Уравнения пуассона в различных координатах

Уравнение Пуассона и распределение Больцмана (часть 1)

В продолжение предыдущей статьи «Есть ли плазма в космосе?» я хотел бы в познавательных целях рассказать об уравнениях, которые применялись при выводе уравнения Дебая-Хюккеля. Это уравнение Пуассона и распределение Больцмана.

Мы выяснили, что плазма квазинейтральна в равновесном состоянии и что под действием электрического поля от движущихся зарядов, заряженные частицы смещаются на дебаевскую длину и поле в пределах этой длины затухает. В электростатике взаимодействие заряженных частиц описывается кулоновским уравнением:

Уравнения пуассона в различных координатах

где Уравнения пуассона в различных координатах– величины взаимодействующих точечных зарядов, Уравнения пуассона в различных координатах– квадрат расстояния между зарядами. Коэффициент k является константой. Если мы используем систему в электростатических единицах СГС, обозначаемых СГСЭq, то k = 1. Если используется система СИ, то Уравнения пуассона в различных координатах, где Уравнения пуассона в различных координатах– диэлектрическая проницаемость среды, в которой расположены заряды, Уравнения пуассона в различных координатах– электрическая постоянная, равная 8,86 ∙ Уравнения пуассона в различных координатах.

В физике непосредственно силой не пользуются, а вводят понятие электростатического поля распределённых зарядов и измеряют поле величиной напряженности электрического поля. Для этого в каждую точку поля мысленно помещают единичный пробный заряд и измеряют силу, с которой поле зарядов действует на пробный заряд:

Уравнения пуассона в различных координатах

Отсюда, если подставить в это уравнение силу Кулона, то получим:

Уравнения пуассона в различных координатах

Но и этим физики не ограничиваются, для того чтобы описать полноценно электрическое поле. Рассмотрим единичный заряд, помещённый в электростатическое поле. Поле выполняет работу по перемещению этого заряда на элементарное расстояние ds из точки P1 в точку P2:

Уравнения пуассона в различных координатах

Величину Уравнения пуассона в различных координатахназывают разностью потенциалов или напряжением. Напряжение измеряется в Вольтах. Знак минус говорит нам о том, что само поле выполняет работу для переноса единицы положительного заряда. Силы, перемещающие заряды являются консервативными, так как работа по замкнутому пути равна всегда нулю, независимо от того, по какому пути перемещается заряд.

Отсюда следует глубокий смысл разности потенциалов. Если зафиксировать точку Р1 и перемещать заряд в переменную точку Р2, то работа зависит только от положения второй точки Р2. Таким образом мы можем ввести понятие потенциала. Потенциал – это силовая функция, показывающая какую необходимо выполнить работу полю, чтобы переместить заряд из бесконечности в данную точку P2, где условно принимают потенциал в бесконечности равным нулю.

Чтобы понять уравнение Пуассона, необходимо разбираться в «особой» векторной математике. Я вкратце расскажу про такие понятия как градиент поля и дивергенции (подразумевается, что читатель знаком с математическим анализом)
Пусть f(x,y,z) является некоторой непрерывной дифференцируемой функцией координат. Зная её частные производные Уравнения пуассона в различных координатахв каждой точке пространства можно построить вектор, компоненты которого x, y, z равны соответствующим частным производным:

Уравнения пуассона в различных координатах

где Уравнения пуассона в различных координатах– единичные векторы соответствующих осей x, y, z. Значок Уравнения пуассона в различных координатахчитается «набла» и является дифференциальным оператором

Уравнения пуассона в различных координатах

Этот оператор ввёл в математику Гамильтон. С набла можно выполнять обычные математические операции, такие как обычное произведение, скалярное произведение, векторное произведение и так далее.

Теперь вернёмся к электростатическому полю E. С одной стороны изменение потенциала при переходе из одной точки в другую имеет следующий вид:

Уравнения пуассона в различных координатах

С другой стороны, согласно формуле (*)

Уравнения пуассона в различных координатах

Применяя только что введённое понятие градиент, эта формула преобразуется в:

Уравнения пуассона в различных координатах

Теперь разберёмся с таким понятием, как дивергенция поля. Рассмотрим конечный замкнутый объем V произвольной формы (см. рис. ниже). Обозначим площадь этой поверхности S. Полный поток вектора F, выходящего из этого объема по определению равно

Уравнения пуассона в различных координатах

, где da является бесконечно малым вектором, величина которого равна площади малого элемента поверхности S, а направление совпадает с наружной нормалью к этому элементу.
Возьмём этот поток вектора F поделим на объём Уравнения пуассона в различных координатахи найдём предел при Уравнения пуассона в различных координатахстремящейся к нулю, т.е. будем стягивать объём в бесконечно малую точку.

Уравнения пуассона в различных координатах

Уравнения пуассона в различных координатах

Мы подошли к понятию дивергенции. Обозначается дивергенция символом div и является отношением потока вектора F к объёму V, при V стремящейся к нулю.

Прежде чем показать, как получается уравнение Пуассона, важно знать закон Гаусса и теорему Гаусса. Представим себе сферу, внутри которой находится заряд q. Заряд создаёт вокруг себя электрическое поле напряжённости E. Возьмём поток вектора E

Уравнения пуассона в различных координатах

где S площадь нашей сферы равная Уравнения пуассона в различных координатах. Следовательно

Уравнения пуассона в различных координатах

Это и есть закон Гаусса, утверждающий, что поток электрического поля E через любую замкнутую поверхность равен произведению Уравнения пуассона в различных координатахна полный заряд, охватываемый поверхностью:

Уравнения пуассона в различных координатах

где Уравнения пуассона в различных координатах– плотность объёмного заряда, т.е. величина электрического заряда в единице объёма, и Уравнения пуассона в различных координатах– элементарный объём, выделенный внутри нашего замкнутого объёма.

Теорема Гаусса (полное название теорема Гаусса-Остроградского) чисто математическая теорема о дивергенции. Перепишем полный поток вектора F следующим образом:

Уравнения пуассона в различных координатах

В пределе, когда N → ∞, Уравнения пуассона в различных координатах→0 величина в скобках становится дивергенцией и сумма переходит в объёмный интеграл:

Уравнения пуассона в различных координатах

Это и есть теорема Гаусса, и является поистине самой важной формулой полевой теории. Применим эту теорему к электростатическому полю. С одной стороны, согласно закону Гаусса

Уравнения пуассона в различных координатах

А с другой стороны, согласно теореме Гаусса (только не путайте теорему с законом Гаусса):

Уравнения пуассона в различных координатах

Комбинируя два последних уравнения, получим:

Уравнения пуассона в различных координатах

Вспомним формулу (**) и подставим сюда вместо E потенциал поля

Уравнения пуассона в различных координатах

Дивергенция градиента это новый оператор, который в математике называют оператор Лапласа, или сокращённо лапласиан. Лапласиан обозначается значком набла следующим образом Уравнения пуассона в различных координатахи равен

Уравнения пуассона в различных координатах

Перепишем предыдущую формулу в форме лапласиана:

Уравнения пуассона в различных координатах

Наконец мы получили уравнение Пуассона. В первой статье это уравнение было немного в другой форме, с учётом диэлектрической проницаемости среды. Вспомните силу Кулона в системе СИ, там константа Уравнения пуассона в различных координатах. Соответственно в законе Гаусса будет не Уравнения пуассона в различных координатах, а коэффициент Уравнения пуассона в различных координатах. Таким образом получаем уравнение Пуассона в форме представленной в предыдущей статье

Уравнения пуассона в различных координатах

Таким образом по сути уравнение Пуассона – это закон Кулона (а точнее закон Гаусса) переписанный в другой форме, в обозначениях векторного дифференциального анализа.

В следующей статье мы разберём важное распределение из математической статистики — распределение Больцмана.

Видео:29. Адиабатический процесс. Уравнение ПуассонаСкачать

29. Адиабатический процесс. Уравнение Пуассона

Уравнение Пуассона и математическая постановка задач электростатики

Существует большое количество случаев, когда самым удобным методом нахождения напряженности поля считается решение дифференциального уравнения для потенциала. После его получения применим в качестве основы теорему Остроградского-Гаусса в дифференциальной форме:

где ρ является плотностью распределения заряда, ε 0 — электрической постоянной, d i v E → = ∇ → E → = ∂ E x ∂ x + ∂ E y ∂ y + ∂ E z ∂ z — дивергенцией вектора напряженности и выражением, связывающим напряженность поля и потенциал.

Произведем подстановку ( 2 ) в ( 1 ) :

Учитывая, что d i v g r a d φ = ∇ 2 φ = ∂ 2 φ ∂ x 2 + ∂ 2 φ ∂ y 2 + ∂ 2 φ ∂ z 2 , где ∆ = ∇ 2 — это оператор Лапласа, равенство ( 3 ) принимает вид:

Выражение ( 4 ) получило название уравнения Пуассона для вакуума. При отсутствующих зарядах запишется как уравнение Лапласа:

После нахождения потенциала переходим к вычислению напряженности, используя ( 2 ) . Решения уравнения Пуассона должны удовлетворять требованиям:

  • значение потенциала как непрерывная функция;
  • потенциал должен быть конечной функцией;
  • производные потенциала как функции по координатам должны быть конечными.

При наличии сосредоточенных зарядов в объеме V , решение уравнения ( 4 ) будет выражаться для потенциала вида:

Общая задача электростатики сводится к нахождению решения дифференциального уравнения, то есть уравнения Пуассона, удовлетворяющего вышеперечисленным требованиям. Теоретические вычисления известны для небольшого количества частных случаев. Если возможно подобрать функцию φ , удовлетворяющую условиям, то она является единственным решением.

В таких задачах не всегда необходимо задавать заряды или потенциалы во всем пространстве. Для нахождения электрического поля в полости, окруженной проводящей оболочкой, достаточно вычислить поле тел, находящихся внутри нее.

Любое решение уравнения Пуассона ограниченной области может быть определено краевыми условиями, накладывающимися на поведение решения. Границы перехода из одной среды в другую имеют условия, которые должны быть выполнены:

E 2 n — E 1 n = 4 π σ , или ∂ φ 1 ∂ n — ∂ φ 2 ∂ n = 0 .

где σ — это поверхностная полость свободных зарядов, n – единичный вектор нормали к границе раздела, проведенный из среды 1 в 2 , τ — единичный вектор, касательный к границе.

Эти уравнения выражают скачок нормальных составляющих вектора напряженности и непрерывность касательной вектора напряженностей электрического поля при переходе через любую заряженную поверхность независимо от ее формы и наличия или отсутствия зарядов вне ее.

Видео:Урок 5. Решение уравнения Лапласа в сферических координатахСкачать

Урок 5. Решение уравнения Лапласа в сферических координатах

Уравнение Пуассона в сферических, полярных и цилиндрических координатах

Запись уравнения может быть как при помощи декартовых координат, также и сферических, цилиндрических, полярных.

При наличии сферических r , θ , υ уравнение Пуассона запишется как:

1 r 2 · ∂ ∂ r r 2 ∂ φ ∂ r + 1 r 2 sin θ ∂ θ sin θ · ∂ φ ∂ θ + ∂ 2 φ r 2 sin 2 θ ∂ φ 2 = — 1 ε 0 ρ .

В полярных r , θ :

1 r · ∂ ∂ r r ∂ φ ∂ r + ∂ 2 φ r 2 ∂ θ 2 = — 1 ε 0 ρ .

В цилиндрических r , υ , z :

1 r · ∂ ∂ r r ∂ φ ∂ r + ∂ 2 φ ∂ z 2 + ∂ 2 φ r 2 ∂ υ 2 = — 1 ε 0 ρ .

Видео:9. Уравнение ПуассонаСкачать

9. Уравнение Пуассона

Примеры решения задач

Найти поле между коаксиальными цилиндрами с радиусами r 1 и r 2 и с имеющейся разностью потенциалов ∆ U = φ 1 — φ 2 .

Уравнения пуассона в различных координатах

Решение

Необходимо зафиксировать уравнение Лапласа с цилиндрическими координатами, учитывая аксиальную симметрию:

1 r · ∂ ∂ r r ∂ φ ∂ r = 0 .

Решение имеет вид φ = — A ln ( r ) + B . Для этого следует выбрать нулевой потенциал на нужном цилиндре, тогда:

φ ( r 2 ) = 0 = — A ln r 2 + B , следовательно

φ ( r 1 ) = ∆ U = — A ln r 1 + B , получим:

A = ∆ U ln r 2 r 1 .

φ ( r ) = — ∆ U ln r 2 r 1 ln ( r ) + ∆ U ln r 2 r 1 ln r 2 .

Ответ: поле с двумя коаксиальными цилиндрами может быть задано при помощи функции φ ( r ) = — ∆ U ln r 2 r 1 ln ( r ) + ∆ U ln r 2 r 1 ln r 2 .

Найти потенциал поля, которое создает бесконечно круглый цилиндр с радиусом R и объемной плотностью заряда ρ . Использовать уравнение Пуассона.

Решение

Необходимо направить ось Z по оси цилиндра. Видно, что цилиндрическое распределение заряда аксиально симметрично, потенциал имеет такую же симметрию, иначе говоря, считается функцией φ ( r ) с r , являющимся расстоянием от оси цилиндра. Для решения используется цилиндрическая система координат. Уравнение Пуассона в ней запишется как:

φ 2 = C 2 ln r + C ‘ 2 .

C 1 , C ‘ 1 , C 2 , C ‘ 2 — это постоянные интегрирования. Имеем, что потенциал во всех точках должен быть конечным, а l i m r → 0 ln r = ∞ . Отсюда следует, что C 1 = 0 . Далее необходимо пронормировать потенциал, задействовав условие φ 1 ( 0 ) = 0 . Получим C ‘ 1 = 0 .

Поверхностные заряды отсутствуют, поэтому напряженность электрического поля на поверхности шара является непрерывной. Следовательно, что и производная от потенциала также непрерывна при r = R , как и сам потенциал. Исходя из условий, можно найти C 2 , C ‘ 2 :

C 2 ln R + C ‘ 2 = — 1 4 ρ ε 0 R 2 .

C 2 R = — 1 2 ρ ε 0 R .

Значит, полученные выражения записываются как:

Ответ: потенциал поля равняется:

Видео:6.1 Уравнение Лапласа в полярных координатах. Принцип решения и постановка задачСкачать

6.1 Уравнение Лапласа в полярных координатах. Принцип решения и постановка задач

Уравнение Пуассона и математическая постановка задач электростатики

Вы будете перенаправлены на Автор24

Видео:Билет №04 "Потенциал электростатического поля"Скачать

Билет №04 "Потенциал электростатического поля"

Решение уравнения Пуассона

В достаточно большом количестве случаев наиболее удобным методом поиска напряженности поля является решение дифференциального уравнения для потенциала. Получим его, используя в качестве основы теорему Остроградского — Гаусса в дифференциальной форме:

где $rho $ — плотность распределения заряда, $_0$ — электрическая постоянная, $divoverrightarrow=overrightarrowoverrightarrow=frac+frac+frac$) — дивергенция вектора напряженности и выражение связывающее напряженность поля и потенциал:

Подставим (2) в (1), получим:

Учитываем, что $divgradvarphi =^2varphi =frac<^2varphi >+frac<^2varphi >+frac<^2varphi >$, где $triangle =^2$- оператор Лапласа, тогда равенство (3) запишем как:

Уравнение (4) называется уравнением Пуассона (для вакуума) в системе СИ. Если заряды отсутствуют, то уравнение (4) преобразуется в уравнение Лапласа:

После того, как найден потенциал из уравнения Пуассона, обычно вычисляется напряженность по формуле (2). Решения уравнения Пуассона должны удовлетворять таким требованиям:

  1. Потенциал должен быть непрерывной функцией.
  2. Потенциал должен быть конечной функцией.
  3. Производные от потенциала как функции по координатам должны быть конечными.

Если заряды сосредоточены в объеме V, то решением уравнения (4) будет выражение для потенциала вида:

Итак, общая задача электростатики сводится к нахождению решения дифференциального уравнения (уравнения Пуассона), которое удовлетворяет выше перечисленным требованиям. Нахождение решения — задача весьма сложная. Теоретические решения известны для небольшого количества частных случаев. Если удалось подобрать функцию $varphi $, которая удовлетворяет всем условиям задачи, то она единственная.

Готовые работы на аналогичную тему

Не всегда есть необходимости задавать заряды или потенциалы во всем пространстве. Например, если необходимо найти электрическое поле в полости, которая окружена проводящей оболочкой, то можно найти поле только для тел внутри самой полости.

Каждое решение уравнения Пуассона в ограниченной области однозначно определяется краевыми условиями, которые накладывают на поведение решения. На границе перехода из одной среды в другую выполняются граничные условия:

где $sigma $- поверхностная плотность свободных зарядов, n- единичный вектор нормали к границе раздела, проведенный из среды 1 в 2, $tau — $единичный вектор, касательный к границе.

Данные уравнения выражают скачок нормальных составляющих вектора напряженности и непрерывность касательной составляющей вектора напряженностей электрического поля при переходе через любую заряженную поверхность не зависимо от формы этой поверхности и наличия и отсутствия зарядов вне ее.

Видео:Оператор Лапласа в полярных координатахСкачать

Оператор Лапласа в полярных координатах

Уравнение Пуассона в сферических, полярных и цилиндрических координатах

Уравнение Пуассона может быть записано не только в декартовых координатах, но также в сферических и цилиндрических, полярных.

В сферических координатах ($r,theta ,vartheta)$ уравнение Пуассона имеет следующий вид:

В полярных координатах ($r,theta )$ система координат уравнение имеет вид:

В цилиндрических координатах ($r,vartheta,z)$ уравнение имеет вид:

Задание: Найдите поле между двумя коаксиальными цилиндрами с радиусами $r_1$ и $r_2$, разность потенциалов между которыми равна $triangle U=_1-_2.$

Уравнения пуассона в различных координатах

Запишем уравнение Лапласа в цилиндрических координатах с учетом аксиальной симметрии:

Оно имеет решение $varphi =-Aln(r)$+B. Выберем нулевой потенциал на наружном цилиндре, найдем, получим:

$varphi left(r_2right)=0=-Alnr_2+B,$ следовательно

Ответ: Поле между двумя коаксиальными цилиндрами задается функцией $varphi (r)=-frac<<ln left(fracright) >>lnleft(rright)+frac<<ln left(fracright) >>lnr_2$

Задание: Найти, используя уравнение Пуассона потенциал поля, которое создает бесконечно длинный круглый цилиндр радиуса R с объемной плотностью заряда $rho $.

Ось Z направим по оси цилиндра. Так как цилиндрическое распределение заряда аксиально симметрично, то потенциал обладает той же симметрией, то есть он является функцией $varphi left(rright), $где r — расстояние от оси цилиндра. Поэтому используем цилиндрическую систему координат. Запишем уравнение Пуассона в ней с учетом симметрии:

где $C_1$,$ _1,C_2$,$ _2$ — постоянные интегрирования. Так как потенциал во всех точках должен быть конечным, а $<mathop_ lnr >=infty $, следовательно, $C_1=0.$ Пронормируем потенциал условием:$_1left(0right)=0$, тогда: $_1=0.$

Так как поверхностных зарядов нет, то напряженность электрического поля на поверхности шара непрерывна, то есть непрерывна производная от потенциала при r=R. И непрерывен сам потенциал. Эти условия дают два алгебраических уравнения для того, чтобы найти постоянные $C_2$,$ _2:$

Следовательно, получаем выражения для потенциалов:

[_1left(rright)=-fracfrac<_0> r ^ 2 left(0 Ответ: Потенциал поля равен: $$ varphi_1 left(r right)=-fracfrac r^2 left (0

🎬 Видео

Колыбасова В.В. - Методы математической физики. Семинары - 5. Уравнение Лапласа в полярных коорд. 1Скачать

Колыбасова В.В. - Методы математической физики. Семинары - 5. Уравнение Лапласа в полярных коорд. 1

Адиабатный процесс. 10 класс.Скачать

Адиабатный процесс. 10 класс.

Практическое занятие. Численное решение уравнений Лапласа и ПуассонаСкачать

Практическое занятие. Численное решение уравнений Лапласа и Пуассона

Оператор набла (оператор Гамильтона) и оператор ЛапласаСкачать

Оператор набла (оператор Гамильтона) и оператор Лапласа

Шар заряд.Уравнение ПуассонаСкачать

Шар заряд.Уравнение Пуассона

ЗАДАЧА на электростатическое поле │Расчет плоского конденсатора │Уравнение ПуассонаСкачать

ЗАДАЧА на электростатическое поле │Расчет плоского конденсатора │Уравнение Пуассона

7.1 Решение уравнения Лапласа в прямоугольникеСкачать

7.1 Решение уравнения Лапласа в прямоугольнике

Урок 172. Применение 1 закона термодинамики для различных процессовСкачать

Урок 172. Применение 1 закона термодинамики для различных процессов

ЧК_МИФ 3_1_2_4 (L=3- ЛЭТИ) УРАВНЕНИЕ ПУАССОНА ДЛЯ СКАЛЯРНОГО ПОТЕНЦИАЛАСкачать

ЧК_МИФ 3_1_2_4 (L=3- ЛЭТИ)   УРАВНЕНИЕ ПУАССОНА ДЛЯ СКАЛЯРНОГО ПОТЕНЦИАЛА

Оператор Лапласа в криволинейных координатахСкачать

Оператор Лапласа в криволинейных координатах

ЧК_МИФ_3_1_2_5 (L3) УРАВНЕНИЕ ПУАССОНАСкачать

ЧК_МИФ_3_1_2_5 (L3)   УРАВНЕНИЕ ПУАССОНА

Уравнения математической физики. Уравнение Лапласа. Часть 1Скачать

Уравнения математической физики. Уравнение Лапласа. Часть 1

7.2 Задача 1. Краевая задача для уравнения ПуассонаСкачать

7.2 Задача 1. Краевая задача для уравнения Пуассона
Поделиться или сохранить к себе: