 6 урок, Уравнение окружности

Геометрия

План урока:

Видео:9 класс, 5 урок, Уравнение линии на плоскостиСкачать

9 класс, 5 урок, Уравнение линии на плоскости

Уравнение линии в координатах

Если какое-то уравнение содержит две переменные – х и у, то какие-то пары значений этих чисел будут являться его решением, а какие-то нет. Однако каждой такой паре чисел можно сопоставить точку на координатной плоскости. Все вместе такие точки могут образовать линию, которую можно обозначить буквой L. В таком случае исходное уравнение называют уравнением линии L.

Мы уже рассматривали некоторые уравнения линий на плоскости, когда изучали графики функций. Если некоторую функцию у = у(х) рассматривать как уравнение, то тогда график функции у(х) будет той самой линией, которая задается уравнением. Например, парабола может быть задана уравнением у = х 2 .

Однако уравнение линии не обязательно выглядит как функция. Наиболее простой задачей является определение факта, принадлежит ли та или иная точка той линии, которая задана уравнением.

Задание. Какие из точек А (2;1), В (3; 2), С (– 2; 5) и D(0; 0) принадлежат линии, заданной уравнением:

Решение. Надо просто подставить координаты точек в уравнение и посмотреть, превратится ли оно при этом в верное равенство. Сначала подставляем точку А (2; 1):

Получилось верное равенство, значит, А принадлежит заданной линии. Теперь подставляем координаты В (3; 2):

Равенство неверное, следовательно, В на заданной линии не лежит. Проверяем третью точку С (– 2; 5):

Получили, что и С не является частью линии. Проверяем последнюю точку D (0; 0):

Справедливость равенства означает, что D принадлежит линии.

Использование координат и уравнений линии порождает две обратные друг другу задачи:

1) по заранее заданному уравнению определить геометрический вид линии;

2) для заданной геометрической фигуры, построенной на координатной плоскости, найти уравнение линии.

Геометрия занимается в первую очередь решением второй задачи. Первая же задача рассматривается по большей части в курсе алгебры при изучении графиков функций.

Видео:11. Прямая в пространстве и ее уравненияСкачать

11. Прямая в пространстве и ее уравнения

Уравнение окружности

Попытаемся составить уравнение окружности, про которую нам известен ее радиус (обозначим его буквой r) и координаты центра окруж-ти(х0; у0). Пусть некоторая точка М с координатами (х; у) лежит на окруж-ти. Тогда, по определению окруж-ти, расстояние между С и М равно радиусу r:

Но расстояние между точками М и С может быть вычислено по формуле

Если же точка М НЕ лежит на окруж-ти, то длина отрезка МС не будет равна r, и потому координаты М не будут удовлетворять уравнению (1). Получается, что (1) как раз и является уравнением окруж-ти.

Задание. Составьте уравнение окружности, имеющей радиус 5, если ее центр находится в точке (6; 7), и проверьте, лежат на ней точки H(2; 10)и Р(3; 8).

Решение. Сначала запишем уравнение окруж-ти в общем виде

Это и есть уравнение окруж-ти. При желании можно раскрыть скобки в правой части, но делать это необязательно. Теперь будем подставлять в полученное уравнение координаты точек Н и Р:

Проверка показала, что Н находится на окруж-ти, а Р – нет.

Задание. Начертите окружность, заданную уравнением

Именно эти значения и являются параметрами окруж-ти, которые нужны нам для ее построения. Ее центр находится в точке (х0; у0), то есть в (1; – 2), радиус равен r, то есть 2. В итоге выглядеть она будет так:

Особый случай представляет окруж-ть, центр которой находится в начале координат, то есть в точке (0; 0). В этом случае параметры x0 и y0 окруж-ти равны нулю, и уравнение

Например, окруж-ть с радиусом 4, если ее центр совпадает с началом координат, описывается уравнением:

Если при подстановке координат точки в уравнение получилось неверное равенство, то возможны два случая: либо точка находится внутри окруж-ти, либо она находится вне нее. Заметим, что в уравнении окруж-ти

левая часть представляет собой квадрат расстояния между точкой (х; у) и центром окруж-ти (х0; у0). Если оно больше квадрата радиуса, то точка находится вне окруж-ти, а если меньше – то внутри нее.

Задание. Определите для точек M(3; 4), N(2; 3), F(4; 4), лежат ли они на окруж-ти

внутри нее или за пределами окруж-ти.

Решение.Снова подставляем координаты точек в уравнение окруж-ти:

Это ошибочное равенство, ведь в реальности левая часть больше:

Это значит, что F(4; 4) лежит вне окруж-ти. Убедиться в правильности сделанных выводов можно, построив заданную окруж-ть и отметив точки M, N и F:

Рассмотрим несколько более сложных задач по данной теме.

Задание.Запишите уравнение окружности с центром С(– 4; 2), и окруж-ть проходит через точку А(0; 5).

Решение. В данном случае радиус окруж-ти явно не указан, и его надо найти. Подставим в уравнение окруж-ти известные нам данные:

Задание. Даны точки К (– 2; 6) и М (2; 0). Запишите уравнение окруж-ти, в которой КМ будет являться диаметром.

Решение. Для составления уравнения нужно знать радиус окруж-ти и координаты ее центра. Обозначим центр буквой С. Ясно, что центр окруж-ти делит любой ее диаметр пополам, на два одинаковых радиуса, то есть является серединой диаметра. То есть С – середина КМ, а потому для поиска координат С используем формулы:

Итак, координаты центра теперь известны, это (0; 3). Чтобы найти радиус, поступим также, как и в предыдущей задаче – подставим координаты точек С и, например, К, в уравнение окруж-ти

Обратите внимание, что нам необязательно вычислять радиус, ведь для уравнении окруж-ти нужна его величина, возведенная в квадрат, и мы ее нашли. Теперь можем записать уравнение окончательно

Задание. Дано уравнение окружности

(x — 2) 2 + (y — 4) 2 = 9

Найдите точки этой окруж-ти, абсцисса которых равна 2.

Решение. Напомним, что абсцисса – это координат х точки. Она нам уже известна, х = 2. Остается только найти ординату, то есть координату у. Для этого подставим известное нам значение абсциссы в уравнение и решим его:

Обратите внимание, что у квадратного уравнения нашлось сразу 2 корня, они соответствуют двум точкам, (2; 1) и (2; 7).

Ответ: (2; 1) и (2; 7).

Задание. Составьте уравнение окружности, проходящей через точки D(3; 8), L(6; 7) и K(7; 0).

Решение. Эта задача сложнее предыдущих и потребует громоздких вычислений. Нам надо найти радиус окруж-ти r и ее центр (х0; у0). Запишем для точки D(3; 8) уравнение окруж-ти:

Далее раскроем скобки в левой части, используя формулу квадрата разности (это необходимо для упрощения дальнейших расчетов):

В итоге нам удалось составить три уравнения, которые содержат три переменные: r, х0 и у0.Вместе они образуют систему уравнений, которую можно попробовать решить:

Далее можно, например, вычесть из (2) уравнение (3):

Нам удалось найти одно из интересующих нас чисел, у0. С помощью (5) легко найдем и х0:

x0 = 7y0 — 18 = 7*3 — 18 = 21 — 18 = 3

Итак, центр окруж-ти находится в точке (3; 3). Осталось найти радиус окруж-ти. Для этого подставим в уравнение окруж-ти вычисленные нами координаты центра, а также координаты одной из точек из условия, например, K(7; 0):

Радиус окруж-ти равен 5. Теперь мы можем окончательно записать уравнение окруж-ти

Чтобы убедиться в правильности найденного решения, можно подставить в полученное уравнение координаты трех точек из условия и посмотреть, обращают ли они его в верное равенство. Вместо этого мы для наглядности просто построим в координатной плоскости получившуюся окруж-ть и отметим на ней точки из условия:

Ответ: (х – 3) 2 + (у – 3) 2 = 25

Видео:9 класс, 7 урок, Уравнение прямойСкачать

9 класс, 7 урок, Уравнение прямой

Уравнение прямой

Пусть на координатной плоскости построена произвольная прямая m. Для составления его уравнения отметим две точки А(х1; у1) и В(х2; у2) так, чтобы прямая m оказалась серединным перпендикуляром для отрезка АВ:

Тогда, согласно свойству серединного перпендикуляра,про любую точку М(х; у), лежащую на m, можно сказать, что она равноудалена от А и В, и наоборот, любая точка, НЕ лежащая на m, НЕ равноудалена от А и В. Это означает, что для точки M, если она лежит на m, должно выполняться равенство:

Квадратные корни равны, если одинаковы их подкоренные выражения, поэтому

Заметим, что так как точки А и В – различные, то хотя бы одна из разностей (2х2 – 2х1) и (2у2 – 2у1) будет не равна нулю, поэтому в (2) хотя бы один их коэффициентов а и b точно ненулевой. Это означает, что уравнение (2) является уравнением первой степени. Заметим, что (2) называют общим уравнением прямой, так как оно описывает любую прямую на плоскости. При более глубоком изучении геометрии вы познакомитесь с множеством других видов уравнений прямой (нормальным, каноническим, тангенциальным, параметрическим и т. п.).

В последнем примере коэффициент с равен нулю, поэтому его просто не записали.

Заметим важный аспект – одна и та же прямая может описываться различными уравнениями вида (2). Например, пусть уравнение прямой выглядит так:

Это уравнение равносильно предыдущему, хотя у них и различны коэффициенты а, b и c. Это значит, что однозначно определить эти коэффициенты при решении задач в большинстве случаев невозможно. Поэтому удобней рассмотреть два отдельных случая.

1) Если коэффициент b в уравнении прямой (2) не равен нулю, то его можно привести к виду:

Из курса алгебры мы помним, что ее графиком как раз является прямая. В большинстве случаев уравнение прямой удобно записывать именно в таком виде. Напомним, что число k называется угловым коэффициентом прямой.Поэтому (3) так и называют – уравнением прямой с угловым коэффициентом. В качестве примера подобных уравнений можно привести:

Каждое из них описывает вертикальную прямую, параллельную оси Оу.

Задание. Прямая задана уравнением

Постройте ее на координатной плоскости

Решение. Для построения прямой надо всего лишь найти две различные точки, лежащие на ней, и соединить их. Мы будем брать произвольные значения координаты х, подставлять их в уравнение и находить соответствующее им значение координаты у. Подставим х = 1:

Получили другую точку (– 1; – 1). Осталось отметить эти две точки на и соединить их:

Задание. Составьте уравнение прямой, проходящей через точки D(1; 10) и Е(– 1; – 4).

Решение. Задачу можно решить разными способами.

Способ 1 – универсальный и более сложный.

В общем виде уравнение прямой выглядит так:

Нам надо найти коэффициенты а, b и c. Для этого просто подставляем координаты известных точек в уравнение. Начнем с координат D:

Нам удалось выразить коэффициента двумя различными выражениями (1) и (2). Так как в них одинаковы левые части, то можно приравнять и правые части:

Мы можем взять любое значение коэффициента с (кроме нуля), и при этом получатся различные, но равносильные друг другу уравнения. Удобно взять с = 3, тогда в уравнении исчезнут дроби:

Это и есть ответ задания.

Далее рассмотрим более простой способ, который, однако, может потребовать анализа различных вариантов.

Уравнение прямой может иметь либо вид

если прямая является графиком линейной функции, либо вид

если прямая параллельна оси Оу. Во втором случае у всех точек прямой абсцисса должна быть одинакова, однако у точек D(1; 10) и Е(– 1; – 4) она различна, поэтому ее точно можно описать уравнением

Надо найти коэффициенты k и d. Подставим в уравнение координаты D(1; 10):

Итак, уравнение можно записать так:

Задание. Запишите уравнение прямой, если ей принадлежат точки:

Подставим сюда уже известное нам значение d:

В (1) и (2) мы выразили d с помощью разных выражений, которые теперь можно приравнять:

То, что коэффициент k оказался нулевым, означает, что прямая параллельна оси Ох.

в) Попытаемся сделать те же действия, что и в двух предыдущих примерах, подставляя точки в уравнение у = kx + d:

На этот раз мы не смогли найти коэффициент k, а вместо этого получили ошибочное равенство. То есть уравнение просто не имеет решений. Что же это значит? Из этого факта следует, что в этом примере уравнение прямой НЕ может иметь вид

Значит, оно имеет другой вид:

Действительно, у обеих точек (2; 7) и (2; 8) одинаковы абсциссы. Это значит, что прямая, проходящая через них, вертикальная. Коэффициент С как раз равен значению этой абсциссы, так что уравнение выглядит так:

Ответ а) у = 1,5х + 3; б) у = 8; в) х = 2.

Задание. Найдите площадь треугольника MON, изображенного на рисунке, если известно, что M и N лежат на прямой, задаваемой уравнением:

Решение. ∆MON – прямоугольный, и для вычисления его площади нужно найти длины OM и ON. По рисунку видно, что М лежит на оси Ох, то есть у неё ордината нулевая:

Зная это, легко найдем и абсциссу М, ведь координаты М при их подстановке в уравнение прямой должны давать верное равенство:

Далее рассмотрим точку N. Она уже лежит на Оу, а потому у нее нулевой оказывается абсцисса:

Напомним, что площадь прямоугольного треугольника может быть вычислена по формуле:

Видео:Математика без Ху!ни. Уравнения прямой. Часть 2. Каноническое, общее и в отрезках.Скачать

Математика без Ху!ни. Уравнения прямой. Часть 2. Каноническое, общее и в отрезках.

Задачи на пересечение двух фигур

Метод координат помогает находить точки, в которых пересекаются те или иные геометрические фигуры. В большинстве случаев надо просто составить систему из уравнений, задающих эти фигуры, и найти их общее решение. В курсе алгебры мы уже рассматривали как решение простых, в основном линейных систем, так и решение более сложных, нелинейных систем. Рассмотрим несколько задач на эту тему.

Задание. Две прямые заданы уравнениями:

Определите, в какой точке они пересекаются.

Решение. Если точка пересечения прямых существует, то ее координаты являются решением каждого из двух уравнений. Таким, образом, нам надо просто решить систему:

Мы нашли единственное решение системы – это пара чисел (3; – 2). Эта же пара определяет координаты искомой нами точки.

Задание. Найдите точки пересечения окруж-ти и прямой, если они задаются уравнениями

Решаем квадратное уравнение, используя дискриминант:

Мы нашли два различных значения у. Это значит, что прямая пересекается с окруж-тью в двух различных точках, а найденные нами числа – их ординаты. Отметим, что возможны случаи, когда корень только один (и тогда у окруж-ти с прямой одна общая точка, то есть они касаются), и когда корней вовсе нет (тогда окруж-ть и прямая не пересекаются). В нашем же примере осталось найти абсциссы точек. Для этого используем уравнение (3):

Получили в итоге пары точек (3; 8) и (6; 7), в которых заданная окруж-ть и прямая пересекаются.

Ответ: (3; 8) и (6; 7).

Задание. Две окруж-ти заданы уравнениями:

Для ее решения сначала раскроем скобки в обоих уравнениях и приведем подобные слагаемые:

Нам удалось выразить у через х. Теперь снова запишем одно из исходных уравнений окруж-ти, но заменим в нем у с помощью только что найденного выражения:

Мы нашли абсциссы точек пересечения окруж-тей, теперь можно вернуться к (1), чтобы найти и ординаты:

Получили точки (5; 2) и (4; 3).

В конце решим одну задачу чуть более высокого уровня сложности.

Задание. К окруж-ти радиусом 5, чей центр совпадает с началом координат, построена касательная в точке (3; 4). Составьте уравнение этой касательной.

Решение. Сначала составим уравнение окруж-ти. Так как ее центр находится в начале координат, а радиус имеет длину 5, то оно примет вид:

Нам надо найти коэффициенты k и d, а для этого надо составить какие-нибудь уравнения с этими переменными. Нам известно, что касательная проходит через точку (3; 4), а потому эти координаты можно подставить в (2):

Обратите внимание, что мы получили квадратное уравнение относительно переменной х. Если бы нам были известны k и d, то мы смогли бы его решить, и тогда мы определили бы точки пересечения прямой и окруж-ти. В этой задаче k и d нам неизвестны, но мы знаем, что окруж-ть и прямая касаются, то есть имеют ровно одну общую точку. Но тогда и квадратное уравнение (4) должно иметь только одно решение! Это означает, что его дискриминант равен нулю. Сначала выпишем коэффициенты квадратного уравнения, используемые при вычислении дискриминанта:

Теперь у нас есть два уравнения, (3) и (5), которые содержат только переменные k и d. Осталось лишь совместно решить их. Для этого подставим (3) в (5):

В рамках урока мы выяснили, как выглядят уравнения окруж-ти и прямой, а также научились решать несколько типовых заданий, в которых эти уравнения необходимо использовать. Хотя формулы, используемые при этом, могут показаться слишком сложными, главное – просто набить руку в их применении, решая как можно больше задач.

📹 Видео

Аналитическая геометрия, 5 урок, Уравнение плоскостиСкачать

Аналитическая геометрия, 5 урок, Уравнение плоскости

Стереометрия 10 класс. Часть 1 | МатематикаСкачать

Стереометрия 10 класс. Часть 1 | Математика

Лекция 25. Виды уравнений плоскости в пространстве.Скачать

Лекция 25. Виды уравнений плоскости в пространстве.

Геометрия 9 класс (Урок№9 - Уравнение линии на плоскости. Уравнение окружности. Уравнение прямой.)Скачать

Геометрия 9 класс (Урок№9 - Уравнение линии на плоскости. Уравнение окружности. Уравнение прямой.)

Уравнение окружности (1)Скачать

Уравнение окружности (1)

Аналитическая геометрия, 6 урок, Уравнение прямойСкачать

Аналитическая геометрия, 6 урок, Уравнение прямой

3. Частные случаи общего уравнения плоскости Неполные уравнения плоскостиСкачать

3. Частные случаи общего уравнения плоскости Неполные уравнения плоскости

Частные случаи уравнения плоскости. 1 часть. 11 класс.Скачать

Частные случаи уравнения плоскости. 1 часть. 11 класс.

Математика без Ху!ни. Кривые второго порядка. Эллипс.Скачать

Математика без Ху!ни. Кривые второго порядка. Эллипс.

УРАВНЕНИЕ ПРЯМОЙ на плоскости 8 и 9 классСкачать

УРАВНЕНИЕ ПРЯМОЙ на плоскости 8 и 9 класс

11 класс, 8 урок, Уравнение плоскостиСкачать

11 класс, 8 урок, Уравнение плоскости
Поделиться или сохранить к себе: