- Определение корня n-й степени из действительного числа
- Корень четной и нечетной степени
- Свойства корня n-й степени
- Уравнения понятия корня n степени из действительного числа
- Корень n-ой степени: определения, обозначение, примеры
- Квадратный корень, арифметический квадратный корень
- Кубический корень из числа
- Корень n-ой степени, арифметический корень степени n
- Практически важные результаты
- 🎦 Видео
Видео:Корень n-ой степени из действительного числа и его свойства. Практическая часть. 11 класс.Скачать
Определение корня n-й степени из действительного числа
Корнем n-й степени ((n=2, 3, 4, 5, 6… )) некоторого числа (a) называют такое неотрицательное число (b), которое при возведении в степень (n) дает (a):
Число (n) при этом называют показателем корня.
Если (n=2), то перед вами корень 2-й степени или обычный квадратный корень.
Если (n=3), то корень 3-й степени и т.д.
Операция извлечения корня n-й степени является обратной к операции возведения в n-ю степень.
Кубический корень из числа 27 равняется 3. Действительно, если число 3 возвести в 3-ю степень, то мы получим 27.
Корень 4-й степени из 16-и равен 2. Двойка в 4-й степени равна 16.
Если извлечь корень n-й степени из 0, всегда будет 0.
Мы не можем в уме подобрать такое число, которое при возведении в 3-ю степень даст 19. Если посчитать на калькуляторе, то получим (2,668…) – иррациональное число с бесконечным количеством знаков после запятой.
Обычно, в математике, когда у вас получается иррациональное число, корень не считают и оставляют так как есть (sqrt[3]).
Что же делать, если под рукой нет калькулятора, а нужно оценить, чему равен такой корень. В этом случае нужно подобрать справа и слева такие ближайшие числа, корень из которых посчитать можно:
$$ sqrt[3] le sqrt[3] le sqrt[3] $$ $$ 2 le sqrt[3] le 3 $$
Получается, что наш корень лежит между числами 2 и 3.
Видео:Корень n-ой степени из действительного числа и его свойства. 11 класс.Скачать
Корень четной и нечетной степени
Надо четко различать правила работы четными и нечетными степенями. Дело в том, что корень четной степени можно взять только из положительного числа. Из отрицательных чисел корень четной степени не существует.
Корень нечетной степени можно посчитать из любых действительных чисел. Иногда в школьной программе встречаются задания, в которых требуется определить имеет ли смысл выражение:
Данное выражение имеет смысл, так как корень нечетной степени можно посчитать из любого числа, даже отрицательного.
Так как корень четной степени, а под корнем стоит отрицательное число, то выражение не имеет смысла.
Видео:11 класс, 4 урок, Понятие корня n-й степени из действительного числаСкачать
Свойства корня n-й степени
Пусть есть два неотрицательных числа a и b, для них будут выполняться следующие свойства:
Корни нужны для точных и сокращенных подсчетов в математике. Это необходимая функция, без которой представить современную математику невозможно. Корень n-ой степени обозначается при помощи всем известного значка радикала. Даже самый простой корень из двух будет равен длинному набору чисел, округлив который вы получите лишь приблизительное значение. Такие числа называются иррациональными и намного лучше представить их в виде радикала.
Основные ограничения и свойства
- Корень четной степени существует только из положительных чисел. Число, возводимое в четную степень, а затем извлеченное из той же степени не становится исходным, а превращается в модуль этого числа.
- Из-под знака нечетного показателя корня можно выносить минус. Это упрощает процесс подсчета.
В данном учебном ролике в понятной форме изложены все основные свойства и теоремы корней n-ой степени. Тема непонятна для большинства школьников 7-9 классов, но не по причине их сложности (всего пара определений и свойств), а вследствие неправильной подачи информации в учебниках. Поэтому в данном видео мы расскажем о самом грамотном и понятном определении корня – все то, что действительно нужно запомнить. Далее покажем, как все это можно применить на практике.
Корни бывают четные и нечетные. Основные определения, необходимые для изучения данной темы звучат так: корень четной степени n из числа a — это любое неотрицательное число b, которое при умножении на само себя n раз даст число a . А корень нечетной степени n из числа a — это любое неотрицательное или отрицательное число b, которое также при умножении на само себя даст a.
Видео:Корень n-ой степени из действительного числа и его свойства. Практическая часть. 11 класс.Скачать
Уравнения понятия корня n степени из действительного числа
Определение 1. Корнем n-й степени из неотрицательного числа а (n = 2, 3,4, 5. ) называют такое неотрицательное число, которое при возведении в степень n дает в результате число а.
Это число обозначают , число а при этом называют подкоренным числом, а число n — показателем корня.
Если n=2, то обычно не говорят «корень второй степени», а говорят «корень квадратный». В этом случае не пишут Это тот частный случай, который вы специально изучали в курсе алгебры 8-го класса.
Если n = 3, то вместо «корень третьей степени» часто говорят «корень кубический». Итак,
Операцию нахождения корня из неотрицательного числа называют обычно извлечением корня. Эта операция является обратной по отношению к возведению в соответствующую степень.
Операцию извлечения корня определяют и для отрицательного подкоренного числа, но только в случае нечетного показателя корня.
Определение 2. Корнем нечетной степени n из отрицательного числа а (n = 3,5. ) называют такое отрицательное число, которое, будучи возведено в степень n, дает в результате число а.
Это число, как и в определении 1, обозначают , число а — подкоренное число, число n — показатель корня.
Итак,
Пример:
Таким образом, корень четной степени имеет смысл (т.е. определен) только для неотрицательного подкоренного выражения; корень нечетной степени имеет смысл для любого подкоренного выражения.
Определение 3. Иррациональные уравнения-уравнения, в которых переменная содержится под знаком корня
Пример:
Видео:Алгебра 11 класс. 1 сентября. Понятие корня степени n й степени #1Скачать
Корень n-ой степени: определения, обозначение, примеры
В этой статье мы введем понятие корня из числа. Будем действовать последовательно: начнем с квадратного корня, от него перейдем к описанию кубического корня, после этого обобщим понятие корня, определив корень n-ой степени. При этом будем вводить определения, обозначения, приводить примеры корней и давать необходимые пояснения и комментарии.
Видео:11 класс, 6 урок, Свойства корня n-й степениСкачать
Квадратный корень, арифметический квадратный корень
Чтобы понять определение корня из числа, и квадратного корня в частности, нужно иметь представление о степени с натуральным показателем. В этом пункте мы часто будем сталкиваться со второй степенью числа — квадратом числа.
Начнем с определения квадратного корня.
Квадратный корень из числа a — это число, квадрат которого равен a .
Чтобы привести примеры квадратных корней, возьмем несколько чисел, например, 5 , −0,3 , 0,3 , 0 , и возведем их в квадрат, получим соответственно числа 25 , 0,09 , 0,09 и 0 ( 5 2 =5·5=25 , (−0,3) 2 =(−0,3)·(−0,3)=0,09 , (0,3) 2 =0,3·0,3=0,09 и 0 2 =0·0=0 ). Тогда по данному выше определению число 5 является квадратным корнем из числа 25 , числа −0,3 и 0,3 есть квадратные корни из 0,09 , а 0 – это квадратный корень из нуля.
Следует отметить, что не для любого числа a существует действительное число, квадрат которого равен a . А именно, для любого отрицательного числа a не существует ни одного действительного числа b , квадрат которого равнялся бы a . В самом деле, равенство a=b 2 невозможно для любого отрицательного a , так как b 2 – неотрицательное число при любом b . Таким образом, на множестве действительных чисел не существует квадратного корня из отрицательного числа. Иными словами, на множестве действительных чисел квадратный корень из отрицательного числа не определяется и не имеет смысла.
Отсюда вытекает логичный вопрос: «А для любого ли неотрицательного a существует квадратный корень из a »? Ответ – да. Обоснованием этого факта можно считать конструктивный способ, используемый для нахождения значения квадратного корня.
Тогда встает следующий логичный вопрос: «Каково число всех квадратных корней из данного неотрицательного числа a – один, два, три, или еще больше»? Вот ответ на него: если a равно нулю, то единственным квадратным корнем из нуля является нуль; если же a – некоторое положительное число, то количество квадратных корней из числа a равно двум, причем корни являются противоположными числами. Обоснуем это.
Начнем со случая a=0 . Сначала покажем, что нуль действительно является квадратным корнем из нуля. Это следует из очевидного равенства 0 2 =0·0=0 и определения квадратного корня.
Теперь докажем, что 0 – единственный квадратный корень из нуля. Воспользуемся методом от противного. Предположим, что существует некоторое число b , отличное от нуля, которое является квадратным корнем из нуля. Тогда должно выполняться условие b 2 =0 , что невозможно, так как при любом отличном от нуля b значение выражения b 2 является положительным. Мы пришли к противоречию. Это доказывает, что 0 – единственный квадратный корень из нуля.
Переходим к случаям, когда a – положительное число. Выше мы сказали, что всегда существует квадратный корень из любого неотрицательного числа, пусть квадратным корнем из a является число b . Допустим, что существует число c , которое тоже является квадратным корнем из a . Тогда по определению квадратного корня справедливы равенства b 2 =a и c 2 =a , из них следует, что b 2 −c 2 =a−a=0 , но так как b 2 −c 2 =(b−c)·(b+c) , то (b−c)·(b+c)=0 . Полученное равенство в силу свойств действий с действительными числами возможно лишь тогда, когда b−c=0 или b+c=0 . Таким образом, числа b и c равны или противоположны.
Если же предположить, что существует число d , являющееся еще одним квадратным корнем из числа a , то рассуждениями, аналогичными уже приведенным, доказывается, что d равно числу b или числу c . Итак, число квадратных корней из положительного числа равно двум, причем квадратные корни являются противоположными числами.
Для удобства работы с квадратными корнями отрицательный корень «отделяется» от положительного. С этой целью вводится определение арифметического квадратного корня.
Арифметический квадратный корень из неотрицательного числа a – это неотрицательное число, квадрат которого равен a .
Для арифметического квадратного корня из числа a принято обозначение . Знак называется знаком арифметического квадратного корня. Его также называют знаком радикала. Поэтому можно часть слышать как «корень», так и «радикал», что означает один и тот же объект.
Число под знаком арифметического квадратного корня называют подкоренным числом, а выражение под знаком корня – подкоренным выражением, при этом термин «подкоренное число» часто заменяют на «подкоренное выражение». Например, в записи число 151 – это подкоренное число, а в записи выражение a является подкоренным выражением.
При чтении слово «арифметический» часто опускается, например, запись читают как «квадратный корень из семи целых двадцати девяти сотых». Слово «арифметический» произносят лишь тогда, когда хотят особо подчеркнуть, что речь идет именно о положительном квадратном корне из числа.
В свете введенного обозначения из определения арифметического квадратного корня следует, что и для любого неотрицательного числа a .
Квадратные корни из положительного числа a с помощью знака арифметического квадратного корня записываются как и . Например, квадратные корни из числа 13 есть и . Арифметический квадратный корень из нуля равен нулю, то есть, . Для отрицательных чисел a записи мы не будем придавать смысла вплоть до изучения комплексных чисел. Например, лишены смысла выражения и .
На базе определения квадратного корня доказываются свойства квадратных корней, которые часто применяются на практике.
Нахождение квадратных корней заслуживает детального изучения, этой теме посвящена отдельная статья извлечение квадратных корней.
В заключение этого пункта заметим, что квадратные корни из числа a являются решениями квадратного уравнения вида x 2 =a относительно переменной x .
Видео:Понятие корня n-й степени из действительного числа | Алгебра 11 класс #1 | ИнфоурокСкачать
Кубический корень из числа
Определение кубического корня из числа a дается аналогично определению квадратного корня. Только оно базируется на понятии куба числа, а не квадрата.
Кубическим корнем из числа a называется число, куб которого равен a .
Приведем примеры кубических корней. Для этого возьмем несколько чисел, например, 7 , 0 , −2/3 , и возведем их в куб: 7 3 =7·7·7=343 , 0 3 =0·0·0=0 , . Тогда, основываясь на определении кубического корня, можно утверждать, что число 7 – это кубический корень из 343 , 0 есть кубический корень из нуля, а −2/3 является кубическим корнем из −8/27 .
Можно показать, что кубический корень из числа a , в отличие от квадратного корня, всегда существует, причем не только для неотрицательных a , но и для любого действительного числа a . Для этого можно использовать тот же способ, о котором мы упоминали при изучении квадратного корня.
Более того, существует только единственный кубический корень из данного числа a . Докажем последнее утверждение. Для этого отдельно рассмотрим три случая: a – положительное число, a=0 и a – отрицательное число.
Легко показать, что при положительном a кубический корень из a не может быть ни отрицательным числом, ни нулем. Действительно, пусть b является кубическим корнем из a , тогда по определению мы можем записать равенство b 3 =a . Понятно, что это равенство не может быть верным при отрицательных b и при b=0 , так как в этих случаях b 3 =b·b·b будет отрицательным числом либо нулем соответственно. Итак, кубический корень из положительного числа a является положительным числом.
Теперь предположим, что помимо числа b существует еще один кубический корень из числа a , обозначим его c . Тогда c 3 =a . Следовательно, b 3 −c 3 =a−a=0 , но b 3 −c 3 =(b−c)·(b 2 +b·c+c 2 ) (это формула сокращенного умножения разность кубов), откуда (b−c)·(b 2 +b·c+c 2 )=0 . Полученное равенство возможно только когда b−c=0 или b 2 +b·c+c 2 =0 . Из первого равенства имеем b=c , а второе равенство не имеет решений, так как левая его часть является положительным числом для любых положительных чисел b и c как сумма трех положительных слагаемых b 2 , b·c и c 2 . Этим доказана единственность кубического корня из положительного числа a .
При a=0 кубическим корнем из числа a является только число нуль. Действительно, если предположить, что существует число b , которое является отличным от нуля кубическим корнем из нуля, то должно выполняться равенство b 3 =0 , которое возможно лишь при b=0 .
Для отрицательных a можно привести рассуждения, аналогичные случаю для положительных a . Во-первых, показываем, что кубический корень из отрицательного числа не может быть равен ни положительному числу, ни нулю. Во-вторых, предполагаем, что существует второй кубический корень из отрицательного числа и показываем, что он обязательно будет совпадать с первым.
Итак, всегда существует кубический корень из любого данного действительного числа a , причем единственный.
Дадим определение арифметического кубического корня.
Арифметическим кубическим корнем из неотрицательного числа a называется неотрицательное число, куб которого равен a .
Арифметический кубический корень из неотрицательного числа a обозначается как , знак называется знаком арифметического кубического корня, число 3 в этой записи называется показателем корня. Число под знаком корня – это подкоренное число, выражение под знаком корня – это подкоренное выражение.
Хотя арифметический кубический корень определяется лишь для неотрицательных чисел a , но удобно также использовать записи, в которых под знаком арифметического кубического корня находятся отрицательные числа. Понимать их будем так: , где a – положительное число. Например, .
О свойствах кубических корней мы поговорим в общей статье свойства корней.
Вычисление значения кубического корня называется извлечением кубического корня, это действие разобрано в статье извлечение корней: способы, примеры, решения.
В заключение этого пункта скажем, что кубический корень из числа a является решением кубического уравнения вида x 3 =a .
Видео:Корни n-й степени. Вебинар | МатематикаСкачать
Корень n-ой степени, арифметический корень степени n
Обобщим понятие корня из числа – введем определение корня n-ой степени для натуральных чисел n .
Корень n -ой степени из числа a – это число, n -я степень которого равна a .
Из данного определения понятно, что корень первой степени из числа a есть само число a , так как при изучении степени с натуральным показателем мы приняли a 1 =a .
Выше мы рассмотрели частные случаи корня n -ой степени при n=2 и n=3 – квадратный корень и кубический корень. То есть, квадратный корень – это корень второй степени, а кубический корень – корень третьей степени. Для изучения корней n -ой степени при n=4, 5, 6, … их удобно разделить на две группы: первая группа – корни четных степеней (то есть, при n=4, 6, 8, … ), вторая группа – корни нечетных степеней (то есть, при n=5, 7, 9, … ). Это связано с тем, что корни четных степеней аналогичны квадратному корню, а корни нечетных степеней – кубическому. Разберемся с ними по очереди.
Начнем с корней, степенями которых являются четные числа 4, 6, 8, … Как мы уже сказали, они аналогичны квадратному корню из числа a . То есть, корень любой четной степени из числа a существует лишь для неотрицательного a . Причем, если a=0 , то корень из a единственный и равен нулю, а если a>0 , то существует два корня четной степени из числа a , причем они являются противоположными числами.
Обоснуем последнее утверждение. Пусть b – корень четной степени (обозначим ее как 2·m , где m – некоторое натуральное число) из числа a . Предположим, что существует число c – еще один корень степени 2·m из числа a . Тогда b 2·m −c 2·m =a−a=0 . Но мы знаем формулу сокращенного умножения вида b 2·m −c 2·m = (b−c)·(b+c)· (b 2·m−2 +b 2·m−4 ·c 2 +b 2·m−6 ·c 4 +…+c 2·m−2 ) , тогда (b−c)·(b+c)· (b 2·m−2 +b 2·m−4 ·c 2 +b 2·m−6 ·c 4 +…+c 2·m−2 )=0 . Из этого равенства следует, что b−c=0 , или b+c=0 , или b 2·m−2 +b 2·m−4 ·c 2 +b 2·m−6 ·c 4 +…+c 2·m−2 =0 . Первые два равенства означают, что числа b и c равны или b и c – противоположны. А последнее равенство справедливо лишь при b=c=0 , так как в его левой части находится выражение, которое неотрицательно при любых b и c как сумма неотрицательных чисел.
Что касается корней n -ой степени при нечетных n , то они аналогичны кубическому корню. То есть, корень любой нечетной степени из числа a существует для любого действительного числа a , причем для данного числа a он является единственным.
Единственность корня нечетной степени 2·m+1 из числа a доказывается по аналогии с доказательством единственности кубического корня из a . Только здесь вместо равенства a 3 −b 3 =(a−b)·(a 2 +a·b+c 2 ) используется равенство вида b 2·m+1 −c 2·m+1 = (b−c)·(b 2·m +b 2·m−1 ·c+b 2·m−2 ·c 2 +… +c 2·m ) . Выражение в последней скобке можно переписать как b 2·m +c 2·m +b·c·(b 2·m−2 +c 2·m−2 + b·c·(b 2·m−4 +c 2·m−4 +b·c·(…+(b 2 +c 2 +b·c)))) . Например, при m=2 имеем b 5 −c 5 =(b−c)·(b 4 +b 3 ·c+b 2 ·c 2 +b·c 3 +c 4 )= (b−c)·(b 4 +c 4 +b·c·(b 2 +c 2 +b·c)) . Когда a и b оба положительны или оба отрицательны их произведение является положительным числом, тогда выражение b 2 +c 2 +b·c , находящееся в скобках самой высокой степени вложенности, является положительным как сумма положительных чисел. Теперь, продвигаясь последовательно к выражениям в скобках предыдущих степеней вложенности, убеждаемся, что они также положительны как суммы положительных чисел. В итоге получаем, что равенство b 2·m+1 −c 2·m+1 = (b−c)·(b 2·m +b 2·m−1 ·c+b 2·m−2 ·c 2 +… +c 2·m )=0 возможно только тогда, когда b−c=0 , то есть, когда число b равно числу c .
Пришло время разобраться с обозначениями корней n -ой степени. Для этого дается определение арифметического корня n -ой степени.
Арифметическим корнем n -ой степени из неотрицательного числа a называется неотрицательное число, n -я степень которого равна a .
Арифметический корень n -ой степени из неотрицательного числа a обозначается как . Число a называют подкоренным числом, а число n – показателем корня. Для примера рассмотрим запись , здесь подкоренным числом является 125,36 , а показатель корня равен 5 .
Заметим, что при n=2 мы имеем дело с квадратным корнем из числа, в этом случае показатель корня принято не записывать, то есть, записи и означают одно и то же число.
Несмотря на то, что определение арифметического корня n -ой степени, а также его обозначение введены для неотрицательных подкоренных чисел, мы в целях удобства для нечетных показателей корня и отрицательных подкоренных чисел будем использовать записи вида , которые будем понимать как . Например, и .
Корням же четной степени с отрицательными подкоренными числами мы не будем придавать никакого смысла (до начала изучения комплексных чисел). К примеру, выражения и не имеют смысла.
Вычисление корней n -ой степени подробно разобрано в статье извлечение корней.
На основании данного выше определения обосновываются свойства корней n -ой степени, которые имеют широкое практическое применение.
В заключение стоит сказать, что корни n -ой степени являются корнями уравнений вида x n =a .
Видео:Корень n-ной степени и его свойства. Решение примеровСкачать
Практически важные результаты
Первый практически важный результат: .
Этот результат по сути отражает определение корня четной степени. Знак ⇔ означает равносильность. То есть, приведенную запись стоит понимать так: если , то , и если , то . А теперь то же самое, но словами: если b есть корень четной степени 2·k из числа a , то b – это неотрицательное число, удовлетворяющее равенству b 2·k =a , и обратно, если b – неотрицательное число, удовлетворяющее равенству b 2·k =a , то b есть корень четной степени 2·k из числа a .
Из первого равенства системы понятно, что число a – неотрицательное, так как оно равно неотрицательному числу b , возведенному в четную степень 2·k .
Таким образом, в школе рассматривают корни четных степеней только из неотрицательных чисел, понимают их как , а корням четных степеней из отрицательных чисел не придают никакого смысла.
Второй практически важный результат: .
Он по сути объединяет определение арифметического корня нечетной степени и определение корня нечетной степени из отрицательного числа. Поясним это.
Из определений, данных в предыдущих пунктах, понятно, что придают смысл корням нечетных степеней из любых действительных чисел, не только неотрицательных, но и отрицательных. Для неотрицательных чисел b считают, что . Из последней системы вытекает условие a≥0 . Для отрицательных чисел −a (при этом a – положительное число) принимают . Понятно, что при таком определении — отрицательное число, так как оно равно , а есть положительное число. Также понятно, что возведение в степень 2·k+1 корня дает подкоренное число –a . Действительно, учитывая такое определение и свойства степеней, имеем
Из этого заключаем, что корень нечетной степени 2·k+1 из отрицательного числа −a есть такое отрицательное число b , степень 2·k+1 которого равна −a , в буквенном виде . Объединяя результаты для a≥0 и для –a , приходим к следующему выводу: корень нечетной степени 2·k+1 из произвольного действительного числа a есть число b (оно может быть как неотрицательным, так и отрицательным), которое при возведении в степень 2·k+1 равно a , то есть .
Таким образом, в школе рассматривают корни нечетных степеней из любых действительных чисел и понимают их так: .
В заключение еще раз запишем два интересующих нас результата: и .
🎦 Видео
Корень n-ой степени. Алгебра, 9 классСкачать
Свойства корней, которые надо знатьСкачать
10 класс - Алгебра - Понятие корня n-ной степени из действительного числаСкачать
Корень n-ой степени из действительного числа и его свойства. Практическая часть. 11 класс.Скачать
✓ Про степень с действительным показателем | В интернете опять кто-то неправ #005 | Борис ТрушинСкачать
Свойства корня n-й степени #1. Алгебра 11 класс.Скачать
Как разобраться в корнях ? Квадратный корень 8 класс | Математика TutorOnlineСкачать
Понятие корня n – й степени из действительного числаСкачать
ЕГЭ. Математика. Корень n-ной степени из действительного числа. Обобщение понятия степени. ПрактикаСкачать
1 Понятие корня n й степени из действительного числаСкачать
СЛОЖИТЕ ДВА КОРНЯСкачать