Уравнения по химии 9 класс неметаллы

Видео:9 класс § 10 "Получение неметаллов".Скачать

9 класс § 10 "Получение неметаллов".

Советы тут

Много полезных советов

Видео:Химические уравнения // Как Составлять Уравнения Реакций // Химия 9 классСкачать

Химические уравнения // Как Составлять Уравнения Реакций // Химия 9 класс

Задачи и упражнения по неметаллам и их важным соединениям с решениями

от Ауес Беев

Уравнения по химии 9 класс неметаллыСегодня у нас урок химии 101 Задания по неметаллам и их важным соединениям с решениями. Как изучить? Полезные советы и рекомендации повторите предыдущие уроки химии. К предлагаемым заданиям даны решения. По-возможности, постарайтесь решить задания самостоятельно, без подглядывания на решения. Если не получается, тогда смотрите решения. При обнаружении неточностей, описок, или если появятся неясные моменты, просьба написать в комментариях. Отвечу на все вопросы.

1. Непосредственно друг с другом не взаимодействуют:

1) кислород и хлор;

2) водород и хлор;

3) водород и кислород;

Решение: Непосредственно друг с другом не взаимодействуют кислород и хлор.

2. Неядовитым является каждый из трёх газов:

Решение: Неядовитым является каждый из трёх газов: H2, O2, N2.

3. В схеме превращений

Решение: Вспомним протекающие реакции:

Веществом «Х» является NH3.

4. Установите соответствие между химической формулой соединения и значением степени окисления серы в нем

Химическая формула Степень окисления серы

Решение: Расставив над атомами степени окисления, легко найдем соответствия: 1) 1) Mg +2 (H +1 S +6 O4 -2 ) -2 2; 2) Al2 +3 S3 -2 ; 3) S8 о ; 4) (N -3 H4 +1 )2 + S +4 O3 -2 .

Ответ: 1 – Г; 2 – Д; 3 – А; 4 – В.

5. Установите соответствие между формулами соединений азота и продуктами их термического разложения

Соединения азота Продукты разложения

Решение: Напишем схемы протекающих реакций:

Ответ: 1 – Д; 2 – А; 3 – Б; 4 – В.

6. Напишите уравнение реакций, с помощью которых можно осуществить следующие превращения:

В ответе укажите формулы веществ Х1 и Х2.

Решение: Напишем схемы протекающих реакций:

7. В результате взаимодействия 5 л водорода (н.у.) с 3 л оксида азота (I) (н.у.) останется неизрасходованным водород объемом _________л. (Запишите число с точностью до целых.)

Решение: Напишем схему протекающей реакции:

Из нее видно, что объемы реагирующих газов равны друг другу. Из этого следует, что 3л оксида азота (I) прореагируют с 3л водорода, а 2 л H2 останется неизрасходованным.

8. В результате взаимодействия 1,5 л кислорода (н.у.) с 4 л оксида азота (II) (н.у.) останется неизрасходованным оксид азота (II) объемом ___________ л. (Запишите число с точностью до целых.)

Решение: Напишем схему протекающей реакции:

Из нее видно, что газы реагируют в объемном соотношении 2:1. Из этого следует, что 1,5 л кислорода, взятый в меньшинстве, прореагируют с 3л NO, а 1 л NO останется неизрасходованным.

9. Ортофосфорная кислота может взаимодействовать с

1) HCl; 2) S; 3) Cu; 4) CaCl2.

Решение: Ортофосфорная кислота может взаимодействовать с CaCl2 с образованием нерастворимой соли – фосфата кальция:

10. При обработке фосфида кальция водой выделяется газ фосфин – аналог аммиака. Объем (л) фосфина (н.у.), который можно получить из 18,2 г фосфида кальция равен ___________ л. Запишите число с точностью до десятых.

Решение: Напишем схему протекающей реакции:

Учитывая, что 1 моль Са3Р2 имеет массу 182 г, найдем, что по условию у нас n = 18,2/182 = 0,1 моль Са3Р2. Из уравнения реакции следует, что n(Са3Р2) = 2n(РН3). Тогда, 0,2⃰ 22,4 = 4,48 л.

11. Общий объем кислорода (н.у.), который можно получить в результате термического разложения 1 моль KClO3, 1 моль KMnO4 и 1 моль Cu(NO3)2, равен ____________ л. Запишите целое число.

Решение: Напишем схемы протекающих реакций и найдем объемы выделяющегося кислорода:

VO2 сумм. = 33,6 + 11,2 + 11,2 = 56 л.

12. Составьте уравнение реакции диспропорционирования хлора в горячем растворе гидроксида калия. Сумма коэффициентов в полученном уравнении равна ________ . Запишите число.

Решение: Напишем уравнение протекающей реакции, определим процессы окисления-восстановления и расставим коэффициенты:

Cl2 о + KOH → K +1 Cl -1 + K +1 Cl +5 O3 -2 + H2O

Cl о + 1е → Cl -1 – окислитель, восстановливается

Cl о — 5е → Cl +5 – восстановитель, окисляется

Сумма коэффициентов в полученном уравнении равна 18.

13. Оксид фосфора (V), образовавшийся при сжигании 6,2г фосфора в избытке кислорода, растворили в 140 мл 14%-ного водного раствора гидроксида калия (ρ=1,14 г/мл). Массовая доля (%) образовавшейся соли в растворе с точностью до десятых равна __________ .

Решение: Напишем уравнения протекающих реакций, найдем мольные соотношения реагентов, продукт реакции рассчитаем по веществу, взятому в недостатке:

Исходя из этого уравнения, можем написать:
n(P)/4 = n(P₂O₅)/2 или n(P)/2 = n(P₂O₅)

Далее, оксид фосфора (V) с гидроксидом калия:
P₂O₅ + 6KOH = 2K₃PO₄ + 3H₂O
n(P₂O₅) = n(KOH)/6 = n(K₃PO₄)/2
n(P) = m/M = 6,2 г/31 г/моль = 0,2 моль
n(P₂O₅) = n(P)/2 = 0,2 моль : 2 = 0,1 моль
m(р.KOH) = V(р.KOH)*ρ = 140мл*1,14 г/мл = 159,6 г.
m(KOH) = ω*m(р.KOH) = 0,14*159,6 г. = 22,344 г
n(KOH) = m/M = 22,34/56 г/моль = 0,4 моль. Гидроксид калия взят в недостатке, так как по реакции на один моль оксида фосфора (V) приходится 6 молей гидроксида калия, а на 0,1 моль P₂O₅ должно вступить в реакцию 0,6 моль KOH. Дальнейшие расчеты ведем по КОН:
n(K₃PO₄)/2 = n(KOH)/6 или n(K₃PO₄)= n(KOH)/3 = 0,4 моль: 3 = 0,13 моль
m(K₃PO₄) = n*M = 0,13 моль*212 г/моль = 27,56 г.
ω(K₃PO₄) = m(K₃PO₄)/m(р-ра)*100% = 27, 56 г./(159,6 г + 6,2 г)*100 % = 16,6%.

14. Сульфид железа (II) массой 176 г обработали избытком соляной кислоты. Выделившийся газ сожгли в избытке воздуха. Объем (мл) 40%-ного раствора гидроксида калия (ρ = 1,40 г/мл), необходимого для полной нейтрализации образовавшегося при сжигании газа равен ________. Запишите число с точностью до единиц.

Решение: Напишем уравнения протекающих реакций, найдем мольные соотношения реагентов:

4FeS + 7O₂ = 2Fe₂O3 + 4SO₂

Исходя из этого уравнения, можем написать:
n(FeS)/4 = n(SO2)/4 или n(FeS) = n(SO2)

n(FeS) = m/M = 176 г/88 г/моль = 2 моль
n(FeS) = n(SO2) = 2 моль

Далее, оксид cеры (IV) с гидроксидом калия:
SO2 + 2KOH = K2SO3 + H₂O

n(KOH) = 2n(SO2) = 4 моль

m(KOH) = n(KOH)⃰М(KOH) = 4*56 = 224 г.

m(р.KOH) = m(KOH)*100/40 = 224*100/40 = 560 г.
V (р.KOH)/ρ = 560/1,4 = 400 мл.

15. При взаимодействии гидрида кальция массой 4,2 г с водой выделился водород объемом 4 л (н.у.). Массовая доля (%) примесей в образце гидрида кальция равна __________ %. Запишите число с точностью до десятых.

Решение: Напишем уравнения протекающих реакций, найдем мольные соотношения реагентов:

Исходя из этого уравнения, можем написать:
n(СаН2) = 2n(2Н2); n(Н2) = 4/22,4 = 0,18 моль; n(СаН2) = 0,18/2 = 0,09 моль.

m(СаН2) = M(СаН2)⃰ 0,09 = 42⃰ 0,09 = 3,78 г. Разность масс 4,2 – 3,78 = 0,42 г – это примеси. Массовая доля примесей будет:

ω(пр) = 0,42⃰100/4,2 = 10%.

16. В одном объеме воды было растворено 125 объемов хлористого водорода (н.у.). Массовая доля (%) хлороводорода в растворе равна _________ %. Запишите число с точностью до десятых.

Решение: Возьмем 1 л воды массой 1000 г и 125 л газообраного хлороводорода. Найдем массу 125 л HCl (н.у.): n(HCl) = 125/22,4 = 5,58 моль. m(HCl) = 5,58⃰ M = 5,58⃰ 36,5 = 203,67 г. Масса раствора равна: 1000 + 203,67 = 1203,67 г. Массовая доля (%) хлороводорода в растворе будет:

ω(HCl) = 203,67⃰100/1203,67 = 16,9%.

17. Объем кислорода (н.у.), необходимого для сжигания 20 л (н.у.) смеси оксида углерода (II) и водорода с относительной плотностью по гелию 3,1, равен ______________ л. Запишите целое число.

Решение. DHe смеси = 3,1
Мсмеси = 3,1*M(Hе)= 3,1*4 = 12,4 г/моль
Теперь вспомним формулу:
Мсмеси=М1*φ1+М2*φ2…
Используем ее в нашем случае. Если обозначить долю оксида углерода (II) за х, тогда доля водорода будет (1-х). М(СО) = 28 г/моль; М(Н2) = 2 г/моль. Тогда можно написать уравнение:
12,4 = 28x + 2(1-x)
12,4 = 28x + 2-2x
10,4 = 26x
x = 0,4 = 40% — оксида углерода (II); водорода будет 0,6, или 60%.
Находим, сколько моль смеси газов было смеси:
Nv = V/Vm = 20/22,4 = 0,89 (моль)
и, находим количества молей СО и Н2:

n(CO) = 0,89*0,4 = 0,356 моль;

V = 3,99 + 5,98 = 9,97 л.

18. При добавлении к раствору пероксида водорода массой 0,8 г раствора иодида калия в присутствии серной кислоты образовалось 0,3 г иода. Массовая доля (%) пероксида в исходном растворе равна _______________ %. Запишите целое число.

19. Масса раствора пероксида водорода с массовой долей 3,4%, которая необходима для окисления 15,2 г сульфата железа (II) в присутствии серной кислоты равна ___________ г. Запишите целое число.

Решение.
Запишем уравнение реакции:
2FeSO4 + H2SO4 + H2O2 → Fe2(SO4)3 + 2H2O

n(FeSO4) = m/M = 15,2 г/152 г/моль = 0,1 моль

mр-ра Н2О2 = 1,7⃰ 100/3,4 = 50 г.

  1. Оксид серы (IV), полученный при сжигании 67,2 л (н.у.) сероводорода, пропущен через 1 л раствора гидроксида натрия с массовой долей 25% (ρ = 1,3 г/мл). При этом образовалось соль состава:

Решение. Уравнение реакции сжигания сероводорода следующее:

mр-ра(NaOH) = 1000 мл⃰ 1,3 г/мл = 1300 г

m(NaOH) = 1300⃰ 25/100 = 325 г

n(NaOH) = m(NaOH)/М(NaOH) = 325/40 = 8,125 моль.

Гидроксид натрия в избытке, поэтому, реакция будет следующая:

  1. Взаимодействие 13 г цинка с 0,3 моля концентрированной серной кислоты происходит с выделением сероводорода. Число молей концентрированной серной кислоты, идущей на солеобразование и на окислительно-восстановительный процесс соответственно равны:

1) 0,2 и 0,05; 2) 0,1 и 0,1; 3) 0,1 и 0,2; 4) 0,05 и 0,01.

Решение. Уравнение реакции следующее:

S +6 + 8e → S -2 | 1
Zn о — 2e → Zn +2 | 4

n(Zn) = m(Zn)/А(Zn) = 13/65 = 0,2 моль

По уравнению реакции, с 4 молями атомов цинка реагируют 5 молей серной кислоты. При этом видно, что 4 моля серной кислоты идут на солеобразование, а 1 моль – на окисление 4-х молей цинка. Также видно, что с 0,2 молями цинка прореагирует 0,25 молей серной кислоты. Т.е. серная кислота в избытке. Оттуда легко найти число молей концентрированной серной кислоты, идущей на солеобразование и на окислительно-восстановительный процесс. На солеобразование: 0,25⃰ 4/5 = 0,2 моль; на окисление: 0,25⃰ 1/5 = 0,05 моль0,25⃰ 4/5 = 0,05 моль.

  1. При термическом разложении 6,62 г нитрата тяжелого двухвалентного металла выделилось 1,12 л (н.у.) смеси двух газов. Определите формулу нитрата металла.
Решение.
Представленные нитраты могут разлагаться следующим образом:

n(смеси газов) = V/Vm = 1,12/22,4 = 0,05 моль.

По уравнению реакции имеем 5 объемных долей газов (4NO2 + O2). При этом, на 1 часть газа приходится 0,05/5 = 0,01 моль газа. В реакции получаются 0,04 моля NO2 и 0,01 моль O2. Из уравнения следует, что nMe(NO3)2 = nО2*2 = 0,02моль. Оттуда находим молекулярную массу соли:

23. Газ, полученный в рекции дихромата калия с соляной кислотой полностью прореагировал при нагревании с 1,12 г железа. Объем (в мл) 36,5%-го раствора соляной кислоты (ρ = 1,16 г/мл) участвовашего в реакции равен____________мл.

Запишите число с точностью до целых.

Из молярных соотношений компонентов реакций видно, что

n(Fe) = 1,12/56 = 0,02 моль

m(HCl) = 0,14* М(HCl) = 0,14*36,5 = 5,11 г

mр-ра(HCl) = 5,11* 100/36,5 = 14 г

Vр-ра(HCl) = 14/1,16 = 12,069 мл.

24. Оксид серы (VI) полученный при окислении оксида серы (IV) объемом 2,24 л (н.у.) в избытке кислорода добавлен к раствору гидроксида натрия массой 200 г с массовой долей NaOH 2%. При этом получилась соль состава:

n(SO2) = 2,24/22,4 = 0,1 моль

m(NaOH) = 2*200/100 = 4 г

n(NaOH) = 4/M(NaOH) = 4/40 = 0,1 моль

Оксид серы (VI) и гидроксид натрия реагируют в эквимолекулярных количествах, значит образуетс кислая соль.

Протекают следующие реакции:

25. (н.у.) смеси газов, состоящей из гелия, водорода и оксида углерода (IV) последовательно пропустили через баритовую воду (при этом выпал осадок массой 19,7 г) и над нагретым оксидом цинка (получили 6,5 г металлического цинка). Объем гелия в исходной смеси равен ___________л. Запишите число с точностью до cотых.

n(Zn) = n(H2) = 6,5/A(Zn) = 6,5/65 = 0,1 моль

V(He) = 20 — 2,24 — 2,24 = 15,52

Это был у нас урок химии 101 Задачи и упражнения по неметаллам и их важным соединениям с решениями.

Видео:Химия 9 класс (Урок№21 - Обобщение по теме «Неметаллы».)Скачать

Химия 9 класс (Урок№21 - Обобщение по теме «Неметаллы».)

Химические свойства неметаллов

1. Водород проявляет свойства окислителя и свойства восстановителя. Поэтому водород реагирует с металлами и неметаллами.

1.1. С активными металлами водород реагирует с образованием гидридов:

2Na + H2 → 2NaH

1.2. В специальных условиях водород реагирует с серой с образованием бинарного соединения сероводорода:

1.3. Водород не реагирует с кремнием.

1.4. С азотом водород реагирует при нагревании под давлением в присутствии катализатора с образованием аммиака:

1.5. В специальных условиях водород реагирует с углеродом.

1.6. Водород горит, взаимодействует с кислородом со взрывом:

2. Водород взаимодействует со сложными веществами:

2.1. Восстанавливает металлы из основных и амфотерных оксидов. Восстановить из оксида водородом можно металлы, расположенные в электрохимическом ряду напряжений после алюминия. При этом образуются металл и вода.

Например, водород взаимодействует с оксидом цинка с образованием цинка и воды:

ZnO + H2 → Zn + H2O

Также водород восстанавливает медь из оксида меди:

СuO + H2 → Cu + H2O

Водород восстанавливает оксиды некоторых неметаллов.

Например , водород взаимодействует с оксидом кремния:

2.2. С органическими веществами водород вступает в реакции присоединения (реакции гидрирования).

Видео:9 класс § 21 "Общая характеристика неметаллов".Скачать

9 класс § 21 "Общая характеристика неметаллов".

Химические свойства галогенов

Химическая активность галогенов увеличивается снизу вверх – от астата к фтору.

1. Галогены проявляют свойства окислителей . Галогены реагируют с металлами и неметаллами .

1.1. Галогены не горят на воздухе. Фтор окисляет кислород с образованием фторида кислорода:

1.2. При взаимодействии галогенов с серой образуются галогениды серы:

1.3. При взаимодействии фосфора и углерода с галогенами образуются галогениды фосфора и углерода:

1.4. При взаимодействии с металлами галогены проявляют свойства окислителей, образуя галогениды.

Например , железо реагирует с галогенами с образованием галогенидов. При этом фтор, хлор и бром образуются галогениды железа (III), а c йодом — соединение железа (II):

3Cl2 + 2Fe → 2FeCl3

Аналогичная ситуация с медью : фтор, хлор и бром окисляют медь до галогенидов меди (II),а йод до йодида меди (I):

I2 + 2Cu → 2CuI

Активные металлы бурно реагируют с галогенами, особенно с фтором и хлором (горят в атмосфере фтора или хлора).

Еще пример : алюминий взаимодействует с хлором с образованием хлорида алюминия:

3Cl2 + 2Al → 2AlCl3

1.5. Водород горит в атмосфере фтора:

С хлором водород реагирует только при нагревании или освещении. При этом реакция протекает со взрывом:

Бром также реагирует с водородом с образованием бромоводорода:

Взаимодействие йода с водородом происходит только при сильном нагревании, реакция протекает обратимо, с поглощением теплоты (эндотермическая):

1.6. Галогены реагируют с галогенами. Более активные галогены окисляют менее активные.

Например , фтор окисляет хлор, бром и йод:

2. Со сложными веществами галогены реагируют, также проявляя преимущественно окислительные свойства. Галогены охотно диспропорционируют при растворении в воде или в щелочах.

2.1. При растворении в воде хлор и бром частично диспропорционируют, повышая и понижая степень окисления. Фтор окисляет воду.

Например , хлор при растворении в холодной воде диспропорционирует до ближайших стабильных степеней окисления (+1 и -1), образует при этом соляную кислоту и хлорноватистую кислоту (хлорная вода):

Cl2 + H2O ↔ HCl + HClO

При растворении в горячей воде хлор диспропорционирует до степеней окисления -1 и +5, образуя соляную кислоту и хлорную кислоту:

Фтор реагирует с водой со взрывом:

2.2. При растворении в щелочах хлор, бром и йод диспропорционируют с образованием различных солей. Фтор окисляет щелочи.

Например , хлор реагирует с холодным раствором гидроксидом натрия:

При взаимодействии с горячим раствором гидроксида натрия образуются хлорид и хлорат:

Еще пример : хлор растворяется в холодном растворе гидроксида кальция:

2.3. Более активные галогены вытесняют менее активные галогены из солей и галогеноводородов.

Например , хлор вытесняет йод и бром из раствора йодида калия и бромида калия соответственно:

Cl2 + 2NaI → 2NaCl + I2

Cl2 + 2NaBr → 2NaCl + Br2

Еще одно свойство: более активные галогены окисляют менее активные.

Например , фтор окисляет хлор с образованием фторида хлора (I):

Cl2 + F2 → 2Cl + F –

В свою очередь, хлор окисляет йод. При этом в растворе образуется соляная кислота и йодная кислота:

2.4. Галогены проявляют окислительные свойства, взаимодействуют с восстановителями.

Например , хлор окисляет сероводород:

Cl2 + H2S → S + 2HCl

Хлор также окисляет сульфиты:

Также галогены окисляют пероксиды:

Или, при нагревании или на свету, воду:

2Cl2 + 2H2O → 4HCl + O2 (на свету или кип.)

Видео:Химические свойства металлов. 9 класс.Скачать

Химические свойства металлов. 9 класс.

Химические свойства кислорода

ри нормальных условиях чистый кислород — очень активное вещество, сильный окислитель. В составе воздуха окислительные свойства кислорода не столь явно выражены.

1. Кислород проявляет свойства окислителя (с большинством химических элементов) и свойства восстановителя (только с более электроотрицательным фтором). В качестве окислителя кислород реагирует и с металлами , и с неметаллами . Большинство реакций сгорания простых веществ в кислороде протекает очень бурно, иногда со взрывом.

1.1. Кислород реагирует с фтором с образованием фторидов кислорода:

С хлором и бромом кислород практически не реагирует, взаимодействует только в специфических очень жестких условиях.

1.2. Кислород реагирует с серой и кремнием с образованием оксидов:

1.3. Фосфор горит в кислороде с образованием оксидов:

При недостатке кислорода возможно образование оксида фосфора (III):

Но чаще фосфор сгорает до оксида фосфора (V):

1.4. С азотом кислород реагирует при действии электрического разряда, либо при очень высокой температуре (2000 о С), образуя оксид азота (II):

N2 + O2→ 2NO

1.5. В реакциях с щелочноземельными металлами, литием и алюминием кислород также проявляет свойства окислителя. При этом образуются оксиды:

2Ca + O2 → 2CaO

Однако при горении натрия в кислороде преимущественно образуется пероксид натрия:

2Na + O2→ Na2O2

А вот калий, рубидий и цезий при сгорании образуют смесь продуктов, преимущественно надпероксид:

K + O2→ KO2

Переходные металлы окисляются кислород обычно до устойчивых степеней окисления.

Цинк окисляется до оксида цинка (II):

2Zn + O2→ 2ZnO

Железо , в зависимости от количества кислорода, образуется либо оксид железа (II), либо оксид железа (III), либо железную окалину:

2Fe + O2→ 2FeO

4Fe + 3O2→ 2Fe2O3

3Fe + 2O2→ Fe3O4

1.6. При нагревании с избытком кислорода графит горит , образуя оксид углерода (IV):

при недостатке кислорода образуется угарный газ СО:

2C + O2 → 2CO

Алмаз горит при высоких температурах:

Горение алмаза в жидком кислороде:

Графит также горит:

Уравнения по химии 9 класс неметаллы

Графит также горит, например, в жидком кислороде:

Уравнения по химии 9 класс неметаллы

Графитовые стержни под напряжением:

2. Кислород взаимодействует со сложными веществами:

2.1. Кислород окисляет бинарные соединения металлов и неметаллов: сульфиды, фосфиды, карбиды, гидриды . При этом образуются оксиды:

4FeS + 7O2→ 2Fe2O3 + 4SO2

Ca3P2 + 4O2→ 3CaO + P2O5

2.2. Кислород окисляет бинарные соединения неметаллов:

  • летучие водородные соединения ( сероводород, аммиак, метан, силан гидриды . При этом также образуются оксиды:

2H2S + 3O2→ 2H2O + 2SO2

Аммиак горит с образованием простого вещества, азота:

4NH3 + 3O2→ 2N2 + 6H2O

Аммиак окисляется на катализаторе (например, губчатое железо) до оксида азота (II):

4NH3 + 5O2→ 4NO + 6H2O

  • прочие бинарные соединения неметаллов — как правило, соединения серы, углерода, фосфора ( сероуглерод, сульфид фосфора и др.):

CS2 + 3O2→ CO2 + 2SO2

  • некоторые оксиды элементов в промежуточных степенях окисления ( оксид углерода (II), оксид железа (II) и др.):

2CO + O2→ 2CO2

2.3. Кислород окисляет гидроксиды и соли металлов в промежуточных степенях окисления в водных растворах.

Например , кислород окисляет гидроксид железа (II):

Кислород окисляет азотистую кислоту :

2.4. Кислород окисляет большинство органических веществ. При этом возможно жесткое окисление (горение) до углекислого газа, угарного газа или углерода:

CH4 + 2O2→ CO2 + 2H2O

2CH4 + 3O2→ 2CO + 4H2O

CH4 + O2→ C + 2H2O

Также возможно каталитическое окисление многих органических веществ (алкенов, спиртов, альдегидов и др.)

Видео:Характеристика неметаллов. Видеоурок 8. Химия 9 классСкачать

Характеристика неметаллов. Видеоурок 8. Химия 9 класс

Химические свойства серы

В нормальных условиях химическая активность серы невелика: при нагревании сера активна, и может быть как окислителем, так и восстановителем.

1. Сера проявляет свойства окислителя (при взаимодействии с элементами, которые расположены ниже и левее в Периодической системе) и свойства восстановителя (с элементами, расположенными выше и правее). Поэтому сера реагирует с металлами и неметаллами .

1.1. При горении серы на воздухе образуется оксид серы (IV) :

1.2. При взаимодействии серы с галогенами (со всеми, кроме йода) образуются галогениды серы:

1.3. При взаимодействии фосфора и углерода с серой образуются сульфиды фосфора и сероуглерод:

2S + C → CS2

1.4. При взаимодействии с металлами сера проявляет свойства окислителя, продукты реакции называют сульфидами. С щелочными металлами сера реагирует без нагревания, а с остальными металлами (кроме золота и платины) – только при нагревании.

Например , железо и ртуть реагируют с серой с образованием сульфидов железа (II) и ртути:

S + Fe → FeS

S + Hg → HgS

Еще пример : алюминий взаимодействует с серой с образованием сульфида алюминия:

1.5. С водородом сера взаимодействует при нагревании с образованием сероводорода:

2. Со сложными веществами сера реагирует, также проявляя окислительные и восстановительные свойства. Сера диспропорционирует при взаимодействии с некоторыми веществами.

2.1. При взаимодействии с окислителями сера окисляется до оксида серы (IV) или до серной кислоты (если реакция протекает в растворе).

Например , азотная кислота окисляет серу до серной кислоты:

Серная кислота также окисляет серу. Но, поскольку S +6 не может окислить серу же до степени окисления +6, образуется оксид серы (IV):

Соединения хлора, например , бертолетова соль , также окисляют серу до +4:

S + 2KClO3 → 3SO2 + 2KCl

Взаимодействие серы с сульфитами (при кипячении) приводит к образованию тиосульфатов:

2.2. При растворении в щелочах сера диспропорционирует до сульфита и сульфида.

Например , сера реагирует с гидроксидом натрия:

При взаимодействии с перегретым паром сера диспропорционирует:

Видео:Химия 9 класс — Как определять Степень Окисления?Скачать

Химия 9 класс — Как определять Степень Окисления?

Химические свойства азота

При нормальных условиях азот химически малоактивен.

1. Азот проявляет свойства окислителя (с элементами, которые расположены ниже и левее в Периодической системе) и свойства восстановителя (с элементами, расположенными выше и правее). Поэтому азот реагирует с металлами и неметаллами .

1.1. Молекулярный азот при обычных условиях с кислородом не реагирует. Реагирует с кислородом только при высокой температуре (2000 о С), на электрической дуге (в природе – во время грозы) :

Процесс эндотермический, т.е. протекает с поглощением теплоты.

1.2. При сильном нагревании (2000 о С или действие электрического разряда) азот реагирует с серой , фосфором, мышьяком, углеродом с образованием бинарных соединений:

2С + N2 → N≡C–C≡N

1.3. Азот взаимодействует с водородом при высоком давлении и высокой температуре ,в присутствии катализатора. При этом образуется аммиак:

Этот процесс экзотермический, т.е. протекает с выделением теплоты.

1.4. Азот реагирует с активными металлами: с литием при комнатной температуре, кальцием, натрием и магнием при нагревании. При этом образуются бинарные соединения-нитриды.

Например , литий реагирует с азотом с образованием нитрида лития:

2. Со сложными веществами азот практически не реагирует из-за крайне низкой реакционной способности.

Взаимодействие возможно только в жестких условиях с активными веществами, например, сильными восстановителями.

Например , азот окисляет гидрид лития:

Видео:ЭТОТ метод поможет на уроках ХИМИИ / Химия 9 классСкачать

ЭТОТ метод поможет на уроках ХИМИИ / Химия 9 класс

Химические свойства фосфора

При нормальных условиях фосфор довольно химически активен.

1. Фосфор проявляет свойства окислителя (с элементами, которые расположены ниже и левее в Периодической системе) и свойства восстановителя (с элементами, расположенными выше и правее). Поэтому фосфор реагирует с металлами и неметаллами .

1.1. При взаимодействии с кислородом воздуха образу

ются оксиды – ангидриды соответствующих кислот :

Горение белого фосфора:

Уравнения по химии 9 класс неметаллы

Горение красного фосфора:

Уравнения по химии 9 класс неметаллы

1.2. При взаимодействии фосфора с галогенами образуются галогениды с общей формулой PHal3 и PHal5:

Фосфор реагирует с бромом:

Уравнения по химии 9 класс неметаллы

1.3. При взаимодействии фосфора с серой образуются сульфиды:

1.4. При взаимодействии с металлами фосфор проявляет свойства окислителя, продукты реакции называют фосфидами.

Например , кальций и магний реагируют с фосфором с образованием фосфидов кальция и магния:

Еще пример : натрий взаимодействует с фосфором с образованием фосфида натрия:

P + 3Na → Na3P

1.5. С водородом фосфор непосредственно не взаимодействует.

2. Со сложными веществами фосфор реагирует, проявляя окислительные и восстановительные свойства. Фосфор диспропорционирует при взаимодействии с некоторыми веществами.

2.1. При взаимодействии с окислителями фосфор окисляется до оксида фосфора (V) или до фосфорной кислоты.

Например , азотная кислота окисляет фосфор до фосфорной кислоты:

Серная кислота также окисляет фосфор:

Соединения хлора, например , бертолетова соль , также окисляют фосфор:

Реакция красного фосфора с бертолетовой солью. Этот процесс заложен в принципе возгорания спички при трении её о шершавую поверхность коробка.

Уравнения по химии 9 класс неметаллы

Некоторые металлы-сильные окислители также окисляют фосфор. Например , оксид серебра (I) :

2.2. При растворении в щелочах фосфор диспропорционирует до гипофосфита и фосфина.

Например , фосфор реагирует с гидроксидом калия:

Или с гидроксидом кальция:

Видео:ОВР и Метод Электронного Баланса — Быстрая Подготовка к ЕГЭ по ХимииСкачать

ОВР и Метод Электронного Баланса — Быстрая Подготовка к ЕГЭ по Химии

Химические свойства углерода

При нормальных условиях углерод существует, как правило, в виде атомных кристаллов (алмаз, графит), поэтому химическая активность углерода — невысокая.

1. Углерод проявляет свойства окислителя (с элементами, которые расположены ниже и левее в Периодической системе) и свойства восстановителя (с элементами, расположенными выше и правее). Поэтому углерод реагирует и с металлами , и с неметаллами .

1.1. Из галогенов углерод при комнатной температуре реагирует с фтором с образованием фторида углерода:

1.2. При сильном нагревании углерод реагирует с серой и кремнием с образованием бинарного соединения сероуглерода и карбида кремния соответственно:

C + 2S → CS2

C + Si → SiC

1.3. Углерод не взаимодействует с фосфором .

При взаимодействии углерода с водородом образуется метан. Реакция идет в присутствии катализатора (никель) и при нагревании:

1.4. С азотом углерод реагирует при действии электрического разряда, образуя дициан:

2С + N2 → N≡C–C≡N

1.5. В реакциях с активными металлами углерод проявляет свойства окислителя. При этом образуются карбиды:

2C + Ca → CaC2

1.6. При нагревании с избытком воздуха графит горит , образуя оксид углерода (IV):

при недостатке кислорода образуется угарный газ СО:

2C + O2 → 2CO

Алмаз горит при высоких температурах:

Горение алмаза в жидком кислороде:

Графит также горит:

Уравнения по химии 9 класс неметаллы

Графит также горит, например, в жидком кислороде:

Уравнения по химии 9 класс неметаллы

Графитовые стержни под напряжением:

2. Углерод взаимодействует со сложными веществами:

2.1. Раскаленный уголь взаимодействует с водяным паром с образованием угарного газа и водорода:

C 0 + H2 + O → C +2 O + H2 0

2.2. Углерод восстанавливает многие металлы из основных и амфотерных оксидов . При этом образуются металл и угарный газ. Получение металлов из оксидов с помощью углерода и его соединений называют пирометаллургией.

Например , углерод взаимодействует с оксидом цинка с образованием металлического цинка и угарного газа:

ZnO + C → Zn + CO

Также углерод восстанавливает железо из железной окалины:

4С + Fe3O4 → 3Fe + 4CO

При взаимодействии с оксидами активных металлов углерод образует карбиды.

Например , углерод взаимодействует с оксидом кальция с образованием карбида кальция и угарного газа. Таким образом, углерод диспропорционирует в данной реакции:

3С + СаО → СаС2 + СО

2.3. Концентрированная серная кислота окисляет углерод при нагревании. При этом образуются оксид серы (IV), оксид углерода (IV) и вода:

2.4. Концентрированная азотная кислотой окисляет углерод также при нагревании. При этом образуются оксид азота (IV), оксид углерода (IV) и вода:

2.5. Углерод проявляет свойства восстановителя и при сплавлении с некоторыми солями , в которых содержатся неметаллы с высокой степенью окисления.

Например , углерод восстанавливает сульфат натрия до сульфида натрия:

Видео:Вся химия 9 класса одном урокеСкачать

Вся химия 9 класса одном уроке

Химические свойства кремния

При нормальных условиях кремний существует в виде атомного кристалла, поэтому химическая активность кремния крайне невысокая.

1. Кремний проявляет свойства окислителя (при взаимодействии с элементами, которые расположены ниже и левее в Периодической системе) и свойства восстановителя (при взаимодействии с элементами, расположенными выше и правее). Поэтому кремний реагирует и с металлами , и с неметаллами .

1.1. При обычных условиях кремний реагирует с фтором с образованием фторида кремния (IV):

При нагревании кремний реагирует с хлором, бромом, йодом :

1.2. При сильном нагревании (около 2000 о С) кремний реагирует с углеродом с образованием бинарного соединения карбида кремния (карборунда):

C + Si → SiC

При температуре выше 600°С взаимодействует с серой:

Si + 2S → SiS2

1.3. Кремний не взаимодействует с водородом .

1.4. С азотом кремний реагирует в очень жестких условиях:

1.5. В реакциях с активными металлами кремний проявляет свойства окислителя. При этом образуются силициды:

2Ca + Si → Ca2Si

Si + 2Mg → Mg2Si

1.6. При нагревании выше 400°С кремний взаимодействует с кислородом :

2. Кремний взаимодействует со сложными веществами:

2.1. В водных растворах щелочей кремний растворяется с образованием солей кремниевой кислоты. При этом щелочь окисляет кремний.

2.2. Кремний не взаимодействует с водными растворами кислот, но аморфный кремний растворяется в плавиковой кислоте с образованием гексафторкремниевой кислоты:

При обработке кремния безводным фтороводородом комплекс не образуется:

С хлороводородом кремний реагирует при 300 °С, с бромоводородом – при 500 °С.

2.3. Кремний растворяется в смеси концентрированных азотной и плавиковой кислот :

3Si + 4HNO3 + 12HF → 3SiF4 + 4NO + 8H2O

Видео:Самый простой способ понять ХИМИЮ — Типы Кристаллических Решеток и Свойства ВеществаСкачать

Самый простой способ понять ХИМИЮ — Типы Кристаллических Решеток и Свойства Вещества

Урок химии по теме «Неметаллы. Общая характеристика неметаллов». 9-й класс

Разделы: Химия

Класс: 9

Тема: Неметаллы. Общая характеристика неметаллов.

Цели:

  • изучить положение неметаллов в ПС;
  • изучить особенности строения атомов неметаллов;
  • изучить явление аллотропии на примере неметаллов;
  • изучить физические свойства неметаллов;
  • рассмотреть ЭО как меру «неметалличности»;
  • рассмотреть относительность понятий «металл-неметалл»;
  • изучить водородные соединения неметаллов.
  • развивать когнитивную сферу учащихся;
  • развивать общеучебные умения и навыки: умение, работать по плану, умение работать с книгой;
  • развивать умение делать самостоятельные выводы.
  • воспитывать культуру умственного труда;
  • воспитывать дисциплинированность и чувство ответственности.

Оборудование и реактивы: образцы неметаллов — простых веществ H2, O2, Cl2 (в пробирках с пробками); Br2 (в ампуле); S, J2, P (красный), активированный уголь, пьезо-зажигалка, йодкрахмальная бумажка.

Тип урока: урок усвоения новых знаний.

Методы обучения: словесные (рассказ, объяснение, беседа); иллюстративные (схемы); наглядные (мультимедийное наглядное пособие); проблемно-поисковый.

ФОПД: фронтальная, индивидуально-обособленная, групповая (динамические группы).

Технологии: элементы технологии «Сотрудничества», личностно-ориентированного обучения. Информационно-коммуникационные технологии.

Видео:Химия. 8 класс. Металлы и неметаллы /05.02.2021/Скачать

Химия. 8 класс. Металлы и неметаллы /05.02.2021/

Ход работы:

I. Организационный момент.

II. Актуализация знаний.

Ответьте на вопросы:

  • на какие 2 большие группы условно делятся все Х.Э.?
  • каково положение в ПС металлов?

III. Изучение

1. Положение неметаллов в ПС

Неметаллы расположены в основном в правом верхнем углу ПС, условно ограниченном диагональю бор-астат. Самым активным является фтор.

2. Особенности строения атомов неметаллов.

Во внешнем электронном слое атомов неметаллов находится от трёх до восьми электронов.

Уравнения по химии 9 класс неметаллы

Для атомов неметаллов, по сравнению с атомами металлов характерны:

  • меньший атомный радиус;
  • четыре и более электрона на внешнем энергетическом уровне.

Отсюда и такое важнейшее свойство атомов неметаллов – тенденция к приёму недостающих до 8 электронов, т.е. окислительные свойства. Качественной характеристикой атомов неметаллов, т.е. своеобразной мерой их неметалличности, может служить электроотрицательность, т.е. свойство атомов химических элементов поляризовать химическую связь, оттягивать к себе общие электронные пары. Электроотрицательность – мера неметалличности, т.е. чем более электроотрицателен данный химический элемент, тем ярче выражены неметаллические свойства.

3. Кристаллическое строение неметаллов-простых веществ. Аллотропия.

Если металлы – простые вещества образованы за счет металлической связи, то для неметаллов – простых веществ характерна ковалентная неполярная химическая связь. В отличие от металлов неметаллы – простые вещества, характеризуются большим многообразием свойств. Неметаллы имеют различное агрегатное состояние при обычных условиях:

Гораздо богаче у неметаллов и спектр цветов: красный – у фосфора, красно-бурый – у брома, желтый – у серы, желто-зеленый – у хлора, фиолетовый – у паров йода. Элементы – неметаллы более способны, по сравнению с металлами, к аллотропии.

Способность атомов одного химического элемента образовывать несколько простых веществ называется аллотропией, а эти простые вещества – аллотропными видоизменениями или модификациями.

Уравнения по химии 9 класс неметаллы

4. Сообщения.

5. Физические свойства неметаллов.

  1. Ковкость отсутствует
  2. Блеска нет
  3. Теплопроводность (только графит)
  4. Цвет разнообразный: желтый, желтовато-зеленый, красно-бурый.
  5. Электропроводность (только графит и черный Фосфор.)
  6. Агрегатное состояние:
    • газообразное(H2, O2, Cl2 ,F2, O3)
    • твердое (Р, С)
    • жидкое (Br2)

6. Химические свойства неметаллов.

Неметаллы в химических реакциях могут быть восстановителями и окислителями (фтор, кислород.)

7. Водородные соединения неметаллов.

В отличие от металлов неметаллы образуют газообразные водородные соединения. Их состав зависит от степени окисления неметаллов.

-4-3-2-1
RH4RH3H2R →HR

Летучие водородные соединения неметаллов можно разделить на три группы:

1) Хорошо растворимые в воде (HCl, HBr, HJ, H2S, H2Se, NH3), которые диссоциируют на ионы, проявляя кислотные и основные свойства.

Уравнения по химии 9 класс неметаллы

2) Соединения, разлагаемые водой:

3) Летучие водородные соединения

По периоду в ПС химических элементов с увеличением порядкового номера элемента – неметалла усиливается кислотный характер водородного соединения.

Выводы:

  1. Элементы-неметаллы расположены в главных подгруппах III–VIII групп ПС Д.И. Менделеева, занимая её верхний правый угол.
  2. На внешнем электронном слое атомов элементов-неметаллов находятся от 3 до 8 электронов.
  3. Неметаллические свойства элементов усиливаются в периодах и ослабевают в подгруппах с увеличением порядкового номера элемента.
  4. Высшие кислородные соединения неметаллов имеют кислотный характер (кислотные оксиды и гидроксиды).
  5. Атомы элементов-неметаллов способны как принимать электроны, проявляя окислительные функции, так и отдавать их, проявляя восстановительные функции.

IV. Закрепление изученного. Рефлексия.

1) Вставьте слова, пропущенные в тексте.
Атомы ____ в отличие от атомов ____ легко принимают наружные электроны, являются ____

2) Вставьте слова , пропущенные в тексте.
Неметаллические свойства элементов с увеличением порядкового номера в периодах ____
В группах неметаллические свойства элементов ____

3) Пользуясь периодической таблицей, запишите молекулярные формулы высших кислородных соединений неметаллов III периода. Как будет изменяться кислотный характер?

4) Запишите формулы водородных соединений элементов VII А группы. Как изменяются кислотные свойства с увеличением порядкового номера элемента?

5) Водород занимает в периодической таблице два места: в I А группе и в VII А группе. Запишите молекулярные формулы водородных соединений Na, K, Cl, F.

6) Какую высшую степень окисления имеют следующие элементы?

Азот+6
Хлор+5
Сера+4
Кремний+7

7) Определите, окислителем или восстановителем является сера в следующих реакциях:

8) Наиболее ярко выраженные неметаллические свойства проявляет вещество, образованное из атомов, в которых число электронов во внешнем электронном слое равно____.

9) Наиболее электроотрицательными являются атомы…..

• серы • фосфора • кремния • хлора

10) Типичному неметаллу соответствует следующая схема распределения электронов по электронным слоям:

Поменяйтесь тестом с соседом и проверьте тест вместе со мной.

V. Читаем по учебнику состав воздуха стр. 74

VI. Решаем упражнения 1–4 стр.75

VII. Оценки и домашнее задание.

Д/З § 15 Неметаллы.

Условные обозначения:
ПС – периодическая система
е – электрон
Э.О. – электроотрицательность
А. – аллотропия
Х.р. – химическая реакция

🔥 Видео

Как Решать Задачи по Химии // Задачи с Уравнением Химической Реакции // Подготовка к ЕГЭ по ХимииСкачать

Как Решать Задачи по Химии // Задачи с Уравнением Химической Реакции // Подготовка к ЕГЭ по Химии

Химия, 9-й класс, Общая характеристика неметалловСкачать

Химия, 9-й класс, Общая характеристика неметаллов

Получение металлов. 9 класс.Скачать

Получение металлов. 9 класс.

Химические уравнения. СЕКРЕТНЫЙ СПОСОБ: Как составлять химические уравнения? Химия 8 классСкачать

Химические уравнения. СЕКРЕТНЫЙ СПОСОБ: Как составлять химические уравнения? Химия 8 класс

Химия, 9 класс, тема "Окислительно-восстановительные реакции" (учитель Швецова Елена Евгеньевна)Скачать

Химия, 9 класс, тема "Окислительно-восстановительные реакции" (учитель Швецова Елена Евгеньевна)

Окислительно-восстановительные реакции. 1 часть. 9 класс.Скачать

Окислительно-восстановительные реакции. 1 часть. 9 класс.

Общая характеристика металлов. 9 класс.Скачать

Общая характеристика металлов. 9 класс.

Неметаллы | Химия 11 класс #21 | ИнфоурокСкачать

Неметаллы | Химия 11 класс #21 | Инфоурок
Поделиться или сохранить к себе: