Уравнения по теореме виета примеры для тренировки

Теорема Виета

Теорема Виета:

Сумма корней приведённого квадратного уравнения

равна второму коэффициенту, взятому с противоположным знаком, а произведение корней равно свободному члену

Если приведённое квадратное уравнение имеет вид

то его корни равны:

Уравнения по теореме виета примеры для тренировки,

где D = p 2 — 4q. Чтобы доказать теорему, сначала найдём сумму корней:

Уравнения по теореме виета примеры для тренировки,

а теперь найдём их произведение:

Уравнения по теореме виета примеры для тренировки

Равенства, показывающие зависимость между корнями и коэффициентами квадратного уравнения:

называются формулами Виета.

Примечание: если дискриминант равен нулю (D = 0), то подразумевается, что уравнение имеет не один корень, а два равных корня.

Видео:Теорема Виета за 30 сек🦾Скачать

Теорема Виета за 30 сек🦾

Обратная теорема

Теорема:

Если сумма двух чисел равна -p, а их произведение равно q, то эти числа являются корнями приведённого квадратного уравнения:

Это доказывает, что число x1 является корнем уравнения x 2 + px + q = 0. Точно так же можно доказать, что и число x2 является корнем для этого уравнения.

Видео:ТЕОРЕМА ВИЕТА ЗА 2 МИНУТЫСкачать

ТЕОРЕМА ВИЕТА ЗА 2 МИНУТЫ

Решение примеров

Зависимость между корнями и коэффициентами квадратного уравнения позволяет в некоторых случаях находить корни уравнения устно, не используя формулу корней.

Пример 1. Найти корни уравнения:

Решение: Так как

очевидно, что корни равны 1 и 2:

Подставив числа 1 и 2 в уравнение, убедимся, что корни найдены правильно:

1 2 — 3 · 1 + 2 = 0

2 2 — 3 · 2 + 2 = 0.

Пример 2. Найти корни уравнения:

Методом подбора находим, что корни равны -3 и -5:

С помощью теоремы, обратной теореме Виета, можно составлять квадратное уравнение по его корням.

Пример 1. Составить квадратное уравнение по его корням:

Решение: Так как x1 = -3, x2 = 6 корни уравнения x 2 + px + q = 0, то по теореме, обратной теореме Виета, составим уравнения:

Следовательно, искомое уравнение:

Пример 2. Записать приведённое квадратное уравнение, имеющее корни:

Видео:Теорема Виета. 8 класс.Скачать

Теорема Виета. 8 класс.

Система упражнений по теме Теорема Виета
методическая разработка по алгебре (8 класс) по теме

Уравнения по теореме виета примеры для тренировки

Предлагаемая система упражнений предназначена для отработки навыков решения квадратных уравнений с использованием теоремы Виета и обратной ей.

Видео:Теорема Виета. Вебинар | МатематикаСкачать

Теорема Виета. Вебинар | Математика

Скачать:

ВложениеРазмер
sistema_uprazhneniy_po_teme_teorema_vieta.doc33.5 КБ

Видео:ТЕОРЕМА ВИЕТА // Как решать Квадратные Уравнения по АЛГЕБРЕ 8 классСкачать

ТЕОРЕМА ВИЕТА // Как решать Квадратные Уравнения по АЛГЕБРЕ 8 класс

Предварительный просмотр:

Система упражнений по теме Теорема Виета

Предлагаемая система упражнений предназначена для отработки навыков решения квадратных уравнений с использованием теоремы Виета и обратной ей.

Как правило, заданий такого рода в учебниках недостаточно и, надеюсь, представленный материал будет полезен ученикам и учителям.

Вниманию учителей представлены 4 варианта, каждый вариант состоит из 12 заданий.

Также в каждом варианте предлагаются уравнения, которые быстро решаются, если ученик знаком с правилами:

  1. если a+b+c=0, то х 1 =1, x 2 =a/c; (в режиме предпросмотра формулы не отображаются)
  2. если a+c=b, то x 1 =-1, x 2 =-(a/c); (в режиме предпросмотра формулы не отображаются)

Видео:5 способов решения квадратного уравнения ➜ Как решать квадратные уравнения?Скачать

5 способов решения квадратного уравнения ➜ Как решать квадратные уравнения?

Теорема Виета

Видео:Квадратные уравнения от «А» до «Я». Классификация, решение и теорема Виета | МатематикаСкачать

Квадратные уравнения от «А» до «Я». Классификация, решение и теорема Виета | Математика

Что называют теоремой?

Если человек обнаружил в математике какую-нибудь закономерность, позволяющую быстро решить ту или иную задачу, то ему не следует говорить о том, что он сделал открытие. Потому что может случиться так, что эта закономерность работает только для определённых случаев, а для других не работает или вовсе решает задачу неправильно.

Чтобы поделиться своим открытием с другими людьми, найденную закономерность следует сформулировать в виде утверждения, а затем доказать это утверждение, приводя неоспоримые факты.

Сформулированное утверждение называют теоремой. А доказательство теоремы состоит из фактов, логических рассуждений и вычислений, которые не оспариваются.

Например, теоремой можно назвать следующее утверждение:

«Если числитель и знаменатель обыкновенной дроби умнóжить на какое-нибудь число, то значение данной дроби не измéнится».

А затем привести такое доказательство:

Пусть, имеется дробь Уравнения по теореме виета примеры для тренировки. Умнóжим числитель и знаменатель этой дроби на число с . Тогда полýчится дробь Уравнения по теореме виета примеры для тренировки. Докáжем, что дроби Уравнения по теореме виета примеры для тренировкии Уравнения по теореме виета примеры для тренировкиравны. То есть докажем, что равенство Уравнения по теореме виета примеры для тренировкиявляется верным.

Для доказательства этого равенства воспользуемся основным свойством пропорции:

Уравнения по теореме виета примеры для тренировки

От перестановки мест сомножителей произведение не меняется. Поэтому в получившемся равенстве можно упорядочить правую часть по алфавиту:

Уравнения по теореме виета примеры для тренировки

Поскольку равенство Уравнения по теореме виета примеры для тренировкиявляется пропорцией, а пропорция это равенство двух отношений, то дроби Уравнения по теореме виета примеры для тренировкии Уравнения по теореме виета примеры для тренировкиравны. Теорема доказана.

Видео:Теорема Виета за 4 минуты с примерами. Как решать квадратные уравнения быстрее учителя.Скачать

Теорема Виета за 4 минуты с примерами. Как решать квадратные уравнения быстрее учителя.

Теорема Виета

Французский математик Франсуа Виет выявил интересную взаимосвязь между коэффициентами приведённого квадратного уравнения и корнями этого же уравнения. Эта взаимосвязь представлена в виде теоремы и формулируется так:

Сумма корней приведённого квадратного уравнения x 2 + bx + c = 0 равна второму коэффициенту, взятому с противоположным знáком, а произведение корней равно свободному члену.

То есть, если имеется приведённое квадратное уравнение x 2 + bx + c = 0 , а его корнями являются числа x1 и x2 , то справедливы следующие два равенства:

Уравнения по теореме виета примеры для тренировки

Знак системы (фигурная скобка) говорит о том, что значения x1 и x2 удовлетворяют обоим равенствам.

Покажем теорему Виета на примере приведённого квадратного уравнения x 2 + 4x + 3 = 0 .

Мы пока не знаем какие корни имеет уравнение x 2 + 4x + 3 = 0 . Но по теореме Виета можно записать, что сумма этих корней равна второму коэффициенту 4 , взятому с противоположным знáком. Если коэффициент 4 взять с противоположным знáком, то получим −4 . Тогда:

Уравнения по теореме виета примеры для тренировки

А произведение корней по теореме Виета будет равно свободному члену. В уравнении x 2 + 4x + 3 = 0 свободным членом является 3 . Тогда:

Уравнения по теореме виета примеры для тренировки

Теперь проверим действительно ли сумма корней равна −4 , и равно ли произведение 3 . Для этого найдём корни уравнения x 2 + 4x + 3 = 0 . А для удобства воспользуемся формулами для чётного второго коэффициента:

Уравнения по теореме виета примеры для тренировки

Корнями уравнения являются числа −1 и −3 . По теореме Виета их сумма должна была равняться второму коэффициенту уравнения x 2 + 4x + 3 = 0 , взятому с противоположным знаком. Действительно, так оно и есть. Вторым коэффициентов в уравнении x 2 + 4x + 3 = 0 является 4 . Если взять его с противоположным знаком и приравнять сумму корней x1 + x2 к этому коэффициенту, то получается верное равенство:

Уравнения по теореме виета примеры для тренировки

А произведение корней −1 и −3 по теореме Виета должно было равняться свободному члену уравнения x 2 + 4x + 3 = 0 , то есть числу 3 . Видим, что это условие тоже выполняется:

Уравнения по теореме виета примеры для тренировки

Значит выражение Уравнения по теореме виета примеры для тренировкиявляется справедливым.

Рассмотрим квадратное уравнение x 2 − 8x + 15 = 0 . По теореме Виета сумма корней этого уравнения равна второму коэффициенту, взятому с противоположным знаком. Второй коэффициент равен −8 . Если взять его с противоположным знаком, то получим 8 . Тогда:

Уравнения по теореме виета примеры для тренировки

А произведение корней равно свободному члену. В уравнении x 2 − 8x + 15 = 0 свободным членом является 15 . Тогда:

Уравнения по теореме виета примеры для тренировки

Теперь проверим действительно ли сумма корней равна 8 , и равно ли произведение 15 . Для этого найдём корни данного уравнения. А для удобства воспользуемся формулами для чётного второго коэффициента. В этот раз пропустим нéкоторые подробные записи:

Уравнения по теореме виета примеры для тренировки

Видим, что корнями уравнения x 2 − 8x + 15 = 0 являются числа 5 и 3 . Их сумма равна 8 . То есть сумма корней равна второму коэффициенту уравнения x 2 − 8x + 15 = 0 , взятому с противоположным знаком.

А произведение чисел 5 и 3 равно 15 . То есть равно свободному члену уравнения x 2 − 8x + 15 = 0 .

Значит выражение Уравнения по теореме виета примеры для тренировкиявляется справедливым.

Замечание. Чтобы теорема Виета выполнялась, квадратное уравнение обязательно должно быть приведённым и иметь корни.

Например, рассмотрим квадратное уравнение x 2 − 2x + 4 = 0 . Напишем сумму и произведение корней этого уравнения:

Уравнения по теореме виета примеры для тренировки

Но уравнение x 2 − 2x + 4 = 0 не имеет корней, сумма которых равна 2, а произведение которых равно 4 . Убедиться в этом можно, вычислив дискриминант:

А значит записывать выражение Уравнения по теореме виета примеры для тренировкине имеет смысла.

Теорема Виета полезна тем, что позволяет до начала решения узнать знаки корней уравнения.

Например, запишем для уравнения x 2 − 5x + 6 = 0 сумму и произведение его корней. Сумма корней равна второму коэффициенту, взятому с противоположным знаком, а произведение корней равно свободному члену:

Уравнения по теореме виета примеры для тренировки

Посмотрев на эти два равенства можно сразу понять, что оба корня должны быть положительными. Потому что произведение x1 × x2 = 6 будет выполняться только в двух случаях: если значения x1 и x2 положительны либо они оба отрицательны. Если эти значения будут отрицательными, то не будет выполняться равенство x1 + x2 = 5 , поскольку его правая часть равна положительному числу. А значения x1 и x2 должны удовлетворять как равенству x1 + x2 = 5 , так и равенству x1 × x2 = 6.

Ещё одна польза от теоремы Виета в том, что корни можно найти методом подбора. В данном примере корни должны быть такими, чтобы они удовлетворяли как равенству x1 + x2 = 5 так и равенству x1 × x2 = 6 . Очевидно, что таковыми являются корни 3 и 2

Уравнения по теореме виета примеры для тренировки

Уравнения по теореме виета примеры для тренировки

Доказательство теоремы Виета

Пусть дано приведённое квадратное уравнение x 2 + bx + c = 0 . Если его дискриминант больше нуля, то оно имеет два корня, сумма которых равна второму коэффициенту, взятому с противоположным знаком, а произведение корней равно свободному члену:

Уравнения по теореме виета примеры для тренировки

Вспомним формулы корней квадратного уравнения:

Уравнения по теореме виета примеры для тренировки

Найдём сумму корней x1 и x2 . Для этого подставим в выражение x1 + x2 вместо x1 и x2 соответствующие выражения из правой части формул корней квадратного уравнения. Не забываем, что в приведённом квадратном уравнении x 2 + bx + c = 0 старший коэффициент a равен единице. Тогда в процессе подстановки знаменатель станет равен просто 2

Уравнения по теореме виета примеры для тренировки

Запишем правую часть в виде дроби с одним знаменателем:

Уравнения по теореме виета примеры для тренировки

Раскроем скобки в числителе и приведём подобные члены:

Уравнения по теореме виета примеры для тренировки

Сократим дробь Уравнения по теореме виета примеры для тренировкина 2 , тогда получим −b

Уравнения по теореме виета примеры для тренировки

Теперь аналогично докажем, что произведение x1 × x2 равно свободному члену c .

Подставим вместо x1 и x2 соответствующие выражения из формул корней квадратного уравнения. Не забываем, что коэффициент a всё ещё равен единице:

Уравнения по теореме виета примеры для тренировки

Чтобы перемнóжить дроби, нужно перемнóжить их числители и знаменатели:

Уравнения по теореме виета примеры для тренировки

В числителе теперь содержится произведение суммы двух выражений и разности этих же выражений. Воспользуемся тождеством (a + b)(a − b) = a 2 − b 2 . Тогда в числителе полýчится Уравнения по теореме виета примеры для тренировкиА знаменатель будет равен 4

Уравнения по теореме виета примеры для тренировки

Теперь в числителе выражение (−b) 2 станет равно b 2 , а выражение Уравнения по теореме виета примеры для тренировкистанет равно просто D

Уравнения по теореме виета примеры для тренировки

Но D равно b 2 − 4ac . Подстáвим это выражение вместо D , не забывая что a = 1 . То есть вместо b 2 − 4ac надо подставить b 2 − 4c

Уравнения по теореме виета примеры для тренировки

В получившемся выражении раскроем скобки в числителе и приведём подобные члены:

Уравнения по теореме виета примеры для тренировки

Сократим получившуюся дробь на 4

Уравнения по теореме виета примеры для тренировки

Таким образом, сумма корней приведённого квадратного уравнения x 2 + bx + c = 0 равна второму коэффициенту, взятому с противоположным знáком ( x1 + x2 = −b ), а произведение корней равно свободному члену ( x1 × x2 = c ). Теорема доказана.

Видео:Как решать квадратные уравнения без дискриминантаСкачать

Как решать квадратные уравнения без дискриминанта

Теорема, обратная теореме Виета

Когда записана сумма и произведение корней приведённого квадратного уравнения, обычно начинается подбор подходящих корней к этому уравнению. В этот момент в работу включается так называемая теорема, обратная теореме Виета. Она формулируется так:

Если числа x1 и x2 таковы, что их сумма равна второму коэффициенту уравнения x 2 + bx + c = 0, взятому с противоположным знáком, а произведение чисел x1 и x2 равно свободному члену уравнения x 2 + bx + c = 0, то числа x1 и x2 являются корнями уравнения x 2 + bx + c = 0.

Обратные теоремы бывают поставлены так, что их утверждением является заключение первой теоремы.

Так, доказывая теорему Виета мы пришли к заключению, что сумма x1 и x2 равна −b , а произведение x1 и x2 равно c . В обратной же теореме это заключение служит утверждением.

Ранее мы решили уравнение x 2 − 5x + 6 = 0 и написали для него такую сумму и произведение корней:

Уравнения по теореме виета примеры для тренировки

А затем подобрали корни 3 и 2 . По сути мы применили теорему, обратную теореме Виета. Числа 3 и 2 таковы, что их сумма равна второму коэффициенту уравнения x 2 − 5x + 6 = 0 , взятому с противоположным знаком (числу 5 ), а произведение чисел 3 и 2 равно свободному члену (числу 6 ). Значит числа 3 и 2 являются корнями уравнения x 2 − 5x + 6 = 0 .

Пример 2. Решить квадратное уравнение x 2 − 6x + 8 = 0 по теореме, обратной теореме Виета.

В данном уравнении a = 1 . Значит квадратное уравнение является приведённым. Его можно решить по теореме, обратной теореме Виета.

Сначала запишем сумму и произведение корней уравнения. Сумма корней будет равна 6 , поскольку второй коэффициент исходного уравнения равен −6 . А произведение корней будет равно 8

Уравнения по теореме виета примеры для тренировки

Теперь имея эти два равенства можно подобрать подходящие корни. Они должны удовлетворять как равенству x1 + x2 = 6 , так и равенству x1 × x2 = 8

Подбор корней удобнее выполнять с помощью их произведения. Используя равенство x1 × x2 = 8 нужно найти такие x1 и x2 , произведение которых равно 8.

Число 8 можно получить если перемножить числа 4 и 2 либо 1 и 8.

4 × 2 = 8
1 × 8 = 8

Но значения x1 и x2 надо подбирать так, чтобы они удовлетворяли не только равенству x1 × x2 = 8 , но и равенству x1 + x2 = 6 .

Сразу делаем вывод, что значения 1 и 8 не годятся, поскольку они хоть и удовлетворяют равенству x1 × x2 = 8 , но не удовлетворяют равенству x1 + x2 = 6 .

Зато значения 4 и 2 подходят как равенству x1 × x2 = 8 , так и равенству x1 + x2 = 6 , поскольку эти значения удовлетворяют обоим равенствам:

Уравнения по теореме виета примеры для тренировки

Значит корнями уравнения x 2 − 6x + 8 = 0 являются числа 4 и 2 .

Уравнения по теореме виета примеры для тренировки

Обратная теорема, как и любая теорема нуждается в доказательстве. Докажем теорему, обратную теореме Виета. Для удобства корни x1 и x2 обозначим как m и n . Тогда утверждение теоремы, обратной теореме Виета примет следующий вид:

Если числа m и n таковы, что их сумма равна второму коэффициенту уравнения x 2 + bx + c = 0, взятому с противоположным знáком, а произведение чисел m и n равно свободному члену уравнения x 2 + bx + c = 0, то числа m и n являются корнями уравнения x 2 + bx + c = 0

Для начала запишем, что сумма m и n равна −b , а произведение mn равно c

Уравнения по теореме виета примеры для тренировки

Чтобы доказать, что числа m и n являются корнями уравнения x 2 + bx + c = 0 , нужно поочередно подстáвить буквы m и n в это уравнение вместо x , затем выполнить возможные тождественные преобразования. Если в результате преобразований левая часть станет равна нулю, то это будет означать, что числа m и n являются корнями уравнения x 2 + bx + c = 0 .

Помимо букв m и n нам нужно знать чему равен параметр b . Выразим его из равенства m + n = −b . Легче всего это сделать, умножив обе части этого равенства на −1

Уравнения по теореме виета примеры для тренировки

Теперь всё готово для подстановок. Подстáвим m в уравнение x 2 + bx + c = 0 вместо x , а выражение −m − n подставим вместо b

Уравнения по теореме виета примеры для тренировки

Видим, что при x = m получается верное равенство. Значит число m является корнем уравнения x 2 + bx + c = 0 .

Аналогично докажем, что число n является корнем уравнения x 2 + bx + c = 0 . Подставим вместо x букву n , а вместо c подставим mn , поскольку c = mn .

Уравнения по теореме виета примеры для тренировки

Видим, что при x = n тоже получается верное равенство. Значит число n является корнем уравнения.

Следовательно, числа m и n являются корнями уравнения x 2 + bx + c = 0 .

Видео:Алгебра 8. Урок 10 - Теорема Виета и её применение в задачахСкачать

Алгебра 8. Урок 10 - Теорема Виета и её применение в задачах

Примеры решения уравнений по теореме, обратной теореме Виета

Пример 1. Решить квадратное уравнение x 2 − 4x + 4 = 0 по теореме, обратной теореме Виета.

Запишем сумму корней x1 и x2 и приравняем её к второму коэффициенту, взятому с противоположным знаком. Также запишем произведение корней x1 и x2 и приравняем его к свободному члену :

Уравнения по теореме виета примеры для тренировки

В данном примере очевидно, что корнями являются числа 2 и 2 . Потому что их сумма равна 4 и произведение равно 4

Уравнения по теореме виета примеры для тренировки

Значение x1 совпадает с x2 . Это тот случай, когда квадратное уравнение имеет только один корень. Если мы попробуем решить данное уравнение с помощью формул корней квадратного уравнения, то обнаружим что дискриминант равен нулю, и корень вычисляется по формуле Уравнения по теореме виета примеры для тренировки

Уравнения по теореме виета примеры для тренировки

Данный пример показывает, что теорема обратная теореме Виета, работает и для уравнений, имеющих только один корень. Признаком того, что квадратное уравнение имеет только один корень является то, что значения x1 и x2 совпадают.

Пример 2. Решить уравнение x 2 + 3x + 2 = 0 по теореме, обратной теореме Виета.

Запишем сумму и произведение корней данного уравнения:

Уравнения по теореме виета примеры для тренировки

Теперь подберём значения x1 и x2 . Здесь начинается самое интересное. Произведение корней равно 2 . Число 2 можно получить перемножив 1 и 2 . Но сумма корней x1 + x2 равна отрицательному числу −3 . Значит значения 1 и 2 не подходят.

Сумма бывает отрицательной если оба слагаемых отрицательны либо отрицательным является одно слагаемое, модуль которого больше.

Если подберём корни с разными знаками, то не будет выполняться равенство x1 × x2 = 2 .

Если подберем положительные корни, то будет выполняться равенство x1 × x2 = 2 , но не будет выполняться равенство x1 + x2 = −3 .

Очевидно, что корнями являются два отрицательных числа. Произведение отрицательных чисел есть положительное число. А сумма отрицательных чисел есть отрицательное число.

Тогда равенствам будут удовлетворять числа −1 и −2 .

Уравнения по теореме виета примеры для тренировки

Итак, корнями являются числа −1 и −2

Уравнения по теореме виета примеры для тренировки

Пример 3. Решить уравнение x 2 + 16x + 15 = 0 по теореме, обратной теореме Виета.

Запишем сумму и произведение корней данного уравнения:

Уравнения по теореме виета примеры для тренировки

Как и в прошлом примере сумма корней равна отрицательному числу, а произведение корней — положительному числу.

Произведение бывает положительным если оба сомножителя положительны либо оба сомножителя отрицательны. Первый вариант отпадает сразу, поскольку сумма корней равна отрицательному числу. Тогда получается, что оба корня будут отрицательными. Попробуем подобрать их.

Число 15 можно получить, если перемножить числа −1 и −15 или (−3) и (−5) . В данном случае подходит первый вариант, поскольку сумма чисел −1 и −15 равна −16 , а их произведение равно 15 . Значит корнями уравнения x 2 + 16x + 15 = 0 являются числа −1 и −15

Уравнения по теореме виета примеры для тренировки

Пример 4. Решить уравнение x 2 − 10x − 39 = 0 по теореме, обратной теореме Виета.

Запишем сумму и произведение корней данного уравнения:

Уравнения по теореме виета примеры для тренировки

Произведение корней равно отрицательному числу. Значит один из корней является отрицательным. Число −39 можно получить если перемножить числа −3 и 13 либо −13 и 3 . Из этих комбинаций больше годится комбинация −3 и 13 , поскольку при перемножении этих чисел получается −39 , а при сложении 10

Уравнения по теореме виета примеры для тренировки

Значит корнями уравнения x 2 − 10x − 39 = 0 являются числа −3 и 13

Уравнения по теореме виета примеры для тренировки

Пример 5. Первый корень уравнения x 2 + bx + 45 = 0 равен 15 . Найти второй корень этого уравнения, а также значение коэффициента b .

По теореме Виета произведение корней приведённого квадратного уравнения равно свободному члену. В данном случае это произведение равно 45

При этом один из корней уже известен — это корень 15 .

Тогда второй корень будет равен 3 , потому что число 45 получается, если 15 умножить на 3

Этот второй корень также можно было бы получить, выразив из равенства 15 × x2 = 45 переменную x2

Уравнения по теореме виета примеры для тренировки

Теперь определим значение коэффициента b . Для этого напишем сумму корней уравнения:

По теореме Виета сумма корней приведенного квадратного уравнения равна второму коэффициенту, взятому с противоположным знаком. Если сумма корней равна 18, а 18 это положительное число, то в самóм уравнении этот коэффициент будет отрицательным:

Обычно решение к такой задаче записывают так. Сначала записывают основную теорему Виета в виде суммы и произведения корней:

Уравнения по теореме виета примеры для тренировки

Затем в это выражение подставляют имеющиеся известные значения. В нашем случае известно, что первый корень равен 15 , а свободный член уравнения x 2 + bx + 45 = 0 равен 45

Уравнения по теореме виета примеры для тренировки

Из этой системы следует найти x2 и b . Выразим эти параметры:

Уравнения по теореме виета примеры для тренировки

Из этой системы мы видим, что x2 равно 3. Подставим его в первое равенство:

Уравнения по теореме виета примеры для тренировки

Теперь из первого равенства мы видим, что −b равно 18

Уравнения по теореме виета примеры для тренировки

Но нас интересует b , а не −b . Следует помнить, что −b это −1b . Чтобы найти b нужно 18 разделить на −1 . Тогда b станет равно −18

Уравнения по теореме виета примеры для тренировки

Этот же результат можно получить если в выражении Уравнения по теореме виета примеры для тренировкиумножить первое равенство на −1

Уравнения по теореме виета примеры для тренировки

Теперь возвращаемся к исходному уравнению x 2 + bx + 45 = 0 и подставляем найденное значение b

Уравнения по теореме виета примеры для тренировки

Выполним умножение −18 на x . Получим −18x

Уравнения по теореме виета примеры для тренировки

Уравнения по теореме виета примеры для тренировки

Пример 6. Используя теорему Виета, написать приведённое квадратное уравнение, корнями которых являются числа 2 и 8 .

В этом задании корни уже известны. То есть x1 = 2 , x2 = 8 . По ним надо составить квадратное уравнение вида x 2 + bx + c = 0 .

Запишем сумму и произведение корней:

Уравнения по теореме виета примеры для тренировки

По теореме Виета сумма корней приведённого квадратного уравнения равна второму коэффициенту, взятому с противоположным знаком. Если сумма корней 2 и 8 равна 10 , то в самóм уравнении число 10 должно быть с противоположным знаком. Значит b = −10 .

Произведение корней по теореме Виета равно свободному члену. У нас это произведение равно 16 .

Значит b = −10 , c = 16 . Отсюда:

Пример 7. Используя теорему Виета, написать приведённое квадратное уравнение, корнями которых являются числа Уравнения по теореме виета примеры для тренировкии Уравнения по теореме виета примеры для тренировки.

Запишем сумму и произведение корней:

Уравнения по теореме виета примеры для тренировки

Сумма корней равна 2. Тогда в уравнении второй коэффициент будет равен −2. А произведение корней равно −1. Значит свободный член будет равен −1. Тогда:

Видео:Теорема Виета. Практическая часть. 1ч. 8 класс.Скачать

Теорема Виета. Практическая часть. 1ч. 8 класс.

Когда квадратное уравнение неприведённое

Теорема Виета выполняется только тогда, когда квадратное уравнение является приведённым.

Если квадратное уравнение не является приведённым, но всё равно возникла необходимость применить теорему Виета, то обе части неприведённого квадратного уравнения следует разделить на коэффициент, который располагается перед x 2 .

Если к примеру в квадратном уравнении a x 2 + bx + c = 0 коэффициент a не равен единице, то данное уравнение является неприведённым. Чтобы сделать его приведённым, надо разделить обе его части на коэффициент, который располагается перед x 2 , то есть на a

Уравнения по теореме виета примеры для тренировки

Получилось уравнение Уравнения по теореме виета примеры для тренировки, которое является приведённым. В нём второй коэффициент равен Уравнения по теореме виета примеры для тренировки, а свободный член равен Уравнения по теореме виета примеры для тренировки. Тогда сумма и произведение корней будут выглядеть так:

Уравнения по теореме виета примеры для тренировки

Например, решим квадратное уравнение 4x 2 + 5x + 1 = 0 . Это уравнение не является приведённым. Приведённым оно станет, если разделить обе его части на коэффициент, который располагается перед x 2 , то есть на 4

Уравнения по теореме виета примеры для тренировки

Получили приведённое квадратное уравнение. В нём второй коэффициент равен Уравнения по теореме виета примеры для тренировки, а свободный член Уравнения по теореме виета примеры для тренировки. Тогда по теореме Виета имеем:

Уравнения по теореме виета примеры для тренировки

Отсюда методом подбора находим корни −1 и

Уравнения по теореме виета примеры для тренировки

Возможно этот метод вы редко будете использовать при решении квадратных уравнений. Но знать о нём не помешает.

Пример 2. Решить квадратное уравнение 3x 2 − 7x + 2 = 0

Данное уравнение не является приведённым, а значит его пока нельзя решить по теореме, обратной теореме Виета.

Сделаем данное уравнение приведенным. Разделим обе части на коэффициент, который располагается перед x 2

Уравнения по теореме виета примеры для тренировки

Получили уравнение Уравнения по теореме виета примеры для тренировки. Запишем сумму и произведение корней этого уравнения:

Уравнения по теореме виета примеры для тренировки

Отсюда методом подбора находим корни 2 и Уравнения по теореме виета примеры для тренировки

Уравнения по теореме виета примеры для тренировки

Пример 3. Решить квадратное уравнение 2x 2 − 3x − 2 = 0

Это неприведённое квадратное уравнение. Чтобы сделать его приведённым, нужно разделить обе его части на 2 . Сделать это можно в уме. Если 2x 2 разделить на 2 , то полýчится x 2

Уравнения по теореме виета примеры для тренировки

Далее если −3x разделить на 2 , то полýчится Уравнения по теореме виета примеры для тренировки. Чтобы видеть где коэффициент, а где переменная, такое выражение записывают в виде Уравнения по теореме виета примеры для тренировки

Уравнения по теореме виета примеры для тренировки

Далее если −2 разделить на 2 , то полýчится −1

Уравнения по теореме виета примеры для тренировки

Прирáвниваем получившееся выражение к нулю:

Уравнения по теореме виета примеры для тренировки

Теперь применяем теорему Виета. Сумма корней будет равна второму коэффициенту, взятому с противоположным знáком, а произведение корней свободному члену:

Уравнения по теореме виета примеры для тренировки

Отсюда методом подбора находим корни 2 и Уравнения по теореме виета примеры для тренировки

📽️ Видео

Теорема ВиетаСкачать

Теорема Виета

Обратная теорема Виета - ЛЕГКО!Скачать

Обратная теорема Виета - ЛЕГКО!

Формула корней квадратного уравнения. Алгебра, 8 классСкачать

Формула корней квадратного уравнения. Алгебра, 8 класс

Алгебра 8 класс (Урок№30 - Решение приведённых квадратных уравнений. Теорема Виета.)Скачать

Алгебра 8 класс (Урок№30 - Решение приведённых квадратных уравнений. Теорема Виета.)

Теорема Виета для многочлена 3 порядка. 10 класс.Скачать

Теорема Виета для многочлена 3 порядка. 10 класс.

Теорема Виета. Алгебра, 8 классСкачать

Теорема Виета. Алгебра, 8 класс

Теорема Виета, формула D/4 и другие хитростиСкачать

Теорема Виета, формула D/4 и другие хитрости

Теорема Виета для уравнений высших степеней. Рациональные уравнения Часть 4 из 4Скачать

Теорема Виета для уравнений высших степеней. Рациональные уравнения Часть 4 из 4

Теорема Виета за 10 минут: самое простое решение квадратных уравнений | АЛГЕБРА | SkysmartСкачать

Теорема Виета за 10 минут: самое простое решение квадратных уравнений | АЛГЕБРА | Skysmart
Поделиться или сохранить к себе: