Любое выражение с переменной имеет свою область допустимых значений, где оно существует. ОДЗ необходимо всегда учитывать при решении. При его отсутствии можно получить неверный результат.
В данной статье будет показано, как правильно находить ОДЗ, использовать на примерах. Также будет рассмотрена важность указания ОДЗ при решении.
- Допустимые и недопустимые значения переменных
- Что такое ОДЗ?
- Как найти ОДЗ? Примеры, решения
- Почему важно учитывать ОДЗ при проведении преобразований?
- Область допустимых значений: теория и практика
- Область допустимых значений функции
- Допустимые и недопустимые значения переменных
- Что такое ОДЗ
- Как найти ОДЗ: примеры решения
- Запомните
- Зачем учитывать ОДЗ при преобразовании выражения
- 📺 Видео
Видео:ОДЗ правила оформления | Что это и когда нужно?Скачать
Допустимые и недопустимые значения переменных
Данное определение связано с допустимыми значениями переменной. При введении определения посмотрим, к какому результату приведет.
Начиная с 7 класса, мы начинаем работать с числами и числовыми выражениями. Начальные определения с переменными переходят к значению выражений с выбранными переменными.
Когда имеются выражения с выбранными переменными, то некоторые из них могут не удовлетворять. Например, выражение вида 1 : а , если а = 0 , тогда оно не имеет смысла, так как делить на ноль нельзя. То есть выражение должно иметь такие значения, которые подойдут в любом случае и дадут ответ. Иначе говоря, имеют смысл с имеющимися переменными.
Если имеется выражение с переменными, то оно имеет смысл только тогда, когда при их подстановке значение может быть вычислено.
Если имеется выражение с переменными, то оно не имеет смысл, когда при их подстановке значение не может быть вычислено.
То есть отсюда следует полное определение
Существующими допустимыми переменными называют такие значения, при которых выражение имеет смысл. А если смысла не имеет, значит они считаются недопустимыми.
Для уточнения вышесказанного: если переменных более одной, тогда может быть и пара подходящих значений.
Для примера рассмотрим выражение вида 1 x — y + z , где имеются три переменные. Иначе можно записать, как x = 0 , y = 1 , z = 2 , другая же запись имеет вид ( 0 , 1 , 2 ) . Данные значения называют допустимыми, значит, можно найти значение выражения. Получим, что 1 0 — 1 + 2 = 1 1 = 1 . Отсюда видим, что ( 1 , 1 , 2 ) недопустимы. Подстановка дает в результате деление на ноль, то есть 1 1 — 2 + 1 = 1 0 .
Видео:✓ Паника из-за ОДЗ | трушин ответит #018 | ЕГЭ. Задание 14. Математика. Профиль | Борис ТрушинСкачать
Что такое ОДЗ?
Область допустимых значений – важный элемент при вычислении алгебраических выражений. Поэтому стоит обратить на это внимание при расчетах.
Область ОДЗ – это множество значений, допустимых для данного выражения.
Рассмотрим на примере выражения.
Если имеем выражение вида 5 z — 3 , тогда ОДЗ имеет вид ( − ∞ , 3 ) ∪ ( 3 , + ∞ ) . Эта область допустимых значений, удовлетворяющая переменной z для заданного выражения.
Если имеется выражения вида z x — y , тогда видно, что x ≠ y , z принимает любое значение. Это и называют ОДЗ выражения. Его необходимо учитывать, чтобы не получить при подстановке деление на ноль.
Область допустимых значений и область определения имеет один и тот же смысл. Только второй из них используется для выражений, а первый – для уравнений или неравенств. При помощи ОДЗ выражение или неравенство имеет смысл. Область определения функции совпадает с областью допустимых значений переменной х к выражению f ( x ) .
Видео:Область допустимых значений. ОДЗ в выражении.Скачать
Как найти ОДЗ? Примеры, решения
Найти ОДЗ означает найти все допустимые значения, подходящие для заданной функции или неравенства. При невыполнении этих условий можно получить неверный результат. Для нахождения ОДЗ зачастую необходимо пройти через преобразования в заданном выражении.
Существуют выражения, где их вычисление невозможно:
- если имеется деление на ноль;
- извлечение корня из отрицательного числа;
- наличие отрицательного целого показателя – только для положительных чисел;
- вычисление логарифма отрицательного числа;
- область определения тангенса π 2 + π · k , k ∈ Z и котангенса π · k , k ∈ Z ;
- нахождение значения арксинуса и арккосинуса числа при значении, не принадлежащем [ — 1 ; 1 ] .
Все это говорит о том, как важно наличие ОДЗ.
Найти ОДЗ выражения x 3 + 2 · x · y − 4 .
Решение
В куб можно возводить любое число. Данное выражение не имеет дроби, поэтому значения x и у могут быть любыми. То есть ОДЗ – это любое число.
Ответ: x и y – любые значения.
Найти ОДЗ выражения 1 3 — x + 1 0 .
Решение
Видно, что имеется одна дробь, где в знаменателе ноль. Это говорит о том, что при любом значении х мы получим деление на ноль. Значит, можно сделать вывод о том, что это выражение считается неопределенным, то есть не имеет ОДЗ.
Ответ: ∅ .
Найти ОДЗ заданного выражения x + 2 · y + 3 — 5 · x .
Решение
Наличие квадратного корня говорит о том, что это выражение обязательно должно быть больше или равно нулю. При отрицательном значении оно не имеет смысла. Значит, необходимо записать неравенство вида x + 2 · y + 3 ≥ 0 . То есть это и есть искомая область допустимых значений.
Ответ: множество x и y , где x + 2 · y + 3 ≥ 0 .
Определить ОДЗ выражения вида 1 x + 1 — 1 + log x + 8 ( x 2 + 3 ) .
Решение
По условию имеем дробь, поэтому ее знаменатель не должен равняться нулю. Получаем, что x + 1 — 1 ≠ 0 . Подкоренное выражение всегда имеет смысл, когда больше или равно нулю, то есть x + 1 ≥ 0 . Так как имеет логарифм, то его выражение должно быть строго положительным, то есть x 2 + 3 > 0 . Основание логарифма также должно иметь положительное значение и отличное от 1 , тогда добавляем еще условия x + 8 > 0 и x + 8 ≠ 1 . Отсюда следует, что искомое ОДЗ примет вид:
x + 1 — 1 ≠ 0 , x + 1 ≥ 0 , x 2 + 3 > 0 , x + 8 > 0 , x + 8 ≠ 1
Иначе говоря, называют системой неравенств с одной переменной. Решение приведет к такой записи ОДЗ [ − 1 , 0 ) ∪ ( 0 , + ∞ ) .
Ответ: [ − 1 , 0 ) ∪ ( 0 , + ∞ )
Видео:🙂 Тригонометрическое уравнение ОДЗСкачать
Почему важно учитывать ОДЗ при проведении преобразований?
При тождественных преобразованиях важно находить ОДЗ. Бывают случаи, когда существование ОДЗ не имеет место. Чтобы понять, имеет ли решение заданное выражение, нужно сравнить ОДЗ переменных исходного выражения и ОДЗ полученного.
- могут не влиять на ОДЗ;
- могут привести в расширению или дополнению ОДЗ;
- могут сузить ОДЗ.
Рассмотрим на примере.
Если имеем выражение вида x 2 + x + 3 · x , тогда его ОДЗ определено на всей области определения. Даже при приведении подобных слагаемых и упрощении выражения ОДЗ не меняется.
Если взять пример выражения x + 3 x − 3 x , то дела обстоят иначе. У нас имеется дробное выражение. А мы знаем, что деление на ноль недопустимо. Тогда ОДЗ имеет вид ( − ∞ , 0 ) ∪ ( 0 , + ∞ ) . Видно, что ноль не является решением, поэтому добавляем его с круглой скобкой.
Рассмотрим пример с наличием подкоренного выражения.
Если имеется x — 1 · x — 3 , тогда следует обратить внимание на ОДЗ, так как его необходимо записать в виде неравенства ( x − 1 ) · ( x − 3 ) ≥ 0 . Возможно решение методом интервалов, тогда получаем, что ОДЗ примет вид ( − ∞ , 1 ] ∪ [ 3 , + ∞ ) . После преобразования x — 1 · x — 3 и применения свойства корней имеем, что ОДЗ можно дополнить и записать все в виде системы неравенства вида x — 1 ≥ 0 , x — 3 ≥ 0 . При ее решении получаем, что [ 3 , + ∞ ) . Значит, ОДЗ полностью записывается так: ( − ∞ , 1 ] ∪ [ 3 , + ∞ ) .
Нужно избегать преобразований, которые сужают ОДЗ.
Рассмотрим пример выражения x — 1 · x — 3 , когда х = — 1 . При подстановке получим, что — 1 — 1 · — 1 — 3 = 8 = 2 2 . Если это выражение преобразовать и привести к виду x — 1 · x — 3 , тогда при вычислении получим, что 2 — 1 · 2 — 3 выражение смысла не имеет, так как подкоренное выражение не должно быть отрицательным.
Следует придерживаться тождественных преобразований, которые ОДЗ не изменят.
Если имеются примеры, которые его расширяют, тогда его нужно добавлять в ОДЗ.
Рассмотрим на примере дроби вида x x 3 + x . Если сократить на x , тогда получаем, что 1 x 2 + 1 . Тогда ОДЗ расширяется и становится ( − ∞ 0 ) ∪ ( 0 , + ∞ ) . Причем при вычислении уже работаем со второй упрощенной дробью.
При наличии логарифмов дело обстоит немного иначе.
Если имеется выражение вида ln x + ln ( x + 3 ) , его заменяют на ln ( x · ( x + 3 ) ) , опираясь на свойство логарифма. Отсюда видно, что ОДЗ с ( 0 , + ∞ ) до ( − ∞ , − 3 ) ∪ ( 0 , + ∞ ) . Поэтому для определения ОДЗ ln ( x · ( x + 3 ) ) необходимо производить вычисления на ОДЗ, то есть ( 0 , + ∞ ) множества.
При решении всегда необходимо обращать внимание на структуру и вид данного по условию выражения. При правильном нахождении области определения результат будет положительным.
Видео:ЛОГАРИФМИЧЕСКОЕ УРАВНЕНИЕ: ОДЗ ИЛИ НЕ ОДЗ?Скачать
Область допустимых значений: теория и практика
Конкурс исследовательских и проектных работ учащихся
«ИНТЕЛЛЕКТУАЛЬНОЕ БУДУЩЕЕ МОРДОВИИ»
ОБЛАСТЬ ДОПУСТИМЫХ ЗНАЧЕНИЙ:
ТЕОРИЯ И ПРАКТИКА
Автор: Малышева Оксана
2. Исторический очерк 4
3. «Место» ОДЗ при решении уравнений и неравенств 5-6
4. Особенности и опасность ОДЗ 7
5. ОДЗ – есть решение 8-9
6. Нахождение ОДЗ – лишняя работа.
Равносильность переходов 10-13
7. ОДЗ в ЕГЭ 14-15
8. Заключение 16
9. Литература 17
Уравнения и неравенства, в которых нужно находить область допустимых значений, не нашли места в курсе алгебры систематического изложения, возможно поэтому мои сверстники часто делают ошибки при решении таких примеров, уделив много времени их решению, забыв при этом об области допустимых значений. Это и определило проблему данной работы.
В настоящей работе предполагается исследовать явление существования области допустимых значений при решении уравнений и неравенств разных типов; проанализировать данную ситуацию, сделать логически корректные выводы в примерах, где нужно учитывать область допустимых значений.
- Опираясь на имеющийся опыт и теоретическую базу, собрать основные сведения об области допустимых значений и её использовании в школьной практике; Проанализировать решения разнообразных типов уравнений и неравенств (дробно-рациональных, иррациональных, логарифмических, содержащих обратные тригонометрические функции); Проверить ранее полученные при решении различных уравнений и неравенств результаты, убедиться в надёжности способов и методов их решения; Определить «место» области допустимых значений при решении уравнений и неравенств; Применить полученные материалы исследования в ситуации, которая отличается от стандартной, и использовать их при подготовке к ЕГЭ.
При решении этих задач использованы следующие методы исследования: анализ, статистический анализ, дедукция, классификация, прогнозирование.
Исследование начато с повторения известных функций, изучаемых в школьной программе. Область определения многих из них имеет ограничения.
Область допустимых значений встречается при решении: дробно-рациональных уравнений и неравенств; иррациональных уравнений и неравенств; логарифмических уравнений и неравенств; уравнений и неравенств, содержащих обратные тригонометрические функции.
Прорешав множество примеров из различных источников (пособий по ЕГЭ, учебников, справочников), выделили решение примеров по следующим принципам:
· можно решить пример и учесть ОДЗ (самый распространённый способ)
· можно решить пример, не учитывая ОДЗ
· можно только учитывая ОДЗ прийти к правильному решению.
Изучен анализ результатов ЕГЭ за прошедшие годы. Много ошибок было допущено в примерах, в которых нужно учитывать ОДЗ. Практическое значение работы заключается в том, что ее содержание, оценки и выводы могут быть использованы в преподавании математики в школе, при подготовке к итоговой аттестации школьников 9 и 11 классов.
2. Исторический очерк
Как и остальные понятия математики, понятие функции сложилось не сразу, а прошло долгий путь развития. В работе П. Ферма «Введение и изучение плоских и телесных мест» (1636, опубл. 1679) говорится: «Всякий раз, когда в заключительном уравнении имеются две неизвестные величины, налицо имеется место». По существу здесь идёт речь о функциональной зависимости и её графическом изображении («место» у Ферма означает линию). Изучение линий по их уравнениям в «Геометрии» Р. Декарта (1637) также указывает на ясное представление о взаимной зависимости двух переменных величин. У И. Барроу («Лекции по геометрии», 1670) в геометрической форме устанавливается взаимная обратность действий дифференцирования и интегрирования (разумеется, без употребления самих этих терминов). Это свидетельствует уже о совершенно отчётливом владении понятием функции. В геометрическом и механическом виде это понятие мы находим и у И. Ньютона. Однако термин «функция» впервые появляется лишь в 1692 у Г. Лейбница и притом не совсем в современном его понимании. Г. Лейбниц называет функцией различные отрезки, связанные с какой-либо кривой (например, абсциссы её точек). В первом печатном курсе «Анализа бесконечно малых для познания кривых линий» Лопиталя (1696) термин «функция» не употребляется.
Первое определение функции в смысле, близком к современному, встречается у И. Бернулли (1718): «Функция — это величина, составленная из переменной и постоянной». В основе этого не вполне отчётливого определения лежит идея задания функции аналитической формулой. Та же идея выступает и в определении Л. Эйлера, данном им во «Введении в анализ бесконечных» (1748): «Функция переменного количества есть аналитическое выражение, составленное каким-либо образом из этого переменного количества и чисел или постоянных количеств». Впрочем, уже Л. Эйлеру не чуждо и современное понимание функции, которое не связывает понятие функции с каким-либо аналитическим её выражением. В его «Дифференциальном исчислении» (1755) говорится: «Когда некоторые количества зависят от других таким образом, что при изменении последних и сами они подвергаются изменению, то первые называют функциями вторых».
С начала XIX века уже всё чаще и чаще определяют понятие функции без упоминания об её аналитическом изображении. В «Трактате по дифференциальному и интегральному исчислению» (1797—1802) С. Лакруа говорится: «Всякая величина, значение которой зависит от одной или многих других величин, называется функцией этих последних». В «Аналитической теории тепла» Ж. Фурье (1822) имеется фраза: «Функция f(x) обозначает функцию совершенно произвольную, то есть последовательность данных значений, подчинённых или нет общему закону и соответствующих всем значениям x, содержащимся между 0 и какой-либо величиной x». Близко к современному и определение Н. И. Лобачевского: «…Общее понятие функции требует, чтобы функцией от x называть число, которое даётся для каждого x и вместе с x постепенно изменяется. Значение функции может быть дано или аналитическим выражением, или условием, которое подаёт средство испытывать все числа и выбирать одно из них, или, наконец, зависимость может существовать и оставаться неизвестной». Там же немного ниже сказано: «Обширный взгляд теории допускает существование зависимости только в том смысле, чтобы числа одни с другими в связи понимать как бы данными вместе». Таким образом, современное определение функции, свободное от упоминаний об аналитическом задании, обычно приписываемое П. Дирихле (1837), неоднократно предлагалось и до него:
у есть функция переменной х (на отрезке ), если каждому значению х (на этом отрезке) соответствует совершенно определённое значение у, причем безразлично, каким образом установлено это соответствие — аналитической формулой, графиком, таблицей, либо даже просто словами. [[1]]
3. «Место» области допустимых значений при решении уравнений и неравенств
При решении уравнений и неравенств часто возникает дилемма: находить область допустимых значений или нет, выбрать традиционный способ решения или воспользоваться нерациональным, объёмным, чтобы рассмотреть все варианты, не совершить ошибку и прийти, наконец, к верному решению.
Для начала вспомним методы решения уравнений и неравенств разных видов и уровней сложности, рассмотрим частные случаи.
1. При решении дробно-рациональных уравнений и неравенств знаменатель не должен равняться нулю.
2. Решение иррациональных уравнений и неравенств.
2.1. Простейшие иррациональные уравнения имеют вид . Возведя обе части уравнения в квадрат, мы избавимся от иррациональности. Но обратим внимание на то, что возведение в квадрат, вообще говоря, не равносильное преобразование, и при возведении в квадрат мы можем получить лишние корни. Если корни получились целые, то несложно произвести проверку. Но в некоторых случаях производить проверку неудобно. Тогда используют сведение данного уравнения к равносильной системе:
.
В данном случае нет необходимости находить ОДЗ: из первого уравнения следует, что при полученных значения х выполняется неравенство: .
2.2. Решением уравнения вида является система:
Поскольку в уравнение и входят равноправно, то вместо неравенства , можно включить неравенство , и естественно, надо выбирать из них наиболее простое.
2.3. Схемы решения основных иррациональных неравенств:
3. Решение логарифмических уравнений и неравенств.
3.1. Схема решения логарифмического уравнения
Но проверить достаточно только одно условие ОДЗ.
3.2. Схема решения логарифмического неравенства вида : 1) 2)
4. Тригонометрические уравнения вида равносильны системе (вместо неравенства в систему можно включить неравенство ).
Уравнения равносильны уравнению
4. Особенности и опасность области допустимых значений
На уроках математики от нас требуют нахождения ОДЗ в каждом примере. В то же время по математической сути дела нахождение ОДЗ вовсе не является обязательным, часто не нужно, а иногда и невозможно — и все это без какого бы то ни было ущерба для решения примера. С другой стороны, часто случается такое, что решив пример, школьники забывают учесть ОДЗ, записывают её как конечный ответ, учитывают лишь некоторые условия. Обстоятельство это хорошо известно, но «война» продолжается каждый год и, похоже, будет идти еще долго.
Рассмотрим, к примеру, такое неравенство:
>
Здесь ищется ОДЗ, и неравенство решается. Однако при решении этого неравенства школьники иногда считают, что вполне можно обойтись без поиска ОДЗ, точнее, можно обойтись и без условия
В самом деле, для получения верного ответа необходимо учесть и неравенство , и .
А вот, например, решение уравнения:
Решают его, естественно, избавляясь от логарифмов, но затем найденные значения нередко проверяются на выполнение системы трех таких неравенств:
что равносильно работе с ОДЗ. Однако и в этом примере такая работа излишняя — достаточно проверить выполнение только двух из этих неравенств, причем любых двух.
Напомним, что всякое уравнение (неравенство) может быть сведено к виду . ОДЗ — это просто область определения функции в левой части. То, что за этой областью надо следить, вытекает уже из определения корня как числа из области определения данной функции, тем самым — из ОДЗ. Вот забавный пример на эту тему. Дано уравнение , и вопрос: «является ли число -1 корнем этого уравнения?» С одной стороны, при подстановке -1 в обе части мы получаем верное равенство, а значит, -1 является корнем. Но с другой стороны, функция имеет областью определения множество положительных чисел (это, конечно, договоренность — рассматривать функцию при, , но разумная), а тогда -1 не является корнем.
5. Область допустимых значений – есть решение
И наконец, в массе примеров нахождение ОДЗ позволяет получить ответ без громоздких выкладок, а то и вовсе устно.
1. ОД3 представляет собой пустое множество, а значит, исходный пример не имеет решений.
1) 2) 3)
2. В ОДЗ находится одно или несколько чисел, и несложная подстановка быстро определяет корни.
1) , х=3
2) Здесь в ОДЗ находится только число 1, и после подстановки видно, что оно не является корнем.
3) В ОДЗ находятся два числа: 2 и 3, и оба подходят.
4) > В ОДЗ находятся два числа 0 и 1, и подходит только 1.
Эффективно может использоваться ОДЗ в сочетании с анализом самого выражения.
5) , а значит, . Решая последнее неравенство, получим х 2. При этом . Значит, исходное равенство невозможно и решений нет.
А теперь приведём пример, который был предложен учителем на уроке алгебры. Решить его сразу нам не удалось, но когда мы нашли ОДЗ, всё стало ясно.
Найдите целочисленный корень уравнения Найдём ОДЗ:
Целочисленное решение возможно лишь при х=3 и х=5. Проверкой находим, что корень х=3 не подходит, а значит ответ: х=5.
6. Нахождение области допустимых значений – лишняя работа. Равносильность переходов.
Можно привести примеры, где ситуация ясна и без нахождения ОДЗ.
1.
Равенство невозможно, ибо при вычитании из меньшего выражения большее должно получатся отрицательное число.
2. .
Сумма двух неотрицательных функций не может быть отрицательной.
Приведу также примеры, где нахождение ОДЗ затруднено, а иногда просто невозможно.
И, наконец, поиски ОДЗ являются очень часто просто лишней работой, без которой прекрасно можно обойтись, доказав тем самым понимание происходящего. Тут можно привести громадное число примеров, поэтому выберем только наиболее типичные. Главным приемом решения являются в этом случае равносильные преобразования при переходе от одного уравнения (неравенства, системы) к другому.
1.. ОДЗ не нужна, ибо, найдя те значения х, при которых х2=1, мы не можем получить х=0.
2. . ОДЗ не нужна, ибо мы выясняем, когда выполняется равенство подкоренного выражения положительному числу.
3. . ОДЗ не нужна по тем же соображениям, что и в предыдущем примере.
4.
ОДЗ не нужна, ибо подкоренное выражение равно квадрату некоторой функции, а потому не может быть отрицательным.
5. ОДЗ не нужна по тем же соображениям, что и в предыдущем примере.
6. . ОДЗ не нужна, так как выражение всегда положительно.
7. Для решения достаточно только одного ограничения для подкоренного выражения. В самом деле, из записанной смешанной системы следует, что и другое подкоренное выражение неотрицательно.
8. ОДЗ не нужна по тем же соображениям, что и в предыдущем примере.
9. ОДЗ не нужна, так как достаточно, чтобы были положительны два из трех выражений под знаками логарифма, чтобы обеспечить положительность третьего.
10. ОДЗ не нужна, так как положительность трёхчлена следует из условий системы неравенств.
11. ОДЗ не нужна по тем же соображениям, что и в предыдущем примере.
Стоит, однако, заметить, что при решении способом равносильных преобразований помогает знание ОДЗ (и свойств функций).
Вот несколько примеров.
1. . ОД3 , откуда следует положительность выражения в правой части, и возможно записать уравнение, равносильное данному, в таком виде . Полученный результат надо проверить по ОДЗ.
2. ОДЗ: . Но тогда , и при решении этого неравенства не надо рассматривать случай, когда правая часть меньше 0.
3. . Из ОДЗ следует, что , а потому случай, когда , исключается.
В целом эффективность способа равносильных преобразований вроде бы ясна. С их помощью мы добираемся до ответа и без поисков ОДЗ. Значит ли это, что имеется некий универсальный способ и осталось только научиться им пользоваться? Но это не совсем так. Тому несколько причин. Теорем о равносильных преобразованиях довольно много, они непросты для запоминания, и уверенное владение ими – дело не простое. Часто, пользуясь равносильными преобразованиями, начинаешь ставить этот знак при любых переходах от одного уравнения к другому, как действительно равносильных, так и не являющихся таковыми. Теоремы же эти быстро забываются.
Еще одна сложность — при записи равносильности можно забыть выписать все условия, ее гарантирующие, но на ответе это может никак не отразиться. Вот два таких примера:
1. Переход в общем виде выглядит так:
В данном примере выражение под знаком логарифма, стоящего справа, всегда положительно. Поэтому применительно к этому примеру та часть условий равносильности, которая записана в виде совокупности, ничего не добавляет. Но дав такое решение, можно просто забыть об этой совокупности.
2.
Возможны два случая: 0 1.
Значит, исходное неравенство равносильно следующей совокупности систем неравенств:
Первая система не имеет решений, а из второй получаем: x 1, откуда следует x (-;1,3). Здесь допущена грубая ошибка, так как не рассмотрен случай 36 — 20x
Видео:Дробно-рациональные уравнения. 8 класс.Скачать
Область допустимых значений функции
О чем эта статья:
Видео:Решение рационального уравнения через ОДЗСкачать
Допустимые и недопустимые значения переменных
В 7 классе заканчивается математика и начинается ее-величество-алгебра. Первым делом школьники изучают выражения с переменными.
Мы уже знаем, что математика состоит из выражений — буквенных и числовых. Каждому выражению, в котором есть переменная, соответствует область допустимых значений (ОДЗ). Если игнорировать ОДЗ, то в результате решения можно получить неверный ответ. Получается, чтобы быстро получить верный ответ, нужно всегда учитывать область допустимых значений.
Чтобы дать верное определение области допустимых значений, разберемся, что такое допустимые и недопустимые значения переменной.
Рассмотрим все необходимые определения, связанные с допустимыми и недопустимыми значениями переменной.
Выражение с переменными — это буквенное выражение, в котором буквы обозначают величины, принимающие различные значения.
Значение числового выражения — это число, которое получается после выполнения всех действий в числовом выражении.
Выражение с переменными имеет смысл при данных значениях переменных, если при этих значениях переменных можно вычислить его значение.
Выражение с переменными не имеет смысла при данных значениях переменных, если при этих значениях переменных нельзя вычислить его значение.
Теперь, опираясь на данные определения, мы можем сформулировать, что такое допустимые и недопустимые значения переменной.
Допустимые значения переменных — это значения переменных, при которых выражение имеет смысл.
Если при переменных выражение не имеет смысла, то значения таких переменных называют недопустимыми.
В выражении может быть больше одной переменной, поэтому допустимых и недопустимых значений может быть больше одного.
Пример 1
Рассмотрим выражение
В выражении три переменные (a, b, c).
Запишем значения переменных в виде: a = 0, b = 1, c = 2.
Такие значения переменных являются допустимыми, поскольку при подстановке этих значений в выражение, мы легко можем найти ответ:
Таким же образом можем выяснить, какие значения переменных — недопустимые.
Подставим значения переменных в выражение
На ноль делить нельзя.
Видео:Решение тригонометрических уравнений. Подготовка к ЕГЭ | Математика TutorOnlineСкачать
Что такое ОДЗ
ОДЗ — это невидимый инструмент при решении любого выражении с переменной. Чаще всего, ОДЗ не отображают графически, но всегда «держат в уме».
Область допустимых значений (ОДЗ) — это множество всех допустимых значений переменных для данного выражения.
Пример 2
Рассмотрим выражение
ОДЗ такого выражения выглядит следующим образом: ( — ∞; 3) ∪ (3; +∞).
Читать запись нужно вот так:
Область допустимых значений переменной x для выражения — это числовое множество ( — ∞; 3) ∪ (3; +∞).
Пример 3
Рассмотрим выражение
ОДЗ такого выражения будет выглядеть вот так: b ≠ c; a — любое число.
Такая запись означает, что область допустимых значений переменных b, c и a = это все значения переменных, при которых соблюдаются условия b ≠ c; a — любое число.
Для тех, кто хочет связать свою жизнь с точными науками, Skysmart предлагает курс подготовки к ЕГЭ по математике (профиль).
Видео:Область допустимых значений (ОДЗ) | ЕГЭ по математике | Эйджей из школы ВебиумСкачать
Как найти ОДЗ: примеры решения
Найти ОДЗ — это значит, что нужно указать все допустимые значения переменных для выражения. Часто, чтобы найти ОДЗ, нужно выполнить преобразование выражения.
Чтобы быстро и верно определять ОДЗ, запомните условия, при которых значение выражения не может быть найдено.
Мы не можем вычислить значение выражения, если:
- требуется извлечение квадратного корня из отрицательного числа;
- присутствует деление на ноль (математическое правило номер раз: никогда не делите на ноль).
Теперь, приступая к поиску ОДЗ, вы можете сверять выражение по всем этим пунктам.
Давайте потренируемся находить ОДЗ.
Пример 4
Найдем область допустимых значений переменной выражения a 3 + 4 * a * b − 6.
В куб возводится любое число. Ограничений при вычитании и сложении нет. Это значит, что мы можем вычислить значение выражения a 3 + 4 * a * b − 6 при любых значениях переменной.
ОДЗ переменных a и b — это множество таких пар допустимых значений (a, b), где a — любое число и b — любое число.
Ответ: (a и b), где a — любое число и b — любое число.
Пример 5
Найдем область допустимых значений (ОДЗ) переменной выражения
Здесь нужно обратить внимание на наличие нуля в знаменатели дроби. Одним из условий, при котором вычисление значения выражения невозможно явлется наличие деления на ноль.
Это значит, что мы может сказать, что ОДЗ переменной a в выражении — пустое множество.
Пустое множество изображается в виде вот такого символа Ø.
Пример 6
Найдем область допустимых значений (ОДЗ) переменных в выражении
Если есть квадратный корень, то нам нужно следить за тем, чтобы под знаком корня не было отрицательного числа. Это значит, что при подстановке значений a и b должны быть условия, при которых a + 3 * b + 5 ≥ 0.
Ответ: ОДЗ переменных a и b — это множество всех пар, при которых a + 3 * b + 5 ≥ 0.
Запомните
- Если число входит в ОДЗ, то около числа ставим квадратные скобки.
- Если число не входит в ОДЗ, то около него ставятся круглые скобки.
Например, если х > 6, но х
Видео:Как решать Иррациональные Уравнения через ОДЗСкачать
Зачем учитывать ОДЗ при преобразовании выражения
Иногда выражение просто невозможно решить, если не выполнить ряд тождественных преобразований. К ним относятся: перестановки, раскрытие скобок, группировка, вынесение общего множителя за скобки, приведение подобных слагаемых.
Кроме того, что видов таких преобразований довольно много: нужно понимать, в каких случаях какое преобразование возможно. В этом может помочь определение ОДЗ.
Тождественное преобразование может:
- расширить ОДЗ
- никак не повлиять на ОДЗ
- сузить ОДЗ
Рассмотрим каждый случай в отдельности.
Пример 7
Рассмотрим выражение a + 4/a — 4/a
Поскольку мы должны следить за тем, чтобы в выражении не возникало деление на ноль, определяем условие a ≠ 0.
Это условие отвечает множеству (−∞ ; 0) ∪ (0 ; +∞).
В выражении есть подобные слагаемые, если привести подобные слагаемые, то мы получаем выражение вида a.
ОДЗ для a — это R — множество всех вещественных чисел.
Преобразование расширило ОДЗ — добавился ноль.
Пример 8
Рассмотрим выражение a 2 + a + 4 * a
ОДЗ a для этого выражения — множество R.
В выражении есть подобные слагаемые, выполним тождественное преобразование.
После приведения подобных слагаемых выражение приняло вид a 2 + 5 * a
ОДЗ переменной a для этого выражения — множество R.
Это значит, что тождественное преобразование никак не повлияло на ОДЗ.
Пример 9
Рассмотрим выражение
ОДЗ a определяется неравенством (a — 1) * (a — 4) ≥ 0.
Решить такое неравенство можно методом интервалов, что дает нам ОДЗ (−∞; 1] ∪ [4 ; +∞).
Затем выполним преобразование исходного выражения по свойству корней: корень произведения = произведению корней.
Приведем выражение к виду
ОДЗ переменной a для этого выражения определяется неравенствами:
a — 1 ≥ 0
a — 4 ≥ 0
Решив систему линейных неравенств, получаем множество [4; + ∞).
Отсюда видно, что тождественные преобразования сузили ОДЗ.
От (−∞; 1] ∪ [4 ; +∞) до [4; + ∞).
Решив преобразовать выражение, внимательно следите за тем, чтобы не допустить сужение ОДЗ.
Запомните, что выполняя преобразование, следует выбирать такие, которые не изменят ОДЗ.
📺 Видео
Как с помощью ОДЗ уравнения легко решить задание из ВсОШ для 11 классаСкачать
Одз не нужно. Равносильный переход в иррациональных уравнениях.Скачать
Алгебра 8. Урок 11 - Дробно-рациональные уравненияСкачать
Решение дробных рациональных уравнений. Алгебра, 8 классСкачать
Решение биквадратных уравнений. 8 класс.Скачать
ЕГЭ ПРОФИЛЬ. Подробно про ОДЗ и равносильный переход при решении уравнений с логарифмамиСкачать
Как решать дробно-рациональные уравнения? | МатематикаСкачать
СУПЕР ЛАЙФХАК — Как решать Иррациональные УравненияСкачать
Как решать тригонометрические уравнения с ОДЗ?Скачать
Как решают уравнения в России и США!?Скачать