Уравнения приведение к полному квадрату

Выделить полный квадрат онлайн

Задача выделения полного квадрата заключается в преобразовании квадратного многочлена следующим образом:

где и неизвестные параметры которые требуется определить.

Для определения неизвестных параметров и , преобразуем приведенное выше равенство следующим образом:

и далее, раскроем скобки:

Для того, чтобы приведённое выше равенство соблюдалось, приравняем коэффициенты при одинаковых степенях:

В полученной системе уравнений, первое уравнение обозначает верное тождество при любых значениях параметра , поэтому его можно исключить. Из второго уравнения выражаем параметр и подставляем полученное выражение в третье уравнение системы:

Упрощаем третье уравнение системы и выражением из него значение параметра :

Подставляем полученные значения и в самое первое уравнение и получаем формулу для выделения полного квадрата из квадратного многочлена:

Необходимость выделения полного квадрата часто возникает при решении задач интегрирования рациональных функций. Кроме того, выделив полный квадрат, можно получить формулу для решения квадратных уравнений.

Наш онлайн калькулятор выделяет полный квадрат для многочлена второй степени с описанием подробного хода решения на русском языке.

Видео:Метод выделения полного квадрата. 8 класс.Скачать

Метод выделения полного квадрата. 8 класс.

Квадратные уравнения

Квадратное уравнение или уравнение второй степени с одним неизвестным — это уравнение, которое после преобразований может быть приведено к следующему виду:

ax 2 + bx + c = 0 — квадратное уравнение,

где x — это неизвестное, а a, b и c — коэффициенты уравнения. В квадратных уравнениях a называется первым коэффициентом (a ≠ 0), b называется вторым коэффициентом, а c называется известным или свободным членом.

называется полным квадратным уравнением. Если один из коэффициентов b или c равен нулю, или нулю равны оба эти коэффициента, то уравнение представляют в виде неполного квадратного уравнения.

Видео:Решение квадратных уравнений. Дискриминант. 8 класс.Скачать

Решение квадратных уравнений. Дискриминант. 8 класс.

Приведённое квадратное уравнение

Полное квадратное уравнение можно привести к более удобному виду, разделив все его члены на a, то есть на первый коэффициент:

x 2 +bx +c= 0.
aa

Затем можно избавиться от дробных коэффициентов, обозначив их буквами p и q:

еслиb= p, аc= q,
aa

то получится x 2 + px + q = 0.

Уравнение x 2 + px + q = 0 называется приведённым квадратным уравнением. Следовательно, любое квадратное уравнение, в котором первый коэффициент равен 1, можно назвать приведённым.

является приведённым, а уравнение:

можно заменить приведённым уравнением, разделив все его члены на -3:

Видео:5 способов решения квадратного уравнения ➜ Как решать квадратные уравнения?Скачать

5 способов решения квадратного уравнения ➜ Как решать квадратные уравнения?

Решение квадратных уравнений

Чтобы решить квадратное уравнение, надо привести его к одному из следующих видов:

Для каждого вида уравнения есть своя формула нахождения корней:

Вид уравненияФормула корней
ax 2 + bx + c = 0Уравнения приведение к полному квадрату
ax 2 + 2kx + c = 0Уравнения приведение к полному квадрату
x 2 + px + q = 0
Уравнения приведение к полному квадрату
или
Уравнения приведение к полному квадрату
если коэффициент p нечётный

Обратите внимание на уравнение:

это преобразованное уравнение ax 2 + bx + c = 0, в котором коэффициент b — четный, что позволяет его заменить на вид 2k. Поэтому формулу нахождения корней для этого уравнения можно упростить, подставив в неё 2k вместо b:

Уравнения приведение к полному квадрату

Пример 1. Решить уравнение:

Так как в уравнении второй коэффициент не является чётным числом, а первый коэффициент не равен единице, то искать корни будем по самой первой формуле, называемой общей формулой нахождения корней квадратного уравнения. Сначала определим, чему равны коэффициенты:

Теперь, для нахождения корней уравнения, просто подставим значения коэффициентов в формулу:

Уравнения приведение к полному квадрату

x1 =-2= —1, x2 =-12= -2
636

Ответ:1, -2.
3

Определим, чему равны коэффициенты:

Так как в уравнении второй коэффициент — чётное число, то будем использовать формулу для квадратных уравнений с чётным вторым коэффициентом:

Уравнения приведение к полному квадрату

Приведём уравнение к общему виду:

Определим, чему равны коэффициенты:

Так как первый коэффициент равен 1, то будем искать корни по формуле для приведённых уравнений с чётным вторым коэффициентом:

Уравнения приведение к полному квадрату

Определим, чему равны коэффициенты:

Так как первый коэффициент равен 1, то будем искать корни по формуле для приведённых уравнений с нечётным вторым коэффициентом:

Видео:Математика| Разложение квадратного трехчлена на множители.Скачать

Математика| Разложение квадратного трехчлена на множители.

Уравнения приведение к полному квадрату

  • Уравнения приведение к полному квадрату

Описание метода выделения полного квадрата

Уравнения приведение к полному квадрату

§2. Выделение полного квадрата из квадратного трёхчлена

Описание метода выделения полного квадрата

Выражения вида 2 x 2 + 3 x + 5 , `-4x^2+5x+7` носят название квадратного трёхчлена. В общем случае квадратным трёхчленом называют выражение вида a x 2 + b x + c , где a , b , c a, b, c – произвольные числа, причём a ≠ 0 .

Рассмотрим квадратный трёхчлен x 2 — 4 x + 5 . Запишем его в таком виде: x 2 — 2 · 2 · x + 5 . Прибавим к этому выражению 2 2 и вычтем 2 2 , получаем: x 2 — 2 · 2 · x + 2 2 — 2 2 + 5 . Заметим, что x 2 — 2 · 2 · x + 2 2 = ( x — 2 ) 2 , поэтому

x 2 — 4 x + 5 = ( x — 2 ) 2 — 4 + 5 = ( x — 2 ) 2 + 1 .

Преобразование, которое мы сделали, носит название «выделение полного квадрата из квадратного трёхчлена».

Выделите полный квадрат из квадратного трёхчлена 9 x 2 + 3 x + 1 .

Заметим, что 9 x 2 = ( 3 x ) 2 , `3x=2*1/2*3x`. Тогда

Прибавим и вычтем к полученному выражению `(1/2)^2`, получаем

Покажем, как применяется метод выделения полного квадрата из квадратного трёхчлена для разложения квадратного трёхчлена на множители.

Разложите на множители квадратный трёхчлен 4 x 2 — 12 x + 5 .

Выделяем полный квадрат из квадратного трёхчлена:

2 x 2 — 2 · 2 x · 3 + 3 2 — 3 2 + 5 = 2 x — 3 2 — 4 = ( 2 x — 3 ) 2 — 2 2 .

Теперь применяем формулу a 2 — b 2 = ( a — b ) ( a + b ) , получаем:

( 2 x — 3 — 2 ) ( 2 x — 3 + 2 ) = ( 2 x — 5 ) ( 2 x — 1 ) .

Разложите на множители квадратный трёхчлен — 9 x 2 + 12 x + 5 .

— 9 x 2 + 12 x + 5 = — 9 x 2 — 12 x + 5 . Теперь замечаем, что 9 x 2 = 3 x 2 , — 12 x = — 2 · 3 x · 2 .

Прибавляем к выражению 9 x 2 — 12 x слагаемое 2 2 , получаем:

— 3 x 2 — 2 · 3 x · 2 + 2 2 — 2 2 + 5 = — 3 x — 2 2 — 4 + 5 = — 3 x — 2 2 + 4 + 5 = = — 3 x — 2 2 + 9 = 3 2 — 3 x — 2 2 .

Применяем формулу для разности квадратов, имеем:

— 9 x 2 + 12 x + 5 = 3 — 3 x — 2 3 + ( 3 x — 2 ) = ( 5 — 3 x ) ( 3 x + 1 ) .

Разложите на множители квадратный трёхчлен 3 x 2 — 14 x — 5 .

Мы не можем представить выражение 3 x 2 как квадрат какого-то выражения, т. к. ещё не изучали этого в школе. Это будете проходить позже, и уже в Задании №4 будем изучать квадратные корни. Покажем, как можно разложить на множители заданный квадратный трёхчлен:

Покажем, как применяется метод выделения полного квадрата для нахождения наибольшего или наименьшего значений квадратного трёхчлена.
Рассмотрим квадратный трёхчлен x 2 — x + 3 . Выделяем полный квадрат:

`(x)^2-2*x*1/2+(1/2)^2-(1/2)^2+3=(x-1/2)^2+11/4`. Заметим, что при `x=1/2` значение квадратного трёхчлена равно `11/4`, а при `x!=1/2` к значению `11/4` добавляется положительное число, поэтому получаем число, большее `11/4`. Таким образом, наименьшее значение квадратного трёхчлена равно `11/4` и оно получается при `x=1/2`.

Найдите наибольшее значение квадратного трёхчлена — 16 x 2 + 8 x + 6 .

Выделяем полный квадрат из квадратного трёхчлена: — 16 x 2 + 8 x + 6 = — 4 x 2 — 2 · 4 x · 1 + 1 — 1 + 6 = — 4 x — 1 2 — 1 + 6 = = — 4 x — 1 2 + 7 .

При `x=1/4` значение квадратного трёхчлена равно 7 , а при `x!=1/4` из числа 7 вычитается положительное число, то есть получаем число, меньшее 7 . Таким образом, число 7 является наибольшим значением квадратного трёхчлена, и оно получается при `x=1/4`.

Разложите на множители числитель и знаменатель дроби `/` и сократите эту дробь.

Заметим, что знаменатель дроби x 2 — 6 x + 9 = x — 3 2 . Разложим числитель дроби на множители, применяя метод выделения полного квадрата из квадратного трёхчлена.

x 2 + 2 x — 15 = x 2 + 2 · x · 1 + 1 — 1 — 15 = x + 1 2 — 16 = x + 1 2 — 4 2 = = ( x + 1 + 4 ) ( x + 1 — 4 ) = ( x + 5 ) ( x — 3 ) .

Данную дробь привели к виду `/(x-3)^2` после сокращения на ( x — 3 ) получаем `(x+5)/(x-3)`.

Разложите многочлен x 4 — 13 x 2 + 36 на множители.

Применим к этому многочлену метод выделения полного квадрата.

Разложите на множители многочлен 4 x 2 + 4 x y — 3 y 2 .

Применяем метод выделения полного квадрата. Имеем:

( 2 x ) 2 + 2 · 2 x · y + y 2 — y 2 — 3 y 2 = ( 2 x + y ) 2 — 2 y 2 = = ( 2 x + y + 2 y ) ( 2 x + y — 2 y ) = ( 2 x + 3 y ) ( 2 x — y ) .

Применяя метод выделения полного квадрата, разложите на множители числитель и знаменатель и сократите дробь `/`.

🔥 Видео

Алгебра 8. Урок 9 - Квадратные уравнения. Полные и неполныеСкачать

Алгебра 8. Урок 9 - Квадратные уравнения. Полные и неполные

Полный квадрат. Где и когда он может пригодиться? | Математика TutorOnlineСкачать

Полный квадрат. Где и когда он может пригодиться? | Математика TutorOnline

Неполные квадратные уравнения. Алгебра, 8 классСкачать

Неполные квадратные уравнения. Алгебра, 8 класс

Решение биквадратных уравнений. 8 класс.Скачать

Решение биквадратных уравнений. 8 класс.

8 класс, 25 урок, Формула корней квадратного уравненияСкачать

8 класс, 25 урок, Формула корней квадратного уравнения

Как решать любое квадратное уравнение Полное Неполное квадр ур x^2+2x-3=0 5x^2-2x=0 2x^2-2=0 3x^2=0Скачать

Как решать любое квадратное уравнение Полное Неполное квадр ур x^2+2x-3=0 5x^2-2x=0 2x^2-2=0 3x^2=0

Разность квадратов двух выражений. 7 класс.Скачать

Разность квадратов двух выражений. 7 класс.

Квадратные уравнения от «А» до «Я». Классификация, решение и теорема Виета | МатематикаСкачать

Квадратные уравнения от «А» до «Я». Классификация, решение и теорема Виета | Математика

Математика Без Ху!ни. Метод выделения полного квадрата.Скачать

Математика Без Ху!ни. Метод выделения полного квадрата.

МАТЕМАТИКА 8 класс - Неполные Квадратные Уравнения. Как решать Неполные Квадратные Уравнения?Скачать

МАТЕМАТИКА 8 класс - Неполные Квадратные Уравнения. Как решать Неполные Квадратные Уравнения?

Квадратное уравнение. 8 класс.Скачать

Квадратное уравнение. 8 класс.

Формула корней квадратного уравнения. Алгебра, 8 классСкачать

Формула корней квадратного уравнения. Алгебра, 8 класс

РЕШЕНИЕ НЕПОЛНОГО КВАДРАТНОГО УРАВНЕНИЯ ЗА 5 СЕКУНДСкачать

РЕШЕНИЕ НЕПОЛНОГО КВАДРАТНОГО УРАВНЕНИЯ ЗА 5 СЕКУНД

Решение квадратных уравнений. Метод разложения на множители. 8 класс.Скачать

Решение квадратных уравнений. Метод разложения на множители. 8 класс.

Уравнения, сводящиеся к квадратным. Биквадратное уравнениеСкачать

Уравнения, сводящиеся к квадратным. Биквадратное уравнение

Решение тригонометрических уравнений. Подготовка к ЕГЭ | Математика TutorOnlineСкачать

Решение тригонометрических уравнений. Подготовка к ЕГЭ | Математика TutorOnline
Поделиться или сохранить к себе: