- Скачать:
- Предварительный просмотр:
- Реферат на тему «Векторное задание прямых и плоскостей в пространстве»
- Тема « Векторное задание прямых и плоскостей в пространстве»
- Уравнения прямых и плоскостей
- Поверхности и линии первого порядка.
- Параметрические уравнения прямой и плоскости.
- Прямая линия на плоскости.
- Векторные уравнения плоскости и прямой.
- Параллельность плоскостей и прямых на плоскости.
- Уравнения прямой в пространстве.
- 📺 Видео
Видео:Лекция 23. Виды уравнений прямой на плоскости.Скачать
Скачать:
Вложение | Размер |
---|---|
referat_geometriya_dvoretskiy_sergey.doc | 355 КБ |
Видео:9 класс, 7 урок, Уравнение прямойСкачать
Предварительный просмотр:
Муниципальное образовательное учреждение
Маклинская средняя полная общеобразовательная школа
с углубленным изучением отдельных предметов
«Плоскости в пространстве»
Автор: ученик 11А класса
Соколова Татьяна Владимировна
- Введение 3
- Способы задания плоскости 4
- Взаимное расположение плоскостей в пространстве 7
- Параллельность плоскостей 8
- Признаки параллельности плоскостей 8
- Свойства параллельных плоскостей 10
- Двугранные углы и угол между двумя плоскостями 14
- Двугранный угол и его измерение 14
- Угол между двумя плоскостями 17
- Перпендикулярность плоскостей 19
6.1. Признаки перпендикулярности двух плоскостей 19
6.2. Свойства перпендикулярных плоскостей 20
7. Заключение 24
8. Список используемой литературы 25
Из курса планиметрии мы знаем, что плоскость – это множество, элементами которого являются точки и в котором выполняется система аксиом планиметрии, описывающая свойства точек и прямы.
Пространство – это множество, элементами которого являются точки и в котором выполняется система аксиом стереометрии, описывающая свойства точек, прямых и плоскостей.
Система аксиом стереометрии дает описание свойств пространства и основных его элементов. Понятия «точка», «прямая» и «плоскость» принимаются без определений: их описание и свойства содержатся в аксиомах. С другой стороны, понятия «точка», «прямая», «плоскость» имеют наглядный смысл, отраженный на чертежах и рисунках.
Изучение пространства приводит к необходимости расширить систему аксиом планиметрии и рассмотреть новую группу аксиом, в которых выражены свойства взаимного расположения точек, прямых и плоскостей, что особенно важно для нас, в пространстве.
Цель реферата – получить наглядное представление о пространстве и способах расположения плоскостей в пространстве.
Для выполнения этой цели поставлены следующие задачи:
— рассмотреть способы задания плоскостей в пространстве,
— рассмотреть основные аксиомы стереометрии;
— изучить возможные варианты взаимного расположения плоскостей в пространстве,
— сформулировать основные признаки и свойства взаимного расположения плоскостей в пространстве;
— проиллюстрировать теоретический материал практическими примерами.
2. Способы задания плоскости
Изучение пространства приводит к необходимости расширить систему аксиом.
Рассмотрим аксиому R1 . В пространстве существуют плоскости. В каждой плоскости пространства выполняются все аксиомы планиметрии. Эта аксиома дает нам право рассматривать в любой плоскости пространства отрезки, прямые со всеми их свойствами, которые изучались в планиметрии. Например, если прямая а и не принадлежащая ей точка М лежат в некоторой плоскости α, то в этой плоскости можно провести через точку М прямую, параллельную прямой а , и притом только одну.
В аксиоме R3 говорится: какова бы не была плоскость, существуют точки, принадлежащие этой плоскости, и точки, не принадлежащие ей. Данной аксиомой утверждается, что для любой плоскости в пространстве можно выбрать любое количество точек в этой плоскости, равно как и сколько угодно точек вне её. В случае, если точка А лежит в (принадлежит) плоскости α, то записывают: А α и говорят, что плоскость α проходит через точку А . Если точка А не принадлежит плоскости α, то записывают : А α и говорят, что плоскость α не проходит через точку А.
Плоскость в пространстве однозначно определяется:
— тремя точками, не лежащими на прямой. Аксиома R2 (аксиома плоскости) гласит: Через любые три точки, не принадлежащие одной прямой, можно провести плоскость, и притом только одну. Плоскость, которая проходит через точки А, В и С , не принадлежащие одной прямой (С АВ) , обозначается символически (АВС) ; если этой плоскостью является плоскость α, то пишут α = (АВС) или (АВС)= α. Стол, имеющий три ножки, не может качаться на плоском полу. Его устойчивость объясняется тем, что концы трех его ножек (три точки) принадлежат одной плоскости – плоскости пола, но не принадлежат одной прямой. Плохо сделанный стол на четырех ножках качается на плоском полу, и под одну из его ножек что-нибудь стараются подложить.
— прямой и точкой, не лежащей на прямой.
По теореме 1 через любую прямую и не принадлежащую ей точку можно провести плоскость, и притом только одну.
Доказательство. Пусть даны прямая а и не принадлежащая ей точка А. Выберем на прямой а любые точки В и С . Через точки В и С проходит только одна прямая – прямая а . Так как точка А по условию теоремы не принадлежит прямой а , то точки А, В и С не принадлежат одной прямой. По аксиоме R2 через точки А,В,С проходит только одна плоскость – плоскость АВС , которую обозначим α . Прямая а имеет с ней две общие точки – точки В и С , следовательно по аксиоме R4 (аксиоме прямой и плоскости — Если прямая проходит через две точки плоскости, то она лежит в этой плоскости ) эта прямая лежит в плоскости α . Таким образом, плоскость α проходит через прямую а и точку А и является искомой.
Докажем, что другой плоскости, проходящей через прямую а и точку А а , не существует.
Предположим, что есть другая плоскость – α , проходящая через точку А и прямую а . Тогда плоскости α и α проходят через точки А, В и С, не принадлежащие одной прямой, а значит совпадают. Следовательно, плоскость α единственная. Теорема доказана.
— двумя пересекающимися прямыми.
Две прямые в пространстве называются пересекающимися, если они имеют ровно одну общую точку.
Теорема 2. Через любые две пересекающиеся прямые можно провести плоскость, и притом только одну.
Доказательство. Пусть данные прямые а и b пересекаются в точке С . Выберем на прямых а и b любые точки А и В , отличные от С : А а, В b. Тогда точки А, В и С не принадлежат одной прямой, и по аксиоме R2 через них можно провести только одну плоскость. Обозначим её α .
Точки А и С прямой а принадлежат плоскости α , значит, плоскость α проходит через прямую а ( аксиома R4: Если прямая проходит через две точки плоскости, то она лежит в этой плоскости) . Плоскость α проходит и через прямую b , так как точки В и С этой прямой принадлежат плоскости α .
Таким образом, плоскость α проходит через прямые а и b , следовательно является искомой.
Докажем единственность плоскости α . Допустим, что есть другая, отличная от плоскости α и проходящая через прямые а и b , плоскость β .
Так как плоскость β проходит через прямую а и не принадлежащую ей точку В , то по теореме 1 она совпадает с плоскостью α. Единственность плоскости α доказана.
— двумя параллельными прямыми.
Две прямые в пространстве называются параллельными, если они лежат в одной плоскости и не пересекаются.
Теорема 3. Через две параллельные прямые можно провести единственную плоскость.
Доказательство. Пусть а и b – данные параллельные прямые. Из определения параллельных прямых следует, что через прямые а и b можно провести плоскость. Обозначим её α и убедимся, что она единственна.
Допустим противное. Пусть существует другая плоскость, отличная от α , которая содержит каждую из прямых а и b . Обозначим эту плоскость β .
Выберем на прямой а точки В и С , на прямой b – точку А . В силу параллельности прямых а и b точки А, В и С не принадлежат одной прямой.
Каждая из плоскостей α и β содержит обе прямые а и b , значит, каждая из них проходит через точки А, В и С . Но по аксиоме R 2 через эти точки можно провести лишь одну плоскость. Следовательно, плоскости α и β совпадают. Теорема доказана.
3. Взаимное расположение плоскостей в пространстве
При взаимном расположении двух плоскостей в пространстве возможен один из двух взаимно исключающих случаев.
- Две плоскости имеют общую точку. Тогда по аксиоме пересечения двух плоскостей они имеют общую прямую. Аксиома R5 гласит: если две плоскости имеют общую точку, то пересечение этих плоскостей есть их общая прямая. Из этой аксиомы следует, что у плоскостей Такие плоскости называются пересекающимися.
2. Две плоскости не имеют общей точки.
Видео:Аналитическая геометрия, 6 урок, Уравнение прямойСкачать
Реферат на тему «Векторное задание прямых и плоскостей в пространстве»
Обращаем Ваше внимание, что в соответствии с Федеральным законом N 273-ФЗ «Об образовании в Российской Федерации» в организациях, осуществляющих образовательную деятельность, организовывается обучение и воспитание обучающихся с ОВЗ как совместно с другими обучающимися, так и в отдельных классах или группах.
Министерство образования и науки Челябинской области
Государственное бюджетное профессиональное образовательное учреждение
Троицкий технологический техникум
Тема: « Векторное задание прямых и плоскостей в пространстве »
Студент 211 группы
Зоркина Галина Павловна
Видео:Уравнения прямой на плоскости | Векторная алгебраСкачать
Тема « Векторное задание прямых и плоскостей в пространстве»
Цель : изучить прямую и плоскость в пространстве.
Рассмотреть плоскость в пространстве, её уравнение, а также рассмотреть прямая в пространстве.
1. Плоскость в пространстве
2. Плоскость и прямая в пространстве
3 Взаимное расположение прямой и плоскости в пространстве
4Условия параллельности и перпендикулярности прямой и плоскости
3 Прямая в пространстве
.4 Угол между прямой и плоскостью
6 СПИСОК ИСТОЧНИКОВ
Всякое уравнение первой степени относительно координат x, y, z
Ах + By + Cz +D = 0 задает плоскость, и наоборот:
всякая плоскость может быть представлена уравнением, которое называется уравнением плоскости.
Вектор n (A, B, C), ортогональный плоскости, называется нормальным вектором плоскости.
В уравнении коэффициенты A, B, C одновременно не равны 0. Особые случаи уравнения .
D = 0, Ax+By+Cz = 0 — плоскость проходит через начало координат. .
C = 0, Ax+By+D = 0 — плоскость параллельна оси Oz.
. C = D = 0, Ax +By = 0 — плоскость проходит через ось Oz. .
B = C = 0, Ax + D = 0 — плоскость параллельна плоскости Oyz.
Уравнения координатных плоскостей: x = 0, y = 0, z = 0
. Прямая в пространстве может быть задана: а) как линия пересечения двух
плоскостей,т.е. системой уравнений: A1 x + B1 y + C1 z + D1 = 0,
A2 x + B2 y + C2 z + D2 = 0; )
двумя своими точками M1(x1, y1, z1) и M2(x2, y2, z2), тогда прямая, через них проходящая, задается уравнениями: =; ) точкой M1(x1, y1, z1), ей принадлежащей, и вектором a (m, n, р), ей коллинеарным. Тогда прямая определяется уравнениями:
Уравнения называются каноническими уравнениями прямой. Вектор a
называется направляющим вектором прямой . Параметрические уравнения прямой получим, приравняв каждое из отношений параметру t: = x1 +mt, y = y1 + nt, z = z1 + рt.
Решая систему как систему линейных уравнений относительно неизвестных x и y, приходим к уравнениям прямой в проекциях или к приведенным уравнениям прямой: = mz + a, y = nz + b От уравнений можно перейти к каноническим уравнениям, находя z из каждого уравнения и приравнивая полученные значения: От общих уравнений (3.2) можно переходить к каноническим и другим способом, если найти какую-либо точку этой прямой и ее направляющий вектор n = [n1, n2], где n1(A1, B1, C1) и n2(A2, B2, C2) — нормальные векторы заданных плоскостей. Если один из знаменателей m, n или р в уравнениях (3.4) окажется равным нулю, то числитель соответствующей дроби надо положить равным нулю, т.е. система равносильна системе ; такая прямая перпендикулярна к оси Ох.
Условия параллельности и перпендикулярности прямой и плоскости Рассмотрим прямую L: и плоскость α: +By+Cz+D=0. Прямая L и плоскость α
: а) перпендикулярны друг другу тогда и только тогда, когда направляющий вектор прямой и нормальный вектор плоскости коллинеарны, т. е.
б) параллельны друг другу тогда и только тогда, когда векторы и перпендикулярны, т. е. и Am + Bn + Ср = 0.
.2 Угол между прямой и плоскостью
Угол α между нормальным вектором плоскости и направляющим вектором прямой вычисляется по формуле:
Прямая в пространстве
Прямая линия в пространстве бесконечна, поэтому задавать ее удобнее отрезком. Из школьного курса Евклидовой геометрии известна аксиома, «через две точки в пространстве можно провести прямую и, притом, только одну». Следовательно, на эпюре прямая может быть задана двумя фронтальными и двумя горизонтальными проекциями точек. Но так как прямая — это прямая (а не кривая), то с полным основанием мы можем соединить эти точки отрезком прямой и получить фронтальную и горизонтальную проекции прямой (рис. 13) . Доказательство от обратного: в плоскостях проекций V и Н заданы две проекции а’ b’ и ab (рис.14). Проведем через них плоскости, перпендикулярные к плоскостям проекций V и Н (рис.14), линией пересечения плоскостей будет прямая АВ.
Различные случаи положения прямой в пространстве
В рассмотренных нами случаях прямые не были ни параллельными, ни перпендикулярными к плоскостям проекций V, Н, W. Большинство прямых занимает именно такое положение в пространстве и их называют прямыми общего положения. Они могут быть восходящими или нисходящими (разобраться самостоятельно).
На рис. 17 показана прямая общего положения, заданная тремя проекциями. Рассмотрим семейство прямых, обладающих важными свойствами — прямые, параллельные какой-либо плоскости проекци. На рис. 17 показана прямая общего положения, заданная тремя проекциями. Рассмотрим семейство прямых, обладающих важными свойствами — прямые, параллельные какой-либо плоскости проекций. профильной (у) плоскостям проекций.
Метод прямоугольного треугольника
Прямая общего положения, как мы уже говорили, наклонена к плоскостям проекций под некоторым произвольным углом.
Угол между прямой и плоскостью определяется углом, составленным прямой и ее проекцией на эту плоскость (рис. 22). Угол a определяет угол наклона отрезка АВ к пл. Н. Из рис. 22: Ab1 |1пл. Н; Вb1 = ВЬ — Аа = Z Рис. 22
Взаимное положение прямых
Проекции пересекающихся прямых на эпюре имеют ярко выраженный признак: проекции точки пересечения лежат на одной линии связи (рис. 25). Действительно: точка К принадлежит и АВ, и CD; на эпюре точка k’ лежит на одной линии связи с точкой k. Прямые АВ и CD — пересекаются
Следующее из возможных взаимных расположении двух прямых в пространстве — прямые скрещиваются. Это возможно в случае, когда прямые не параллельны, но и не пересекаются. Такие прямые всегда можно заключить в две параллельные плоскости (рис. 26). Это отнюдь не означает, что две скрещивающиеся прямые обязательно лежат в двух параллельных плоскостях; а лишь то, что через них можно провести две параллельные плоскости.
Общие уравнения прямой в пространстве
Уравнение прямой может быть рассмотрено как уравнение линии пересечения двух плоскостей. Как было рассмотрено выше, плоскость в векторной форме может быть задана уравнением: ×+ D = 0, где — нормаль плоскости; — радиус- вектор произвольной точки плоскости.
Пусть в пространстве заданы две плоскости: ×+ D1 = 0 и ×+ D2 = 0, векторы нормали имеют координаты: (A1, B1, C1), (A2, B2, C2); (x, y, z).
1 Общие уравнения прямой в пространстве Ах + By + Cz +D = 0
Уравнение прямой может быть рассмотрено как уравнение линии пересечения двух плоскостей
2 Каждая плоскость задается в системе прямоугольных координат , , уравнением вида Ах + By + Cz +D = 0
3 Уравнение плоскости, которая проходит через точку и перпендикулярна ненулевому вектору , имеет вид.
4Уравнение является уравнением плоскости, проходящей через точку и перпендикулярной ненулевому вектору .
5 Плоскость в пространстве задается уравнением , где , , , — действительные числа, причем , , одновременно не равны 0 и составляют координаты вектора , перпендикулярного этой плоскости и называемого вектором нормали.
1. Стереометрия. Геометрия в пространстве. Александров А.Д., Вернер А.Л., Рыжик В.И.
2. Александров П. С. Курс аналитической геометрии и линейной алгебры. — Главная редакция физико-математической литературы,. .
3Беклемишев Д.В. Курс аналитической геометрии и линейной алгебрыИльин В. А., Позняк Э. Г. Аналитическая геометрия: Учеб. для вузов. — 7-е изд., стер
. 4 Ефимов Н. В. Краткий курс аналитической геометрии: Учебн. пособие. — 13-е изд., стереот.. . Канатников А.Н., Крищенко А.П. Аналитическая геометрия
Видео:УРАВНЕНИЕ ПРЯМОЙ на плоскости 8 и 9 классСкачать
Уравнения прямых и плоскостей
Видео:Математика без Ху!ни. Уравнения прямой. Часть 2. Каноническое, общее и в отрезках.Скачать
Поверхности и линии первого порядка.
Уравнение первой степени, или линейное уравнение, связывающее координаты точки в пространстве, имеет вид
$$
Ax+By+Cz+D = 0,label
$$
причем предполагается, что коэффициенты при переменных не равны нулю одновременно, то есть (A^+B^+C^ neq 0). Аналогично, линейное уравнение, связывающее координаты точки на плоскости, — это уравнение
$$
Ax+By+C = 0,label
$$
при условии (A^+B^ neq 0).
В школьном курсе доказывается, что в декартовой прямоугольной системе координат уравнения eqref и eqref определяют соответственно плоскость и прямую линию на плоскости. Из теорем о порядке алгебраических линий и поверхностей следует, что то же самое верно и в общей декартовой системе координат. Точнее, имеют место следующие теоремы.
В общей декартовой системе координат в пространстве каждая плоскость может быть задана линейным уравнением
$$
Ax+By+Cz+D = 0.nonumber
$$
Обратно, каждое линейное уравнение в общей декартовой системе координат определяет плоскость.
В общей декартовой системе координат на плоскости каждая прямая может быть задана линейным уравнением
$$
Ax+By+C = 0,nonumber
$$
Обратно, каждое линейное уравнение в общей декартовой системе координат на плоскости определяет прямую.
Эти теоремы полностью решают вопрос об уравнениях плоскости и прямой линии на плоскости. Однако ввиду важности этих уравнений мы рассмотрим их в других формах. При этом будут получены независимые доказательства теорем этого пункта.
Видео:Уравнение прямой на плоскостиСкачать
Параметрические уравнения прямой и плоскости.
Мы будем предполагать, что задана декартова система координат в пространстве (или на плоскости, если мы изучаем прямую в планиметрии). Это, в частности, означает, что каждой точке сопоставлен ее радиус-вектор относительно начала координат.
Рис. 6.1
Вектор (overrightarrow<M_M> = boldsymbol-boldsymbol_), начало которого лежит на прямой, параллелен прямой тогда и только тогда, когда (M) также лежит на прямой. В этом и только этом случае для точки (M) найдется такое число (t), что
$$
boldsymbol-boldsymbol_ = tboldsymbol.label
$$
Наоборот, какое бы число мы ни подставили в формулу eqref в качестве (t), вектор (boldsymbol) в этой формуле определит некоторую точку на прямой.
Уравнение eqref называется векторным параметрическим уравнением прямой, а переменная величина (t), принимающая любые вещественные значения, называется параметром.
Векторное параметрическое уравнение выглядит одинаково и в планиметрии, и в стереометрии, но при разложении по базису оно сводится к двум или трем скалярным уравнениям, смотря по тому, сколько векторов составляют базис.
Получим теперь параметрические уравнения плоскости. Обозначим через (boldsymbol
) и (boldsymbol) ее направляющие векторы, а через (boldsymbol_) — радиус-вектор ее начальной точки (M_). Пусть точка (M) с радиус-вектором (boldsymbol) — произвольная точка пространства (рис. 6.2).
Рис. 6.2
Вектор (overrightarrow<M_M> = boldsymbol-boldsymbol_), начало которого лежит на плоскости, параллелен ей тогда и только тогда, когда его конец (M) также лежит на плоскости. Так как (boldsymbol
) и (boldsymbol) не коллинеарны, в этом и только этом случае (boldsymbol-boldsymbol_) может быть по ним разложен. Поэтому, если точка (M) лежит в плоскости (и только в этом случае), найдутся такие числа (t_) и (t_), что
$$
boldsymbol-boldsymbol_ = t_boldsymbol
+t_boldsymbol.label
$$
Это уравнение называется параметрическим уравнением плоскости. Каждой точке плоскости оно сопоставляет значения двух параметров (t_) и (t_). Наоборот, какие бы числа мы ни подставили как значения (t_) и (t_), уравнение eqref определит некоторую точку плоскости.
Пусть ((x, y, z)) и ((x_, y_, z_)) — координаты точек (M) и (M_) соответственно, а векторы (boldsymbol
) и (boldsymbol) имеют компоненты ((p_, p_, p_)) и ((q_, q_, q_)). Тогда, раскладывая по базису обе части уравнения eqref, мы получим параметрические уравнения плоскости
$$
x-x_ = t_p_+t_q_, y-y_ = t_p_+t_q_, z-z_ = t_p_+t_q_.label
$$
Отметим, что начальная точка и направляющий вектор прямой образуют на ней ее внутреннюю декартову систему координат. Значение параметра (t), соответствующее какой-то точке, является координатой этой точки во внутренней системе координат. Точно так же на плоскости начальная точка и направляющие векторы составляют внутреннюю систему координат, а значения параметров, соответствующие точке, — это ее координаты в этой системе.
Видео:Геометрия 9 класс (Урок№9 - Уравнение линии на плоскости. Уравнение окружности. Уравнение прямой.)Скачать
Прямая линия на плоскости.
Поэтому мы можем сформулировать следующее утверждение.
В любой декартовой системе координат на плоскости уравнение прямой с начальной точкой (M_(x_, y_)) и направляющим вектором (boldsymbol(a_, a_)) может быть записано в виде eqref.
Уравнение eqref линейное. Действительно, после преобразования оно принимает вид (a_x-a_y+(a_y_-a_x_) = 0), то есть (Ax+By+C = 0), где (A = a_), (B = -a_) и (C = a_y_-a_x_).
Вектор с координатами ((-B, A)) можно принять за направляющий вектор прямой с уравнением eqref в общей декартовой системе координат, а точку eqref за начальную точку.
Если система координат декартова прямоугольная, то вектор (boldsymbol(A, B)) перпендикулярен прямой с уравнением eqref.
Действительно, в этом случае ((boldsymbol, boldsymbol) = -BA+AB = 0).
Пусть в уравнении прямой (Ax+By+C = 0) коэффициент (B) отличен от нуля. Это означает, что отлична от нуля первая компонента направляющего вектора, и прямая не параллельна оси ординат. В этом случае уравнение прямой можно представить в виде
$$
y = kx+b,label
$$
где (k = -A/B), а (b = -C/B). Мы видим, что к равно отношению компонент направляющего вектора: (k = a_/a_) (рис. 6.3).
Рис. 6.3. k=-1. Прямая y=-x+1/2
Отношение компонент направляющего вектора (a_/a_) называется угловым коэффициентом прямой.
Угловой коэффициент прямой в декартовой прямоугольной системе координат равен тангенсу угла, который прямая образует с осью абсцисс. Угол этот отсчитывается от оси абсцисс в направлении кратчайшего поворота от (boldsymbol_) к (boldsymbol_) (рис. 6.4).
Рис. 6.4. (k=operatornamevarphi = -1). Прямая (y=-x+1/2)
Положив (x = 0) в уравнении eqref, получаем (y = b). Это означает, что свободный член уравнения (b) является ординатой точки пересечения прямой с осью ординат.
Если же в уравнении прямой (B = 0) и ее уравнение нельзя представить в виде eqref, то обязательно (A neq 0). В этом случае прямая параллельна оси ординат и ее уравнению можно придать вид (x = x_), где (x_ = -C/A) — абсцисса точки пересечения прямой с осью абсцисс.
Видео:Как составить уравнение прямой, проходящей через две точки на плоскости | МатематикаСкачать
Векторные уравнения плоскости и прямой.
Параметрическое уравнение плоскости утверждает, что точка (M) лежит на плоскости тогда и только тогда, когда разность ее радиус-вектора и радиус-вектора начальной точки (M_) компланарна направляющим векторам (boldsymbol
) и (boldsymbol). Эту компланарность можно выразить и равенством
$$
(boldsymbol-boldsymbol_, boldsymbol
, boldsymbol) = 0.label
$$
Вектор (boldsymbol = [boldsymbol
, boldsymbol]) — ненулевой вектор, перпендикулярный плоскости. Используя его, мы можем записать уравнение eqref в виде
$$
(boldsymbol-boldsymbol_, boldsymbol) = 0.label
$$
Уравнения eqref и eqref называют векторными уравнениями плоскости. Им можно придать форму, в которую не входит радиус-вектор начальной точки. Например, положив в eqref (D = -(boldsymbol_, boldsymbol)), получим
$$
(boldsymbol, boldsymbol)+D = 0.label
$$
Для прямой на плоскости можно также написать векторные уравнения, аналогичные eqref и eqref,
$$
(boldsymbol-boldsymbol_, boldsymbol) = 0 mbox (boldsymbol, boldsymbol)+C = 0.nonumber
$$
Первое из них выражает тот факт, что вектор (boldsymbol-boldsymbol_) перпендикулярен ненулевому вектору (boldsymbol), перпендикулярному направляющему вектору (boldsymbol), и потому коллинеарен (boldsymbol).
Пусть (x, y, z) — компоненты вектора (boldsymbol) в общей декартовой системе координат. Тогда скалярное произведение ((boldsymbol-boldsymbol_, boldsymbol)) при (boldsymbol neq 0) записывается линейным многочленом (Ax+By+Cz+D), где ((A^+B^+C^ neq 0)).
Обратно, для любого линейного многочлена найдутся такие векторы (boldsymbol_) и (boldsymbol neq 0), что в заданной общей декартовой системе координат (Ax+By+Cz+D = (boldsymbol-boldsymbol_, boldsymbol)).
Первая часть предложения очевидна: подставим разложение вектора (boldsymbol) по базису в данное скалярное произведение:
$$
(xboldsymbol_+yboldsymbol_+zboldsymbol_-boldsymbol_, boldsymbol),nonumber
$$
раскроем скобки и получим многочлен (Ax+By+Cz+D), в котором (D = -(boldsymbol_, boldsymbol)) и
$$
A = (boldsymbol_, boldsymbol), B = (boldsymbol_, boldsymbol), C = (boldsymbol_, boldsymbol)label
$$
(A), (B) и (C) одновременно не равны нулю, так как ненулевой вектор (boldsymbol) не может быть ортогонален всем векторам базиса.
Для доказательства обратного утверждения найдем сначала вектор (boldsymbol) из равенств eqref, считая (A), (B) и (C) заданными. Из ранее доказанного утверждения 10 следует, что
$$
boldsymbol = frac<A[boldsymbol_, boldsymbol_]><(boldsymbol_, boldsymbol_, boldsymbol_)>+frac<B[boldsymbol_, boldsymbol_]><(boldsymbol_, boldsymbol_, boldsymbol_)>+frac<C[boldsymbol_, boldsymbol_]><(boldsymbol_, boldsymbol_, boldsymbol_)>.label
$$
Вектор (boldsymbol_) должен удовлетворять условию (D = -(boldsymbol_, boldsymbol)). Один из таких векторов можно найти в виде (boldsymbol_ = lambda boldsymbol). Подставляя, видим, что (-lambda(boldsymbol, boldsymbol) = D), откуда (boldsymbol_ = -Dboldsymbol/|boldsymbol|^).
Итак, мы нашли векторы (boldsymbol) и (boldsymbol_) такие, что линейный многочлен записывается в виде
$$
x(boldsymbol_, boldsymbol)+y(boldsymbol_, boldsymbol)+z(boldsymbol_, boldsymbol)-(boldsymbol_, boldsymbol),nonumber
$$
который совпадает с требуемым ((boldsymbol-boldsymbol_, boldsymbol)).
Если система координат декартова прямоугольная, то вектор с компонентами (A), (B), (C) является нормальным вектором для плоскости с уравнением (Ax+By+Cz+D = 0).
Это сразу вытекает из формул eqref и доказанного ранее утверждения о нахождении компонент в ортогональном базисе.
Любые два неколлинеарных вектора, удовлетворяющие уравнению eqref, можно принять за направляющие векторы плоскости.
Утверждение 5 нетрудно доказать и непосредственно, рассматривая координаты вектора, параллельного плоскости, как разности соответствующих координат двух точек, лежащих в плоскости.
Все, сказанное о плоскостях, почти без изменений может быть сказано и о прямых на плоскости. В частности, верно следующее утверждение.
Действительно, (alpha_, alpha_), должны быть пропорциональны компонентам — (B), (A) направляющего вектора прямой.
Видео:11. Прямая в пространстве и ее уравненияСкачать
Параллельность плоскостей и прямых на плоскости.
Ниже, говоря о параллельных прямых или плоскостях, мы будем считать, что параллельные плоскости (или прямые) не обязательно различны, то есть что плоскость (прямая) параллельна самой себе.
Прямые линии, задаваемые в общей декартовой системе координат уравнениями
$$
Ax+By+C = 0, A_x+B_y+C_ = 0,nonumber
$$
параллельны тогда и только тогда, когда соответствующие коэффициенты в их уравнениях пропорциональны, то есть существует такое число (lambda), что
$$
A_ = lambda A, B_ = lambda B.label
$$
Прямые совпадают в том и только том случае, когда их уравнения пропорциональны, то есть помимо уравнения eqref выполнено (с тем же (lambda)) равенство
$$
C_ = lambda C.label
$$
Первая часть предложения прямо следует из того, что векторы с компонентами ((-B, A)) и ((-B_, A_)) — направляющие векторы прямых.
Докажем вторую часть. В равенствах eqref и eqref (lambda neq 0), так как коэффициенты в уравнении прямой одновременно нулю не равны. Поэтому, если эти равенства выполнены, уравнения эквивалентны и определяют одну и ту же прямую.
Обратно, пусть прямые параллельны. В силу первой части предложения их уравнения должны иметь вид (Ax+By+C = 0) и (lambda(Ax+By)+C_ = 0) при некотором (lambda). Если, кроме того, существует общая точка (M_(x_, y_)) обеих прямых, то (Ax_+By_+C = 0) и (lambda(Ax_+By_)+C_ = 0). Вычитая одно равенство из другого, получаем (C_ = lambda C), как и требовалось.
Плоскости, задаваемые в общей декартовой системе координат уравнениями
$$
Ax+By+Cz+D = 0, A_x+B_y+C_z+D_ = 0nonumber
$$
параллельны тогда и только тогда, когда соответствующие коэффициенты в их уравнениях пропорциональны, то есть существует такое число (lambda), что
$$
A_ = lambda A, B_ = lambda B, C_ = lambda C.label
$$
Плоскости совпадают в том и только том случае, когда их уравнения пропорциональны, то есть помимо уравнений eqref выполнено (с тем же (lambda)) равенство
$$
D_ = lambda D.label
$$
Если плоскости параллельны, то их нормальные векторы (boldsymbol) и (boldsymbol_) коллинеарны, и существует такое число (lambda), что (boldsymbol_ = lambdaboldsymbol). В силу уравнений eqref (A_ = (boldsymbol_, boldsymbol_) = lambda(boldsymbol_, boldsymbol) = lambda A). Аналогично доказываются и остальные равенства eqref. Обратно, если равенства eqref выполнены, то из формулы eqref следует, что (boldsymbol_ = lambdaboldsymbol). Это доказывает первую часть предложения. Вторая его часть доказывается так же, как вторая часть предложения 7.
Условия eqref выражают не что иное, как коллинеарность векторов с компонентами ((A, B)) и ((A_, B_)). Точно так же условия eqref означают коллинеарность векторов с компонентами ((A, B, C)) и ((A_, B_, C_)). Поэтому согласно ранее доказанным этому и этому утверждениям условие параллельности прямых на плоскости можно записать в виде
$$
begin
A& B\
A_& B_
end
= 0,label
$$
а условие параллельности плоскостей — в виде
$$
begin
B& C\
B_& C_
end =
begin
C& A\
C_& A_
end =
begin
A& B\
A_& B_
end
= 0.label
$$
Утверждению 7 можно придать чисто алгебраическую формулировку, если учесть, что координаты точки пересечения прямых — это решение системы, составленной из их уравнений.
При условии eqref система линейных уравнений
$$
Ax+By+C = 0, A_x+B_y+C_ = 0,nonumber
$$
не имеет решений или имеет бесконечно много решений (в зависимости от (C) и (C_). В последнем случае система равносильна одному из составляющих ее уравнений. Если же
$$
begin
A& B\
A_& B_
end
neq 0.nonumber
$$
то при любых (C) и (C_) система имеет единственное решение ((x, y)).
Видео:9 класс, 5 урок, Уравнение линии на плоскостиСкачать
Уравнения прямой в пространстве.
Прямая линия в пространстве может быть задана как пересечение двух плоскостей и, следовательно, в общей декартовой системе координат определяется системой уравнений вида
$$
left<begin
Ax+By+Cz+D = 0,\
A_x+B_y+C_z+D_ = 0.
endright.label
$$
Пересечение плоскостей — прямая линия тогда и только тогда, когда они не параллельны, что согласно eqref означает, что хоть один из детерминантов отличен от нуля:
$$
begin
B& C\
B_& C_
end^ +
begin
C& A\
C_& A_
end^ +
begin
A& B\
A_& B_
end^
neq 0.label
$$
Разумеется, систему eqref можно заменить на любую, ей эквивалентную. При этом прямая будет представлена как пересечение двух других проходящих через нее плоскостей.
Вспомним параметрические уравнения прямой eqref. Допустим, что в них ни одна из компонент направляющего вектора не равна нулю. Тогда
$$
t = frac<x-x_><alpha_>, t = frac<y-y_><alpha_>, t = frac<z-z_><alpha_>,nonumber
$$
и мы получаем два равенства
$$
frac<y-y_><alpha_> = frac<z-z_><alpha_>, frac<x-x_><alpha_> = frac<z-z_><alpha_>,label
$$
или, в более симметричном виде,
$$
frac<x-x_><alpha_> = frac<y-y_><alpha_> = frac<z-z_><alpha_>,label
$$
Уравнения eqref представляют прямую как линию пересечения двух плоскостей, первая из которых параллельна оси абсцисс (в ее уравнение не входит переменная (x)), а вторая параллельна оси ординат.
Если обращается в нуль одна из компонент направляющего вектора, например, (alpha_), то уравнения прямой принимают вид
$$
x = x_, frac<y-y_><alpha_> = frac<z-z_><alpha_>,label
$$
Эта прямая лежит в плоскости (x = x_) и, следовательно, параллельна плоскости (x = 0). Аналогично пишутся уравнения прямой, если в нуль обращается не (alpha_), а другая компонента.
Когда равны нулю две компоненты направляющего вектора, например, (alpha_) и (alpha_), то прямая имеет уравнения
$$
x = x_, y = y_.label
$$
Такая прямая параллельна одной из осей координат, в нашем случае — оси аппликат.
Важно уметь находить начальную точку и направляющий вектор прямой, заданной системой линейных уравнений eqref. По условию eqref один из детерминантов отличен от нуля. Допустим для определенности, что (AB_-A_B neq 0). В силу утверждения 9 при любом фиксированном (z) система уравнений будет иметь единственное решение ((x, y)), в котором (x) и (y), разумеется, зависят от (z). Они — линейные многочлены от (z): (x = alpha_z+beta_), (y = alpha_z+beta_).
Не будем доказывать этого, хотя это и не трудно сделать. Для ясности, заменяя (z) на (t), получаем параметрические уравнения прямой
$$
x = alpha_t+beta_, y = alpha_t+beta_, z = t.nonumber
$$
Первые две координаты начальной точки прямой (M_(beta_, beta_, 0)) можно получить, решая систему eqref при значении (z = 0).
Из параметрических уравнений видно, что в этом случае направляющий вектор имеет координаты ((alpha_, alpha_, 1)). Найдем его компоненты в общем виде. Если система координат декартова прямоугольная, векторы с компонентами ((A, B, C)) и (A_, B_, C_) перпендикулярны соответствующим плоскостям, а потому их векторное произведение параллельно прямой eqref, по которой плоскости пересекаются. Вычисляя векторное произведение в ортонормированном базисе, мы получаем компоненты направляющего вектора
$$
begin
B& C\
B_& C_
end,
begin
C& A\
C_& A_
end,
begin
A& B\
A_& B_
end.label
$$
Вектор с компонентами eqref есть направляющий вектор прямой с уравнениями eqref, какова бы ни была декартова система координат.
Согласно утверждению 5 каждый ненулевой вектор, компоненты которого ((alpha_, alpha_, alpha_)) удовлетворяют уравнению (Aalpha_+Balpha_+Calpha_ = 0), параллелен плоскости с уравнением (Ax+By+Cz+D = 0). Если, кроме того, он удовлетворяет уравнению (A_alpha_+B_alpha_+C_alpha_ = 0), то он параллелен и второй плоскости, то есть может быть принят за направляющий вектор прямой. Вектор с компонентами eqref ненулевой в силу неравенства eqref. Непосредственно легко проверить, что его компоненты удовлетворяют обоим написанным выше условиям. На этом доказательство заканчивается.
📺 Видео
Семинар №6 "Прямая на плоскости"Скачать
§8.1 Общее уравнение прямой на плоскостиСкачать
Уравнение прямой в пространстве. 11 класс.Скачать
Математика без Ху!ни. Уравнение плоскости.Скачать
Математика без Ху!ни. Уравнения прямой. Часть 1. Уравнение с угловым коэффициентом.Скачать
Видеоурок "Общее уравнение прямой"Скачать
Математика без Ху!ни. Взаимное расположение прямой и плоскости.Скачать
Лекция 28. Виды уравнения прямой в пространстве.Скачать