Много полезных советов
- Задачи и упражнения по неметаллам и их важным соединениям с решениями
- от Ауес Беев
- Химические свойства неметаллов
- Химические свойства галогенов
- Химические свойства кислорода
- Химические свойства серы
- Химические свойства азота
- Химические свойства фосфора
- Химические свойства углерода
- Химические свойства кремния
- Урок химии по теме «Неметаллы. Общая характеристика неметаллов». 9-й класс
- Ход работы:
- I. Организационный момент.
- II. Актуализация знаний.
- III. Изучение
- IV. Закрепление изученного. Рефлексия.
- V. Читаем по учебнику состав воздуха стр. 74
- VI. Решаем упражнения 1–4 стр.75
- VII. Оценки и домашнее задание.
- 🎬 Видео
Видео:Химия 9 класс (Урок№21 - Обобщение по теме «Неметаллы».)Скачать
Задачи и упражнения по неметаллам и их важным соединениям с решениями
от Ауес Беев
Сегодня у нас урок химии 101 — Задания по неметаллам и их важным соединениям с решениями. Как изучить? Полезные советы и рекомендации повторите предыдущие уроки химии. К предлагаемым заданиям даны решения. По-возможности, постарайтесь решить задания самостоятельно, без подглядывания на решения. Если не получается, тогда смотрите решения. При обнаружении неточностей, описок, или если появятся неясные моменты, просьба написать в комментариях. Отвечу на все вопросы.
1. Непосредственно друг с другом не взаимодействуют:
1) кислород и хлор;
2) водород и хлор;
3) водород и кислород;
Решение: Непосредственно друг с другом не взаимодействуют кислород и хлор.
2. Неядовитым является каждый из трёх газов:
Решение: Неядовитым является каждый из трёх газов: H2, O2, N2.
3. В схеме превращений
Решение: Вспомним протекающие реакции:
Веществом «Х» является NH3.
4. Установите соответствие между химической формулой соединения и значением степени окисления серы в нем
Химическая формула Степень окисления серы
Решение: Расставив над атомами степени окисления, легко найдем соответствия: 1) 1) Mg +2 (H +1 S +6 O4 -2 ) -2 2; 2) Al2 +3 S3 -2 ; 3) S8 о ; 4) (N -3 H4 +1 )2 + S +4 O3 -2 .
Ответ: 1 – Г; 2 – Д; 3 – А; 4 – В.
5. Установите соответствие между формулами соединений азота и продуктами их термического разложения
Соединения азота Продукты разложения
Решение: Напишем схемы протекающих реакций:
Ответ: 1 – Д; 2 – А; 3 – Б; 4 – В.
6. Напишите уравнение реакций, с помощью которых можно осуществить следующие превращения:
В ответе укажите формулы веществ Х1 и Х2.
Решение: Напишем схемы протекающих реакций:
7. В результате взаимодействия 5 л водорода (н.у.) с 3 л оксида азота (I) (н.у.) останется неизрасходованным водород объемом _________л. (Запишите число с точностью до целых.)
Решение: Напишем схему протекающей реакции:
Из нее видно, что объемы реагирующих газов равны друг другу. Из этого следует, что 3л оксида азота (I) прореагируют с 3л водорода, а 2 л H2 останется неизрасходованным.
8. В результате взаимодействия 1,5 л кислорода (н.у.) с 4 л оксида азота (II) (н.у.) останется неизрасходованным оксид азота (II) объемом ___________ л. (Запишите число с точностью до целых.)
Решение: Напишем схему протекающей реакции:
Из нее видно, что газы реагируют в объемном соотношении 2:1. Из этого следует, что 1,5 л кислорода, взятый в меньшинстве, прореагируют с 3л NO, а 1 л NO останется неизрасходованным.
9. Ортофосфорная кислота может взаимодействовать с
1) HCl; 2) S; 3) Cu; 4) CaCl2.
Решение: Ортофосфорная кислота может взаимодействовать с CaCl2 с образованием нерастворимой соли – фосфата кальция:
10. При обработке фосфида кальция водой выделяется газ фосфин – аналог аммиака. Объем (л) фосфина (н.у.), который можно получить из 18,2 г фосфида кальция равен ___________ л. Запишите число с точностью до десятых.
Решение: Напишем схему протекающей реакции:
Учитывая, что 1 моль Са3Р2 имеет массу 182 г, найдем, что по условию у нас n = 18,2/182 = 0,1 моль Са3Р2. Из уравнения реакции следует, что n(Са3Р2) = 2n(РН3). Тогда, 0,2⃰ 22,4 = 4,48 л.
11. Общий объем кислорода (н.у.), который можно получить в результате термического разложения 1 моль KClO3, 1 моль KMnO4 и 1 моль Cu(NO3)2, равен ____________ л. Запишите целое число.
Решение: Напишем схемы протекающих реакций и найдем объемы выделяющегося кислорода:
VO2 сумм. = 33,6 + 11,2 + 11,2 = 56 л.
12. Составьте уравнение реакции диспропорционирования хлора в горячем растворе гидроксида калия. Сумма коэффициентов в полученном уравнении равна ________ . Запишите число.
Решение: Напишем уравнение протекающей реакции, определим процессы окисления-восстановления и расставим коэффициенты:
Cl2 о + KOH → K +1 Cl -1 + K +1 Cl +5 O3 -2 + H2O
Cl о + 1е → Cl -1 – окислитель, восстановливается
Cl о — 5е → Cl +5 – восстановитель, окисляется
Сумма коэффициентов в полученном уравнении равна 18.
13. Оксид фосфора (V), образовавшийся при сжигании 6,2г фосфора в избытке кислорода, растворили в 140 мл 14%-ного водного раствора гидроксида калия (ρ=1,14 г/мл). Массовая доля (%) образовавшейся соли в растворе с точностью до десятых равна __________ .
Решение: Напишем уравнения протекающих реакций, найдем мольные соотношения реагентов, продукт реакции рассчитаем по веществу, взятому в недостатке:
Исходя из этого уравнения, можем написать:
n(P)/4 = n(P₂O₅)/2 или n(P)/2 = n(P₂O₅)
Далее, оксид фосфора (V) с гидроксидом калия:
P₂O₅ + 6KOH = 2K₃PO₄ + 3H₂O
n(P₂O₅) = n(KOH)/6 = n(K₃PO₄)/2
n(P) = m/M = 6,2 г/31 г/моль = 0,2 моль
n(P₂O₅) = n(P)/2 = 0,2 моль : 2 = 0,1 моль
m(р.KOH) = V(р.KOH)*ρ = 140мл*1,14 г/мл = 159,6 г.
m(KOH) = ω*m(р.KOH) = 0,14*159,6 г. = 22,344 г
n(KOH) = m/M = 22,34/56 г/моль = 0,4 моль. Гидроксид калия взят в недостатке, так как по реакции на один моль оксида фосфора (V) приходится 6 молей гидроксида калия, а на 0,1 моль P₂O₅ должно вступить в реакцию 0,6 моль KOH. Дальнейшие расчеты ведем по КОН:
n(K₃PO₄)/2 = n(KOH)/6 или n(K₃PO₄)= n(KOH)/3 = 0,4 моль: 3 = 0,13 моль
m(K₃PO₄) = n*M = 0,13 моль*212 г/моль = 27,56 г.
ω(K₃PO₄) = m(K₃PO₄)/m(р-ра)*100% = 27, 56 г./(159,6 г + 6,2 г)*100 % = 16,6%.
14. Сульфид железа (II) массой 176 г обработали избытком соляной кислоты. Выделившийся газ сожгли в избытке воздуха. Объем (мл) 40%-ного раствора гидроксида калия (ρ = 1,40 г/мл), необходимого для полной нейтрализации образовавшегося при сжигании газа равен ________. Запишите число с точностью до единиц.
Решение: Напишем уравнения протекающих реакций, найдем мольные соотношения реагентов:
4FeS + 7O₂ = 2Fe₂O3 + 4SO₂
Исходя из этого уравнения, можем написать:
n(FeS)/4 = n(SO2)/4 или n(FeS) = n(SO2)
n(FeS) = m/M = 176 г/88 г/моль = 2 моль
n(FeS) = n(SO2) = 2 моль
Далее, оксид cеры (IV) с гидроксидом калия:
SO2 + 2KOH = K2SO3 + H₂O
n(KOH) = 2n(SO2) = 4 моль
m(KOH) = n(KOH)⃰М(KOH) = 4*56 = 224 г.
m(р.KOH) = m(KOH)*100/40 = 224*100/40 = 560 г.
V (р.KOH)/ρ = 560/1,4 = 400 мл.
15. При взаимодействии гидрида кальция массой 4,2 г с водой выделился водород объемом 4 л (н.у.). Массовая доля (%) примесей в образце гидрида кальция равна __________ %. Запишите число с точностью до десятых.
Решение: Напишем уравнения протекающих реакций, найдем мольные соотношения реагентов:
Исходя из этого уравнения, можем написать:
n(СаН2) = 2n(2Н2); n(Н2) = 4/22,4 = 0,18 моль; n(СаН2) = 0,18/2 = 0,09 моль.
m(СаН2) = M(СаН2)⃰ 0,09 = 42⃰ 0,09 = 3,78 г. Разность масс 4,2 – 3,78 = 0,42 г – это примеси. Массовая доля примесей будет:
ω(пр) = 0,42⃰100/4,2 = 10%.
16. В одном объеме воды было растворено 125 объемов хлористого водорода (н.у.). Массовая доля (%) хлороводорода в растворе равна _________ %. Запишите число с точностью до десятых.
Решение: Возьмем 1 л воды массой 1000 г и 125 л газообраного хлороводорода. Найдем массу 125 л HCl (н.у.): n(HCl) = 125/22,4 = 5,58 моль. m(HCl) = 5,58⃰ M = 5,58⃰ 36,5 = 203,67 г. Масса раствора равна: 1000 + 203,67 = 1203,67 г. Массовая доля (%) хлороводорода в растворе будет:
ω(HCl) = 203,67⃰100/1203,67 = 16,9%.
17. Объем кислорода (н.у.), необходимого для сжигания 20 л (н.у.) смеси оксида углерода (II) и водорода с относительной плотностью по гелию 3,1, равен ______________ л. Запишите целое число.
Решение. DHe смеси = 3,1
Мсмеси = 3,1*M(Hе)= 3,1*4 = 12,4 г/моль
Теперь вспомним формулу:
Мсмеси=М1*φ1+М2*φ2…
Используем ее в нашем случае. Если обозначить долю оксида углерода (II) за х, тогда доля водорода будет (1-х). М(СО) = 28 г/моль; М(Н2) = 2 г/моль. Тогда можно написать уравнение:
12,4 = 28x + 2(1-x)
12,4 = 28x + 2-2x
10,4 = 26x
x = 0,4 = 40% — оксида углерода (II); водорода будет 0,6, или 60%.
Находим, сколько моль смеси газов было смеси:
Nv = V/Vm = 20/22,4 = 0,89 (моль)
и, находим количества молей СО и Н2:
n(CO) = 0,89*0,4 = 0,356 моль;
V = 3,99 + 5,98 = 9,97 л.
18. При добавлении к раствору пероксида водорода массой 0,8 г раствора иодида калия в присутствии серной кислоты образовалось 0,3 г иода. Массовая доля (%) пероксида в исходном растворе равна _______________ %. Запишите целое число.
19. Масса раствора пероксида водорода с массовой долей 3,4%, которая необходима для окисления 15,2 г сульфата железа (II) в присутствии серной кислоты равна ___________ г. Запишите целое число.
Решение.
Запишем уравнение реакции:
2FeSO4 + H2SO4 + H2O2 → Fe2(SO4)3 + 2H2O
n(FeSO4) = m/M = 15,2 г/152 г/моль = 0,1 моль
mр-ра Н2О2 = 1,7⃰ 100/3,4 = 50 г.
- Оксид серы (IV), полученный при сжигании 67,2 л (н.у.) сероводорода, пропущен через 1 л раствора гидроксида натрия с массовой долей 25% (ρ = 1,3 г/мл). При этом образовалось соль состава:
Решение. Уравнение реакции сжигания сероводорода следующее:
mр-ра(NaOH) = 1000 мл⃰ 1,3 г/мл = 1300 г
m(NaOH) = 1300⃰ 25/100 = 325 г
n(NaOH) = m(NaOH)/М(NaOH) = 325/40 = 8,125 моль.
Гидроксид натрия в избытке, поэтому, реакция будет следующая:
- Взаимодействие 13 г цинка с 0,3 моля концентрированной серной кислоты происходит с выделением сероводорода. Число молей концентрированной серной кислоты, идущей на солеобразование и на окислительно-восстановительный процесс соответственно равны:
1) 0,2 и 0,05; 2) 0,1 и 0,1; 3) 0,1 и 0,2; 4) 0,05 и 0,01.
Решение. Уравнение реакции следующее:
S +6 + 8e → S -2 | 1
Zn о — 2e → Zn +2 | 4
n(Zn) = m(Zn)/А(Zn) = 13/65 = 0,2 моль
По уравнению реакции, с 4 молями атомов цинка реагируют 5 молей серной кислоты. При этом видно, что 4 моля серной кислоты идут на солеобразование, а 1 моль – на окисление 4-х молей цинка. Также видно, что с 0,2 молями цинка прореагирует 0,25 молей серной кислоты. Т.е. серная кислота в избытке. Оттуда легко найти число молей концентрированной серной кислоты, идущей на солеобразование и на окислительно-восстановительный процесс. На солеобразование: 0,25⃰ 4/5 = 0,2 моль; на окисление: 0,25⃰ 1/5 = 0,05 моль0,25⃰ 4/5 = 0,05 моль.
- При термическом разложении 6,62 г нитрата тяжелого двухвалентного металла выделилось 1,12 л (н.у.) смеси двух газов. Определите формулу нитрата металла.
Решение.
Представленные нитраты могут разлагаться следующим образом:
n(смеси газов) = V/Vm = 1,12/22,4 = 0,05 моль.
По уравнению реакции имеем 5 объемных долей газов (4NO2 + O2). При этом, на 1 часть газа приходится 0,05/5 = 0,01 моль газа. В реакции получаются 0,04 моля NO2 и 0,01 моль O2. Из уравнения следует, что nMe(NO3)2 = nО2*2 = 0,02моль. Оттуда находим молекулярную массу соли:
23. Газ, полученный в рекции дихромата калия с соляной кислотой полностью прореагировал при нагревании с 1,12 г железа. Объем (в мл) 36,5%-го раствора соляной кислоты (ρ = 1,16 г/мл) участвовашего в реакции равен____________мл.
Запишите число с точностью до целых.
Из молярных соотношений компонентов реакций видно, что
n(Fe) = 1,12/56 = 0,02 моль
m(HCl) = 0,14* М(HCl) = 0,14*36,5 = 5,11 г
mр-ра(HCl) = 5,11* 100/36,5 = 14 г
Vр-ра(HCl) = 14/1,16 = 12,069 мл.
24. Оксид серы (VI) полученный при окислении оксида серы (IV) объемом 2,24 л (н.у.) в избытке кислорода добавлен к раствору гидроксида натрия массой 200 г с массовой долей NaOH 2%. При этом получилась соль состава:
n(SO2) = 2,24/22,4 = 0,1 моль
m(NaOH) = 2*200/100 = 4 г
n(NaOH) = 4/M(NaOH) = 4/40 = 0,1 моль
Оксид серы (VI) и гидроксид натрия реагируют в эквимолекулярных количествах, значит образуетс кислая соль.
Протекают следующие реакции:
25. (н.у.) смеси газов, состоящей из гелия, водорода и оксида углерода (IV) последовательно пропустили через баритовую воду (при этом выпал осадок массой 19,7 г) и над нагретым оксидом цинка (получили 6,5 г металлического цинка). Объем гелия в исходной смеси равен ___________л. Запишите число с точностью до cотых.
n(Zn) = n(H2) = 6,5/A(Zn) = 6,5/65 = 0,1 моль
V(He) = 20 — 2,24 — 2,24 = 15,52
Это был у нас урок химии 101 — Задачи и упражнения по неметаллам и их важным соединениям с решениями.
Видео:9 класс § 10 "Получение неметаллов".Скачать
Химические свойства неметаллов
1. Водород проявляет свойства окислителя и свойства восстановителя. Поэтому водород реагирует с металлами и неметаллами.
1.1. С активными металлами водород реагирует с образованием гидридов:
2Na + H2 → 2NaH
1.2. В специальных условиях водород реагирует с серой с образованием бинарного соединения сероводорода:
1.3. Водород не реагирует с кремнием.
1.4. С азотом водород реагирует при нагревании под давлением в присутствии катализатора с образованием аммиака:
1.5. В специальных условиях водород реагирует с углеродом.
1.6. Водород горит, взаимодействует с кислородом со взрывом:
2. Водород взаимодействует со сложными веществами:
2.1. Восстанавливает металлы из основных и амфотерных оксидов. Восстановить из оксида водородом можно металлы, расположенные в электрохимическом ряду напряжений после алюминия. При этом образуются металл и вода.
Например, водород взаимодействует с оксидом цинка с образованием цинка и воды:
ZnO + H2 → Zn + H2O
Также водород восстанавливает медь из оксида меди:
СuO + H2 → Cu + H2O
Водород восстанавливает оксиды некоторых неметаллов.
Например , водород взаимодействует с оксидом кремния:
2.2. С органическими веществами водород вступает в реакции присоединения (реакции гидрирования).
Видео:Химические уравнения // Как Составлять Уравнения Реакций // Химия 9 классСкачать
Химические свойства галогенов
Химическая активность галогенов увеличивается снизу вверх – от астата к фтору.
1. Галогены проявляют свойства окислителей . Галогены реагируют с металлами и неметаллами .
1.1. Галогены не горят на воздухе. Фтор окисляет кислород с образованием фторида кислорода:
1.2. При взаимодействии галогенов с серой образуются галогениды серы:
1.3. При взаимодействии фосфора и углерода с галогенами образуются галогениды фосфора и углерода:
1.4. При взаимодействии с металлами галогены проявляют свойства окислителей, образуя галогениды.
Например , железо реагирует с галогенами с образованием галогенидов. При этом фтор, хлор и бром образуются галогениды железа (III), а c йодом — соединение железа (II):
3Cl2 + 2Fe → 2FeCl3
Аналогичная ситуация с медью : фтор, хлор и бром окисляют медь до галогенидов меди (II),а йод до йодида меди (I):
I2 + 2Cu → 2CuI
Активные металлы бурно реагируют с галогенами, особенно с фтором и хлором (горят в атмосфере фтора или хлора).
Еще пример : алюминий взаимодействует с хлором с образованием хлорида алюминия:
3Cl2 + 2Al → 2AlCl3
1.5. Водород горит в атмосфере фтора:
С хлором водород реагирует только при нагревании или освещении. При этом реакция протекает со взрывом:
Бром также реагирует с водородом с образованием бромоводорода:
Взаимодействие йода с водородом происходит только при сильном нагревании, реакция протекает обратимо, с поглощением теплоты (эндотермическая):
1.6. Галогены реагируют с галогенами. Более активные галогены окисляют менее активные.
Например , фтор окисляет хлор, бром и йод:
2. Со сложными веществами галогены реагируют, также проявляя преимущественно окислительные свойства. Галогены охотно диспропорционируют при растворении в воде или в щелочах.
2.1. При растворении в воде хлор и бром частично диспропорционируют, повышая и понижая степень окисления. Фтор окисляет воду.
Например , хлор при растворении в холодной воде диспропорционирует до ближайших стабильных степеней окисления (+1 и -1), образует при этом соляную кислоту и хлорноватистую кислоту (хлорная вода):
Cl2 + H2O ↔ HCl + HClO
При растворении в горячей воде хлор диспропорционирует до степеней окисления -1 и +5, образуя соляную кислоту и хлорную кислоту:
Фтор реагирует с водой со взрывом:
2.2. При растворении в щелочах хлор, бром и йод диспропорционируют с образованием различных солей. Фтор окисляет щелочи.
Например , хлор реагирует с холодным раствором гидроксидом натрия:
При взаимодействии с горячим раствором гидроксида натрия образуются хлорид и хлорат:
Еще пример : хлор растворяется в холодном растворе гидроксида кальция:
2.3. Более активные галогены вытесняют менее активные галогены из солей и галогеноводородов.
Например , хлор вытесняет йод и бром из раствора йодида калия и бромида калия соответственно:
Cl2 + 2NaI → 2NaCl + I2
Cl2 + 2NaBr → 2NaCl + Br2
Еще одно свойство: более активные галогены окисляют менее активные.
Например , фтор окисляет хлор с образованием фторида хлора (I):
Cl2 + F2 → 2Cl + F –
В свою очередь, хлор окисляет йод. При этом в растворе образуется соляная кислота и йодная кислота:
2.4. Галогены проявляют окислительные свойства, взаимодействуют с восстановителями.
Например , хлор окисляет сероводород:
Cl2 + H2S → S + 2HCl
Хлор также окисляет сульфиты:
Также галогены окисляют пероксиды:
Или, при нагревании или на свету, воду:
2Cl2 + 2H2O → 4HCl + O2 (на свету или кип.)
Видео:Химические свойства металлов. 9 класс.Скачать
Химические свойства кислорода
ри нормальных условиях чистый кислород — очень активное вещество, сильный окислитель. В составе воздуха окислительные свойства кислорода не столь явно выражены.
1. Кислород проявляет свойства окислителя (с большинством химических элементов) и свойства восстановителя (только с более электроотрицательным фтором). В качестве окислителя кислород реагирует и с металлами , и с неметаллами . Большинство реакций сгорания простых веществ в кислороде протекает очень бурно, иногда со взрывом.
1.1. Кислород реагирует с фтором с образованием фторидов кислорода:
С хлором и бромом кислород практически не реагирует, взаимодействует только в специфических очень жестких условиях.
1.2. Кислород реагирует с серой и кремнием с образованием оксидов:
1.3. Фосфор горит в кислороде с образованием оксидов:
При недостатке кислорода возможно образование оксида фосфора (III):
Но чаще фосфор сгорает до оксида фосфора (V):
1.4. С азотом кислород реагирует при действии электрического разряда, либо при очень высокой температуре (2000 о С), образуя оксид азота (II):
N2 + O2→ 2NO
1.5. В реакциях с щелочноземельными металлами, литием и алюминием кислород также проявляет свойства окислителя. При этом образуются оксиды:
2Ca + O2 → 2CaO
Однако при горении натрия в кислороде преимущественно образуется пероксид натрия:
2Na + O2→ Na2O2
А вот калий, рубидий и цезий при сгорании образуют смесь продуктов, преимущественно надпероксид:
K + O2→ KO2
Переходные металлы окисляются кислород обычно до устойчивых степеней окисления.
Цинк окисляется до оксида цинка (II):
2Zn + O2→ 2ZnO
Железо , в зависимости от количества кислорода, образуется либо оксид железа (II), либо оксид железа (III), либо железную окалину:
2Fe + O2→ 2FeO
4Fe + 3O2→ 2Fe2O3
3Fe + 2O2→ Fe3O4
1.6. При нагревании с избытком кислорода графит горит , образуя оксид углерода (IV):
при недостатке кислорода образуется угарный газ СО:
2C + O2 → 2CO
Алмаз горит при высоких температурах:
Горение алмаза в жидком кислороде:
Графит также горит:
Графит также горит, например, в жидком кислороде:
Графитовые стержни под напряжением:
2. Кислород взаимодействует со сложными веществами:
2.1. Кислород окисляет бинарные соединения металлов и неметаллов: сульфиды, фосфиды, карбиды, гидриды . При этом образуются оксиды:
4FeS + 7O2→ 2Fe2O3 + 4SO2
Ca3P2 + 4O2→ 3CaO + P2O5
2.2. Кислород окисляет бинарные соединения неметаллов:
- летучие водородные соединения ( сероводород, аммиак, метан, силан гидриды . При этом также образуются оксиды:
2H2S + 3O2→ 2H2O + 2SO2
Аммиак горит с образованием простого вещества, азота:
4NH3 + 3O2→ 2N2 + 6H2O
Аммиак окисляется на катализаторе (например, губчатое железо) до оксида азота (II):
4NH3 + 5O2→ 4NO + 6H2O
- прочие бинарные соединения неметаллов — как правило, соединения серы, углерода, фосфора ( сероуглерод, сульфид фосфора и др.):
CS2 + 3O2→ CO2 + 2SO2
- некоторые оксиды элементов в промежуточных степенях окисления ( оксид углерода (II), оксид железа (II) и др.):
2CO + O2→ 2CO2
2.3. Кислород окисляет гидроксиды и соли металлов в промежуточных степенях окисления в водных растворах.
Например , кислород окисляет гидроксид железа (II):
Кислород окисляет азотистую кислоту :
2.4. Кислород окисляет большинство органических веществ. При этом возможно жесткое окисление (горение) до углекислого газа, угарного газа или углерода:
CH4 + 2O2→ CO2 + 2H2O
2CH4 + 3O2→ 2CO + 4H2O
CH4 + O2→ C + 2H2O
Также возможно каталитическое окисление многих органических веществ (алкенов, спиртов, альдегидов и др.)
Видео:Химия 9 класс — Как определять Степень Окисления?Скачать
Химические свойства серы
В нормальных условиях химическая активность серы невелика: при нагревании сера активна, и может быть как окислителем, так и восстановителем.
1. Сера проявляет свойства окислителя (при взаимодействии с элементами, которые расположены ниже и левее в Периодической системе) и свойства восстановителя (с элементами, расположенными выше и правее). Поэтому сера реагирует с металлами и неметаллами .
1.1. При горении серы на воздухе образуется оксид серы (IV) :
1.2. При взаимодействии серы с галогенами (со всеми, кроме йода) образуются галогениды серы:
1.3. При взаимодействии фосфора и углерода с серой образуются сульфиды фосфора и сероуглерод:
2S + C → CS2
1.4. При взаимодействии с металлами сера проявляет свойства окислителя, продукты реакции называют сульфидами. С щелочными металлами сера реагирует без нагревания, а с остальными металлами (кроме золота и платины) – только при нагревании.
Например , железо и ртуть реагируют с серой с образованием сульфидов железа (II) и ртути:
S + Fe → FeS
S + Hg → HgS
Еще пример : алюминий взаимодействует с серой с образованием сульфида алюминия:
1.5. С водородом сера взаимодействует при нагревании с образованием сероводорода:
2. Со сложными веществами сера реагирует, также проявляя окислительные и восстановительные свойства. Сера диспропорционирует при взаимодействии с некоторыми веществами.
2.1. При взаимодействии с окислителями сера окисляется до оксида серы (IV) или до серной кислоты (если реакция протекает в растворе).
Например , азотная кислота окисляет серу до серной кислоты:
Серная кислота также окисляет серу. Но, поскольку S +6 не может окислить серу же до степени окисления +6, образуется оксид серы (IV):
Соединения хлора, например , бертолетова соль , также окисляют серу до +4:
S + 2KClO3 → 3SO2 + 2KCl
Взаимодействие серы с сульфитами (при кипячении) приводит к образованию тиосульфатов:
2.2. При растворении в щелочах сера диспропорционирует до сульфита и сульфида.
Например , сера реагирует с гидроксидом натрия:
При взаимодействии с перегретым паром сера диспропорционирует:
Видео:Характеристика неметаллов. Видеоурок 8. Химия 9 классСкачать
Химические свойства азота
При нормальных условиях азот химически малоактивен.
1. Азот проявляет свойства окислителя (с элементами, которые расположены ниже и левее в Периодической системе) и свойства восстановителя (с элементами, расположенными выше и правее). Поэтому азот реагирует с металлами и неметаллами .
1.1. Молекулярный азот при обычных условиях с кислородом не реагирует. Реагирует с кислородом только при высокой температуре (2000 о С), на электрической дуге (в природе – во время грозы) :
Процесс эндотермический, т.е. протекает с поглощением теплоты.
1.2. При сильном нагревании (2000 о С или действие электрического разряда) азот реагирует с серой , фосфором, мышьяком, углеродом с образованием бинарных соединений:
2С + N2 → N≡C–C≡N
1.3. Азот взаимодействует с водородом при высоком давлении и высокой температуре ,в присутствии катализатора. При этом образуется аммиак:
Этот процесс экзотермический, т.е. протекает с выделением теплоты.
1.4. Азот реагирует с активными металлами: с литием при комнатной температуре, кальцием, натрием и магнием при нагревании. При этом образуются бинарные соединения-нитриды.
Например , литий реагирует с азотом с образованием нитрида лития:
2. Со сложными веществами азот практически не реагирует из-за крайне низкой реакционной способности.
Взаимодействие возможно только в жестких условиях с активными веществами, например, сильными восстановителями.
Например , азот окисляет гидрид лития:
Видео:ЭТОТ метод поможет на уроках ХИМИИ / Химия 9 классСкачать
Химические свойства фосфора
При нормальных условиях фосфор довольно химически активен.
1. Фосфор проявляет свойства окислителя (с элементами, которые расположены ниже и левее в Периодической системе) и свойства восстановителя (с элементами, расположенными выше и правее). Поэтому фосфор реагирует с металлами и неметаллами .
1.1. При взаимодействии с кислородом воздуха образу
ются оксиды – ангидриды соответствующих кислот :
Горение белого фосфора:
Горение красного фосфора:
1.2. При взаимодействии фосфора с галогенами образуются галогениды с общей формулой PHal3 и PHal5:
Фосфор реагирует с бромом:
1.3. При взаимодействии фосфора с серой образуются сульфиды:
1.4. При взаимодействии с металлами фосфор проявляет свойства окислителя, продукты реакции называют фосфидами.
Например , кальций и магний реагируют с фосфором с образованием фосфидов кальция и магния:
Еще пример : натрий взаимодействует с фосфором с образованием фосфида натрия:
P + 3Na → Na3P
1.5. С водородом фосфор непосредственно не взаимодействует.
2. Со сложными веществами фосфор реагирует, проявляя окислительные и восстановительные свойства. Фосфор диспропорционирует при взаимодействии с некоторыми веществами.
2.1. При взаимодействии с окислителями фосфор окисляется до оксида фосфора (V) или до фосфорной кислоты.
Например , азотная кислота окисляет фосфор до фосфорной кислоты:
Серная кислота также окисляет фосфор:
Соединения хлора, например , бертолетова соль , также окисляют фосфор:
Реакция красного фосфора с бертолетовой солью. Этот процесс заложен в принципе возгорания спички при трении её о шершавую поверхность коробка.
Некоторые металлы-сильные окислители также окисляют фосфор. Например , оксид серебра (I) :
2.2. При растворении в щелочах фосфор диспропорционирует до гипофосфита и фосфина.
Например , фосфор реагирует с гидроксидом калия:
Или с гидроксидом кальция:
Видео:9 класс § 21 "Общая характеристика неметаллов".Скачать
Химические свойства углерода
При нормальных условиях углерод существует, как правило, в виде атомных кристаллов (алмаз, графит), поэтому химическая активность углерода — невысокая.
1. Углерод проявляет свойства окислителя (с элементами, которые расположены ниже и левее в Периодической системе) и свойства восстановителя (с элементами, расположенными выше и правее). Поэтому углерод реагирует и с металлами , и с неметаллами .
1.1. Из галогенов углерод при комнатной температуре реагирует с фтором с образованием фторида углерода:
1.2. При сильном нагревании углерод реагирует с серой и кремнием с образованием бинарного соединения сероуглерода и карбида кремния соответственно:
C + 2S → CS2
C + Si → SiC
1.3. Углерод не взаимодействует с фосфором .
При взаимодействии углерода с водородом образуется метан. Реакция идет в присутствии катализатора (никель) и при нагревании:
1.4. С азотом углерод реагирует при действии электрического разряда, образуя дициан:
2С + N2 → N≡C–C≡N
1.5. В реакциях с активными металлами углерод проявляет свойства окислителя. При этом образуются карбиды:
2C + Ca → CaC2
1.6. При нагревании с избытком воздуха графит горит , образуя оксид углерода (IV):
при недостатке кислорода образуется угарный газ СО:
2C + O2 → 2CO
Алмаз горит при высоких температурах:
Горение алмаза в жидком кислороде:
Графит также горит:
Графит также горит, например, в жидком кислороде:
Графитовые стержни под напряжением:
2. Углерод взаимодействует со сложными веществами:
2.1. Раскаленный уголь взаимодействует с водяным паром с образованием угарного газа и водорода:
C 0 + H2 + O → C +2 O + H2 0
2.2. Углерод восстанавливает многие металлы из основных и амфотерных оксидов . При этом образуются металл и угарный газ. Получение металлов из оксидов с помощью углерода и его соединений называют пирометаллургией.
Например , углерод взаимодействует с оксидом цинка с образованием металлического цинка и угарного газа:
ZnO + C → Zn + CO
Также углерод восстанавливает железо из железной окалины:
4С + Fe3O4 → 3Fe + 4CO
При взаимодействии с оксидами активных металлов углерод образует карбиды.
Например , углерод взаимодействует с оксидом кальция с образованием карбида кальция и угарного газа. Таким образом, углерод диспропорционирует в данной реакции:
3С + СаО → СаС2 + СО
2.3. Концентрированная серная кислота окисляет углерод при нагревании. При этом образуются оксид серы (IV), оксид углерода (IV) и вода:
2.4. Концентрированная азотная кислотой окисляет углерод также при нагревании. При этом образуются оксид азота (IV), оксид углерода (IV) и вода:
2.5. Углерод проявляет свойства восстановителя и при сплавлении с некоторыми солями , в которых содержатся неметаллы с высокой степенью окисления.
Например , углерод восстанавливает сульфат натрия до сульфида натрия:
Видео:Как Решать Задачи по Химии // Задачи с Уравнением Химической Реакции // Подготовка к ЕГЭ по ХимииСкачать
Химические свойства кремния
При нормальных условиях кремний существует в виде атомного кристалла, поэтому химическая активность кремния крайне невысокая.
1. Кремний проявляет свойства окислителя (при взаимодействии с элементами, которые расположены ниже и левее в Периодической системе) и свойства восстановителя (при взаимодействии с элементами, расположенными выше и правее). Поэтому кремний реагирует и с металлами , и с неметаллами .
1.1. При обычных условиях кремний реагирует с фтором с образованием фторида кремния (IV):
При нагревании кремний реагирует с хлором, бромом, йодом :
1.2. При сильном нагревании (около 2000 о С) кремний реагирует с углеродом с образованием бинарного соединения карбида кремния (карборунда):
C + Si → SiC
При температуре выше 600°С взаимодействует с серой:
Si + 2S → SiS2
1.3. Кремний не взаимодействует с водородом .
1.4. С азотом кремний реагирует в очень жестких условиях:
1.5. В реакциях с активными металлами кремний проявляет свойства окислителя. При этом образуются силициды:
2Ca + Si → Ca2Si
Si + 2Mg → Mg2Si
1.6. При нагревании выше 400°С кремний взаимодействует с кислородом :
2. Кремний взаимодействует со сложными веществами:
2.1. В водных растворах щелочей кремний растворяется с образованием солей кремниевой кислоты. При этом щелочь окисляет кремний.
2.2. Кремний не взаимодействует с водными растворами кислот, но аморфный кремний растворяется в плавиковой кислоте с образованием гексафторкремниевой кислоты:
При обработке кремния безводным фтороводородом комплекс не образуется:
С хлороводородом кремний реагирует при 300 °С, с бромоводородом – при 500 °С.
2.3. Кремний растворяется в смеси концентрированных азотной и плавиковой кислот :
3Si + 4HNO3 + 12HF → 3SiF4 + 4NO + 8H2O
Видео:Вся химия 9 класса одном урокеСкачать
Урок химии по теме «Неметаллы. Общая характеристика неметаллов». 9-й класс
Разделы: Химия
Класс: 9
Тема: Неметаллы. Общая характеристика неметаллов.
Цели:
- изучить положение неметаллов в ПС;
- изучить особенности строения атомов неметаллов;
- изучить явление аллотропии на примере неметаллов;
- изучить физические свойства неметаллов;
- рассмотреть ЭО как меру «неметалличности»;
- рассмотреть относительность понятий «металл-неметалл»;
- изучить водородные соединения неметаллов.
- развивать когнитивную сферу учащихся;
- развивать общеучебные умения и навыки: умение, работать по плану, умение работать с книгой;
- развивать умение делать самостоятельные выводы.
- воспитывать культуру умственного труда;
- воспитывать дисциплинированность и чувство ответственности.
Оборудование и реактивы: образцы неметаллов — простых веществ H2, O2, Cl2 (в пробирках с пробками); Br2 (в ампуле); S, J2, P (красный), активированный уголь, пьезо-зажигалка, йодкрахмальная бумажка.
Тип урока: урок усвоения новых знаний.
Методы обучения: словесные (рассказ, объяснение, беседа); иллюстративные (схемы); наглядные (мультимедийное наглядное пособие); проблемно-поисковый.
ФОПД: фронтальная, индивидуально-обособленная, групповая (динамические группы).
Технологии: элементы технологии «Сотрудничества», личностно-ориентированного обучения. Информационно-коммуникационные технологии.
Видео:ОВР и Метод Электронного Баланса — Быстрая Подготовка к ЕГЭ по ХимииСкачать
Ход работы:
I. Организационный момент.
II. Актуализация знаний.
Ответьте на вопросы:
- на какие 2 большие группы условно делятся все Х.Э.?
- каково положение в ПС металлов?
III. Изучение
1. Положение неметаллов в ПС
Неметаллы расположены в основном в правом верхнем углу ПС, условно ограниченном диагональю бор-астат. Самым активным является фтор.
2. Особенности строения атомов неметаллов.
Во внешнем электронном слое атомов неметаллов находится от трёх до восьми электронов.
Для атомов неметаллов, по сравнению с атомами металлов характерны:
- меньший атомный радиус;
- четыре и более электрона на внешнем энергетическом уровне.
Отсюда и такое важнейшее свойство атомов неметаллов – тенденция к приёму недостающих до 8 электронов, т.е. окислительные свойства. Качественной характеристикой атомов неметаллов, т.е. своеобразной мерой их неметалличности, может служить электроотрицательность, т.е. свойство атомов химических элементов поляризовать химическую связь, оттягивать к себе общие электронные пары. Электроотрицательность – мера неметалличности, т.е. чем более электроотрицателен данный химический элемент, тем ярче выражены неметаллические свойства.
3. Кристаллическое строение неметаллов-простых веществ. Аллотропия.
Если металлы – простые вещества образованы за счет металлической связи, то для неметаллов – простых веществ характерна ковалентная неполярная химическая связь. В отличие от металлов неметаллы – простые вещества, характеризуются большим многообразием свойств. Неметаллы имеют различное агрегатное состояние при обычных условиях:
Гораздо богаче у неметаллов и спектр цветов: красный – у фосфора, красно-бурый – у брома, желтый – у серы, желто-зеленый – у хлора, фиолетовый – у паров йода. Элементы – неметаллы более способны, по сравнению с металлами, к аллотропии.
Способность атомов одного химического элемента образовывать несколько простых веществ называется аллотропией, а эти простые вещества – аллотропными видоизменениями или модификациями.
4. Сообщения.
5. Физические свойства неметаллов.
- Ковкость отсутствует
- Блеска нет
- Теплопроводность (только графит)
- Цвет разнообразный: желтый, желтовато-зеленый, красно-бурый.
- Электропроводность (только графит и черный Фосфор.)
- Агрегатное состояние:
- газообразное(H2, O2, Cl2 ,F2, O3)
- твердое (Р, С)
- жидкое (Br2)
6. Химические свойства неметаллов.
Неметаллы в химических реакциях могут быть восстановителями и окислителями (фтор, кислород.)
7. Водородные соединения неметаллов.
В отличие от металлов неметаллы образуют газообразные водородные соединения. Их состав зависит от степени окисления неметаллов.
-4 | -3 | -2 | -1 |
RH4 → | RH3 → | H2R → | HR |
Летучие водородные соединения неметаллов можно разделить на три группы:
1) Хорошо растворимые в воде (HCl, HBr, HJ, H2S, H2Se, NH3), которые диссоциируют на ионы, проявляя кислотные и основные свойства.
2) Соединения, разлагаемые водой:
3) Летучие водородные соединения
По периоду в ПС химических элементов с увеличением порядкового номера элемента – неметалла усиливается кислотный характер водородного соединения.
Выводы:
- Элементы-неметаллы расположены в главных подгруппах III–VIII групп ПС Д.И. Менделеева, занимая её верхний правый угол.
- На внешнем электронном слое атомов элементов-неметаллов находятся от 3 до 8 электронов.
- Неметаллические свойства элементов усиливаются в периодах и ослабевают в подгруппах с увеличением порядкового номера элемента.
- Высшие кислородные соединения неметаллов имеют кислотный характер (кислотные оксиды и гидроксиды).
- Атомы элементов-неметаллов способны как принимать электроны, проявляя окислительные функции, так и отдавать их, проявляя восстановительные функции.
IV. Закрепление изученного. Рефлексия.
1) Вставьте слова, пропущенные в тексте.
Атомы ____ в отличие от атомов ____ легко принимают наружные электроны, являются ____
2) Вставьте слова , пропущенные в тексте.
Неметаллические свойства элементов с увеличением порядкового номера в периодах ____
В группах неметаллические свойства элементов ____
3) Пользуясь периодической таблицей, запишите молекулярные формулы высших кислородных соединений неметаллов III периода. Как будет изменяться кислотный характер?
4) Запишите формулы водородных соединений элементов VII А группы. Как изменяются кислотные свойства с увеличением порядкового номера элемента?
5) Водород занимает в периодической таблице два места: в I А группе и в VII А группе. Запишите молекулярные формулы водородных соединений Na, K, Cl, F.
6) Какую высшую степень окисления имеют следующие элементы?
Азот | +6 |
Хлор | +5 |
Сера | +4 |
Кремний | +7 |
7) Определите, окислителем или восстановителем является сера в следующих реакциях:
8) Наиболее ярко выраженные неметаллические свойства проявляет вещество, образованное из атомов, в которых число электронов во внешнем электронном слое равно____.
9) Наиболее электроотрицательными являются атомы…..
• серы • фосфора • кремния • хлора
10) Типичному неметаллу соответствует следующая схема распределения электронов по электронным слоям:
Поменяйтесь тестом с соседом и проверьте тест вместе со мной.
V. Читаем по учебнику состав воздуха стр. 74
VI. Решаем упражнения 1–4 стр.75
VII. Оценки и домашнее задание.
Д/З § 15 Неметаллы.
Условные обозначения:
ПС – периодическая система
е – электрон
Э.О. – электроотрицательность
А. – аллотропия
Х.р. – химическая реакция
🎬 Видео
Самый простой способ понять ХИМИЮ — Типы Кристаллических Решеток и Свойства ВеществаСкачать
Химия. 8 класс. Металлы и неметаллы /05.02.2021/Скачать
Химические уравнения. СЕКРЕТНЫЙ СПОСОБ: Как составлять химические уравнения? Химия 8 классСкачать
Получение металлов. 9 класс.Скачать
Химия, 9 класс, тема "Окислительно-восстановительные реакции" (учитель Швецова Елена Евгеньевна)Скачать
Окислительно-восстановительные реакции. 1 часть. 9 класс.Скачать
Химия, 9-й класс, Общая характеристика неметалловСкачать
Неметаллы | Химия 11 класс #21 | ИнфоурокСкачать
Общая характеристика металлов. 9 класс.Скачать